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Abstract. We have applied a new reconstruction method
(Sonnerup and Teh, 2008), based on the ideal single-fluid
MHD equations in a steady-state, two-dimensional geometry,
to a reconnection event observed by the Cluster-3 (C3) space-
craft on 5 July 2001, 06:23 UT, at the dawn-side Northern-
Hemisphere magnetopause. The event has been previously
studied by use of Grad-Shafranov (GS) reconstruction, per-
formed in the deHoffmann-Teller frame, and using the as-
sumption that the flow effects were either negligible or the
flow was aligned with the magnetic field. Our new method
allows the reconstruction to be performed in the frame of
reference moving with the reconnection site (the X-line).
In the event studied, this motion is tailward/equatorward at
140 km/s. The principal result of the study is that the new
method functions well, generating a magnetic field map that
is qualitatively similar to those obtained in the earlier GS-
based reconstructions but now includes the reconnection site
itself. In comparison with the earlier map by Hasegawa
et al. (2004), our new map has a slightly improved ability
(cc=0.979 versus cc=0.975) to predict the fields measured by
the other three Cluster spacecraft, at distances from C3 rang-
ing from 2132 km (C1) to 2646 km (C4). The new field map
indicates the presence of a magnetic X-point, located some
5300 km tailward/equatorward of C3 at the time of its traver-
sal of the magnetopause. In the immediate vicinity of the
X-point, the ideal-MHD assumption breaks down, i.e. resis-
tive and/or other effects should be included. We have cir-
cumvented this problem by an ad-hoc procedure in which we
allow the axial part of convection electric field to be non-
constant near the reconnection site. The new reconstruction
method also provides a map of the velocity field, in which
the inflow into the wedge of reconnected field lines and the
plasma jet within it can be seen, and maps of the electric po-
tential and of the electric current distribution. Even though

Correspondence to:W.-L. Teh
(wai-leongteh@Dartmouth.edu)

the velocity map is expected to be inaccurate near the X-
point, it provides high-quality predictions (cc=0.969) of the
velocity components at points along the path of C1, some of
which are close to the X-point; the predictions of density and
pressure are less good. Except near the reconnection site, the
new reconstruction provides a complete characterization, in
unprecedented detail, of the entire dynamic plasma and field
equilibrium, reconstructed from the C3 data. It represents
our best prediction to date of what the actual configuration
was like. But, since substantial time variations were present
in the event, the recovered structure by necessity includes
considerable time aliasing. The invariant direction used in
the reconstruction, is found to agree, within 6◦, with a recent
theoretical prediction of the X-line orientation by Swisdak
and Drake (2007).

Keywords. Magnetospheric physics (Magnetopause, cusp,
and boundary layers) – Space plasma physics (Kinetic and
MHD theory; Magnetic reconnection)

1 Introduction

The term Grad-Shafranov (GS) reconstruction refers to
a method of producing maps of two-dimensional, time-
independent field and plasma structures, governed by a GS-
like equation, from data taken by one or more spacecraft
traversing the structures. It was originally developed (Son-
nerup and Guo, 1996; Hau and Sonnerup, 1999) for applica-
tion to ideal magneto-hydrostatic structures, which are gov-
erned by the classical GS equation, but has recently been
generalized to include the effects of magnetic-field aligned
plasma flow, and to recover streamlines in flow transverse
to a unidirectional field (Sonnerup et al., 2006a). Both of
these cases are governed by GS-like equations. Applica-
tions of magneto-hydrostatic reconstruction have allowed the
recovery of a variety of magnetopause structures (Hau and
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Figure 3 

 

Fig. 1. Schematic drawing illustrating the difference between the
deHoffmann-Teller (HT) frame and the proper frame (the frame of
the drawing) for an asymmetric two-dimensional reconnection con-
figuration at the magnetopause. This configuration (only half of
which is shown) contains an upstream rotational discontinuity (RD)
followed by a slow-mode expansion fan (SEF) (Levy et al., 1964).
In the HT frame, which moves to the right with speedVHT rela-
tive to the proper frame, the plasma flow,V ′, crossing the RD is
along the magnetic field so that the tangential electric field in the
RD, including the componentEz, vanishes at locations well away
from the SEF and the reconnection site (the X-point). In the HT
frame, the SEF structure appears to be moving downward, away
from the RD, while the reconnection site is moving to the left: the
global configuration is time dependent. In the proper frame, the en-
tire reconnection configuration is time stationary and anchored to
the X. The inflow velocity isV and the electric field componentEz
is nonzero and constant,Ez=E0, within the entire configuration;
E0is the reconnection electric field (from Sonnerup and Teh, 2008).

Sonnerup, 1999; Hu and Sonnerup, 2003a; Sonnerup et al.,
2004; Hasegawa et al., 2006; Teh and Hau, 2004, 2007a;
Lui et al., 2008), including those in the 5 July 2001 event,
where active reconnection occurred (Hasegawa et al., 2004,
2005), as well as flux ropes in the solar wind (e.g. Hu et al.
2001, 2003b) and in the earth’s geomagnetic tail (Hasegawa
et al., 2007a; Zhang et al., 2007). Recently, an application
that includes the effects of field-aligned flow in the 5 July
reconnection event has been reported (Teh et al., 2007b) and
the streamlines in a Kelvin-Helmholtz (KH) generated vortex
train in Earth’s low-latitude boundary layer have been recon-
structed (Hasegawa et al., 2007b). In both of these appli-
cations, the base assumptions of the GS-like reconstruction
are being somewhat stretched: For the reconnection event,
the reconstruction was performed in the deHoffmann-Teller
(HT) frame of reference, in which the flow is as field aligned
as the data permit. But, as illustrated in Fig. 1, the recon-
nection configuration is time dependent, when seen in this
frame: The reconnection site (the X-line) is moving rapidly
to the left, making it difficult or impossible to recover the
plasma/field behavior in its vicinity or to pinpoint its loca-
tion. Another consequence of the motion is that the various
substructures of the reconnection wedge are receding from
each other, i.e. the separation between them is increasing
with time. But, provided the reconnection rate is small and

the observations are made well away from the reconnection
site, the resulting time dependence is probably not important
for the reconstruction of a substructure such as the rotational
discontinuity (RD). In the case of GS-based streamline re-
construction, a difficulty is that, in practice, there are usu-
ally remnant magnetic field components in the reconstruc-
tion plane. These components may have significant dynamic
effects on the flow and may themselves develop observable
structures as a result of the flow.

The problems mentioned above can be removed, or at least
alleviated, by performing reconstruction that is based directly
on the ideal, time-independent, 2-D magneto-hydrodynamic
(MHD) equations, rather than being restricted to situations
where the equations can be cast in the form of a GS-like
system. We have shown that such reconstruction is indeed
possible: The basic mathematical theory for it has been de-
veloped, along with a numerical code that has been validated
by application to an exact solution of the MHD equations
(Sonnerup and Teh, 2008). The purpose of the present pa-
per is to present the first results of this general MHD recon-
struction, as applied to the magnetopause reconnection event
seen by the Cluster spacecraft around 06:23 UT on 5 July
2001. Ideal MHD does not describe conditions in the im-
mediate vicinity of the reconnection site but our application
will show that its approximate location can be established
and that a detailed overall picture of the reconnection geom-
etry can be obtained. An application of MHD reconstruction
to KH activity, observed by one of the THEMIS spacecraft in
the low-latitude boundary layer, has also been made and will
be reported separately (Eriksson et al., 20081).

The paper is organized as follows. In Sect. 2, the mathe-
matical basis for MHD-based reconstruction is briefly sum-
marized. In Sect. 3, the method is applied to the 5 July 2001,
event. As mentioned already, this event has been studied pre-
viously, both by use of magneto-hydrostatic GS reconstruc-
tion (Hasegawa et al., 2004, 2005) and by use of GS-like
reconstruction that incorporates the effects of field-aligned
flow (Teh et al., 2007b). The choice of this event allows
inter-comparison of results from the new method and those
from the earlier ones, which will provide further important
validation of the field maps from the previous reconstruc-
tions and will also highlight differences in the results caused
by the underlying differences in physical assumptions. Sec-
tion 4 contains further discussion of the results and of the
prospects for accurately reconstructing reconnection event in
the immediate vicinity of the reconnection site itself, where
the assumptions of ideal MHD break down.

1Eriksson, S., Hasegawa, H., Teh, W.-L., McFadden, J. P.,
Glassmeier, K.-H., Roux, A., Angelopoulos, V., Sonnerup, B. U.Ö.,
Cully, C. M., and Ergun, R. E.: Magnetic island formation between
large-scale flow vortices at an undulating postnoon magnetopause
for northward IMF, J. Geophys. Res., submitted, 2008.
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2 Theory

A detailed description of how one arrives at the formu-
las that form the basis of MHD reconstruction has been
given by Sonnerup and Teh (2008). For convenience we
provide a brief summary of the method in this section. It
is based on ideal, single-fluid MHD with the assumption
of a steady state and two dimensions, the invariant axis
being the z-axis of the coordinate system in which the
reconstruction is performed. The xy-plane is called the
reconstruction plane. It is in this plane that maps can be
generated of magnetic fieldB⊥=[Bx(x, y), By(x, y)],
flow field v⊥=[vx(x, y), vy(x, y)], electric cur-
rent density j⊥=[jx(x, y), jy(x, y)], electric field
E⊥=[Ex(x, y), Ey(x, y)], and other quantities such as
plasma pressurep(x, y) and densityρ(x, y), as well as
axial field Bz(x, y), flow vz(x, y), and current density
jz(x, y). In a steady state, Faraday’s law requires the total
axial electric field to be a constant,Ez=E0, independent
of x and y. In reconstructions of ongoing reconnection,
E0 is the reconnection electric field. In regions where
ideal, single-fluid MHD and therefore the frozen field
condition applies, the total electric field may be replaced
by the convection fieldEc=−v×B. The x-axis of the
reconstruction coordinate system is along the spacecraft
path through the structure to be recovered; the±y-axis is the
direction of integration away from the spacecraft path. It is
assumed that, in its motion along the x-axis, the spacecraft
has measured all quantities required in the reconstruction,
namely [B(x,0), v(x,0), p(x,0), ρ(x,0)]. The measured
time series of these quantities are converted to spatial
variation along the x-axis, by use of the velocityV 0 of the
structure past the observing spacecraft. The determination
of this velocity and of the invariant direction, which is
perpendicular to it, is discussed at the end of the section.

The magnetic field and flow field in the reconstruction
plane are expressed in terms of a vector potentialA(x, y)

and a compressible stream functionψ(x, y), respectively,
so that B⊥=∇A×ẑ and ρv⊥=∇ψ×ẑ. Field lines pro-
jected onto the reconstruction plane are then curves de-
fined by A(x, y)=const. and streamlines are defined by
ψ(x, y)=const. The initial values,A(x,0) andψ(x,0), are
obtained by integration of the measuredy-components of
field and flow:

A(x,0) =

∫
(∂A/∂x)dx = −

∫
By(x,0)dx (1)

and

ψ(x,0) =

∫
(∂ψ/∂x)dx = −

∫
ρ(x,0)vy(x,0)dx (2)

In the integration of the MHD equations, the vector poten-
tial and stream function are advanced by use of the Taylor
expansions

A(x, y±1y)=A(x, y)±1y∂A/∂y+(1/2)(1y)2∂2A/∂y2(3)

ψ(x, y±1y)=ψ(x, y)±1y∂ψ/∂y+(1/2)(1y)2∂2ψ/∂y2(4)

The quantities[ρ, p, vz, Bz] are advanced only to lowest or-
der, e.g.,ρ(x, y±1y)=ρ(x, y)±1y∂ρ/∂y. The unknown
derivatives needed to integrate the MHD system can be ar-
ranged into the row vector

X = [(∂ρ/∂y), (∂p/∂y), (∂vz/∂y), (∂Bz/∂y),

(∂2ψ/∂y2), (∂2A/∂y2)] (5)

This vector is governed by the matrix equation

M0X
T

= Y T0 (6)

where the matrixM0 is given by

M0 =



−vxvy 0 0 0 vy −By/µ0

−v2
y 1 0 Bz/µ0 0 Bx/µ0

0 0 ρvy −By/µ0 0 0
vyBz/ρ 0 By −vy 0 0

(vyBx − vxBy) 0 0 0 By −ρvy
−cp/ρ cv/p 0 0 0 0

(7)

and the column vectorY T0 by

Y T0 =


−∂[p + (B2

y + B2
z )/2µ0]/∂x − ρ∂(v2

x/2)/∂x
−ρvx∂vy/∂x + vy∂ρvx/∂x + (Bx/µ0)∂By/∂x

−ρvx∂vz/∂x + (Bx/µ0)∂Bz/∂x

−Bx∂vz/∂x + vx∂Bz/∂x − (vxBz/ρ)∂ρ/∂x

ρvx∂Bx/∂x − Bx∂ρvx/∂x

ρvxdS/dψ

 .(8)

The matrixM0 and the vectorY T0 contain only quantities and
derivatives that are known at each step, i.e. at each y-value,
of the integration. The last equation in the set (6) comes
from the conservation of entropyS(ψ) along the stream-
lines. This entropy function, which is assumed to remain
valid throughout the integration domain, can be evaluated at
points along the spacecraft path (the x-axis), after the stream
functionψ(x,0) has been obtained from Eq. (2). As the in-
tegration proceeds, the matrixM0 must be inverted at each
grid point. The integration code contains low-pass filtering
after each step1y in order to help suppress the spurious and
rapidly growing parts of the solution that unavoidably arise
in this type of initial-value problem. Even so, the integration
domain remains limited to a rectangle with an aspect ratio of
typically 0.1–0.2, with the long sides parallel to the x-axis.

One of the major problems in doing reconstruction of the
type discussed here is to find the optimal invariant direc-
tion, ẑ, and the optimal velocity of motion,V 0, of the co-
ordinate system in which the reconstruction should be per-
formed. In ideal circumstances, both of these vectors can be
derived from the condition that, in the proper moving frame,
and along the right invariant direction̂z, the total electric
field Ez should be strictly constant. A least-squares proce-
dure for finding the frame velocity and the axis from this
requirement, using single-spacecraft data, has been devel-
oped and tested by Sonnerup and Hasegawa (2005). Expe-
rience has indicated that in some events it gives good results

www.ann-geophys.net/26/2673/2008/ Ann. Geophys., 26, 2673–2684, 2008
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Figure 1 

 

 

Figure 2 

 

 

Figure 3 

 

Fig. 2. Time series of Cluster measurements around, and during, a magnetopause crossing on 5 July 2001. The color code is: black=C1;
red=C2; green=C3; blue=C4. The left (right) panels show magnetic field (ion velocity) and ion density (temperature), with vector components
along the GSE coordinate axes. The plasma data for C1 and C3 are from the CIS/HIA instrument. The interval between black (green) vertical
lines is used in the reconstruction based on C1 (C3) data.

but in many others it does not. Other methods for single-
spacecraft data may be based on searching for an axis and
motion that render the entropy functionS(ψ) optimally well
organized and consistent for streamlines that are encountered
more than once by the spacecraft, i.e., streamlines that inter-
sect the x-axis more than once, during the data interval used
in the reconstruction. If four-spacecraft data are available and
the spacecraft separation is small compared to the structure
being studied, then the tensor representing∇B can in prin-
ciple be used to find the invariant direction (e.g. Shi et al.,
2005); for larger separations, multiple reconstructions can be
performed, and a trial-and-error procedure used, to optimize
the correlation between map prediction and actual measure-
ments, as described by Hasegawa et al. (2004, 2005). Also,
Zhou et al. (2006) have developed a multiple triangulation
analysis to determine the orientation of a magnetic flux rope,
using multi-spacecraft data.

3 Cluster event on 5 July 2001, at 06:23 UT

This magnetopause encounter occurred on the
dawn-side and in the Northern Hemisphere at
[X, Y,Z]GSE=[−6.78,−14.97,6.24]RE . Time series
of the relevant measurements are shown in Fig. 2, in which
the time intervals used in the reconstruction are indicated
by vertical lines, black for C1 and green for C3. The
transition of the spacecraft is from the magnetosphere to the
magnetosheath. The event has been extensively analyzed,
both in terms of single and multi-spacecraft determinations
of the magnetopause normal vector and motion (Haaland
et al., 2004; Sonnerup et al., 2006b, 2007), and in terms
of magneto-hydrostatic GS reconstructions performed in
the HT frame (Hasegawa et al., 2004, 2005) and a GS-like
reconstruction, also in the HT frame, that includes the effects
of field-aligned flow (Teh et al., 2007b). The invariant
direction (the z-axis) in these reconstructions was deter-
mined by optimization of the correlation coefficient between

Ann. Geophys., 26, 2673–2684, 2008 www.ann-geophys.net/26/2673/2008/
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Figure 1 

 

 

Figure 2 

 

 

Figure 3 

 

Fig. 3. Portion of magnetic field map from magneto-hydrostatic Grad-Shafranov reconstruction, based on C1 data taken during the mag-
netopause crossing on 5 July 2001. The white vectors are plasma velocities in the HT frame, projected onto the reconstruction plane. The
red arrows are the normal vectors from MVAB0. The white constellation denotes the projected location of the four Cluster spacecraft on
the map. Magnetosphere (magnetosheath) is in lower left (upper right) of the map; sunward/northward is to the right. For a more detailed
description, see Hasegawa et al. (2004).

measured and reconstructed field components, as described
by Hasegawa et al. (2004).

The most important finding from the earlier reconstruc-
tions is that the magnetopause changed its structure in a
rather dramatic way in the 30 s time interval between the
crossing by Cluster-1 (C1) and that by Cluster-3 (C3): Re-
gardless of reconstruction method, the C1 results indicate the
crossing of a thin magnetopause layer, containing at most
some narrow magnetic islands (see Fig. 3), and predicting
that the other three spacecraft should also see such a thin
magnetopause layer. However, the C3-based reconstruction
showed instead a much thicker layer and the unmistakable
signatures of reconnection activity. A wedge-like region con-
taining field lines that appear to cross the magnetopause and
provide magnetic connection between its two sides was now
present. The flux content in the wedge allowed a lower limit
of 0.47 mV/m to be placed on the average reconnection elec-
tric field (Teh et al., 2007b). These authors also found the
plasma flow, in the HT frame they employed, to be super-
sonic in the wedge. On the whole, this event appears to be
an example of reconnection onset, in the time interval be-
tween the C1 and the C3 crossings. In the 30 s time interval,
the Waĺen slope, evaluated during the magnetopause traver-
sal, increased from 0.57 in the C1 crossing to 1.03 in the C3
crossing (Hasegawa et al., 2004). The reconnection site was
located somewhat tailward/equatorward of the spacecraft so
that the reconnection jet traversed by C3 was in a direction
opposing the main magnetosheath flow. As a consequence,
no jet-associated velocity maximum was seen in the space-
craft frame.

The MHD reconstruction in the present study is concerned
with the magnetopause crossing by C3. It uses the same
invariant axisẑ as in the papers by Hasegawa et al. (2004)
and Teh et al. (2007b) and, for the sole purpose of determin-
ing the magnetopause velocity, the same HT-frame velocity,

V HT . The GSE location of the crossing and the orientation
of the invariant axis relative to the fields on the two sides
of the magnetopause are shown in Fig. 4, along with the
direction of motion of the X-line. The earlier work used a
magnetopause normal vectorn̂, calculated from constrained
magnetic minimum-variance analysis (MVAB0:〈B〉·n̂=0).
Our n̂ vector was obtained by instead using the constraint
n̂·ẑ=0; it forms an angle of 4.4◦ with the previously used
vector. The result of this rotation is that ourn̂ has a negative
average normal field component,〈B〉·n̂=−2.3 nT, and a neg-
ative normal flow component,(〈v〉−V HT )·n̂=−13.8 km/s,
during the magnetopause traversal (06:23:53–06:24:37 UT).
Also, the magnetopause velocity,n̂·V HT , decreases from
−56.2 km/s (Hasegawa et al., 2004) to−37.1 km/s. An im-
portant difference is that, in our reconstruction, the frame
velocity relative to the spacecraft is no longerV HT but is
instead a velocityV 0, composed of a componentV ′

0 (see
Fig. 4) at right angles to both the invariant axis and the nor-
mal vector, plus the vector̂n(V HT ·n̂), the latter describ-
ing the magnetopause motion along the normal direction.
The method by Sonnerup and Hasegawa (2005) to find the
axis and its motion failed to give believable values for this
event. For this reason, the axis orientation was taken from
the work by Hasegawa et al. (2004), and the magnitude of
V ′

0 (|V ′

0|=135 km/s) was determined by requiring the av-
erage axial convection electric fieldE0=−〈v×B〉·ẑ in the
moving frame to be 0.47 mV/m, which is the lower limit cal-
culated by Teh et al. (2007b) from their reconstruction. As
illustrated in the left panel of Fig. 5, the standard deviation
of the individual convectiveEz values from this average is
±0.28 mV/m; the average itself is uncertain by 0.08 mV/m.
The fluctuations indicate the presence of substantial tempo-
ral variations that cannot be captured in the reconstruction.
These fluctuations in the initial convectionEz data (aty=0)
are removed prior to the start of the integration. This is

www.ann-geophys.net/26/2673/2008/ Ann. Geophys., 26, 2673–2684, 2008
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Figure 4 

 

 

Figure 5 

 

 

 

 

 

 

 

 

Fig. 4. Schematic of magnetic fields and invariant axis. The fig-
ure shows a projection onto the GSE xz-plane (upper panel) and
xy-plane (lower panel) of the magnetospheric and magnetosheath
fields and the invariant axis (the X-line and its motion along the
magnetopause with velocityV ′

0=[−59.8,−59.9,−105.2] km/s) at
the observation site (the point of origin of the vectors) on the dawn-
side northern magnetopause. Also shown is the x-axis used in the
reconstruction.

achieved by making small adjustments in the component of
v⊥(x,0) perpendicular toB⊥. In each subsequent step of
the integration, the same type of nudging is used to preserve
strict constancy of the convectiveEzthroughout the integra-
tion domain, except near the reconnection site. The proce-
dure used there will be discussed presently.

The entropy functionS(ψ), obtained in our new recon-
struction frame for C3, is shown in the right panel of Fig. 5,
in which the data points are the values ofS, calculated di-
rectly from the measured density and temperature. The high
entropy on the left in the figure represents magnetospheric

conditions; the lower level on the right corresponds to mag-
netosheath conditions. The wedge of reconnected field lines
occupies the central portion of the plot, where the entropy
is seen to be essentially at the magnetosheath level, but at
its inner edge, the entropy approaches that in the magneto-
sphere. These facts are consistent with isentropic inflow into
the wedge, both from its magnetosheath side and its mag-
netospheric side, with intermixing occurring only in a nar-
row layer. The fitted curve used in the reconstruction is also
shown in the figure. In the initial data (aty=0), the pressure
is adjusted so that the value of the entropy at all grid points
on thex-axis is located exactly on this curve. After each step
of the integration, the pressure is then nudged so thatS(ψ)

in fact remains preserved along the streamlines.
The magnetic field map resulting from the MHD recon-

struction is shown in the top panel of Fig. 6, in which
panel color indicates the values ofBz. As before, a wedge-
like region of reconnected field lines is seen in the map.
Its shape is somewhat different from the earlier results
and its flux content is slightly larger, requiring an increase
of the minimum reconnection electric field from 0.47 to
0.52 mV/m (we have not redone the reconstruction to incor-
porate this small increase). The field lines show the pres-
ence of a negative normal magnetic field component in most
of the magnetopause, in agreement with the negative value,
〈B〉·n̂=−2.3 nT, quoted above. The Alfvén speed, based on
this field component and a magnetosheath proton density of
10/cc, is 15.2 km/s. Comparison with the inflow velocity
of 13.8 km/s, mentioned earlier, indicates that, within un-
certainties, the inflow is Alfv́enic. Indeed, the Walén slope,
which is determined, without the use ofn̂, from data during
the traversal of the wedge, is +1.03 (Hasegawa et al., 2004),
indicating nearly Alfv́enic flow parallel toB in the HT frame.
Note that the reconstruction shows an X-point in the upper
left corner of the map at (x, y)=(11 500, 1400) km. The dis-
tance from this point to the location of C3 at the time of its
traversal of the reconnection wedge is about 5300 km. The
magneto-hydrostatic reconstruction (Hasegawa et al., 2004)
exhibited instead an elongated (3000 km) region in which
B⊥'0, located in the same region. This behavior is a likely
consequence of the fact that, in the reconstruction frame used
by Hasegawa et al. (2004) (the HT frame), the reconnection
site was in rapid motion (∼86 km/s toward smaller x-values).
In the Teh et al. (2007b) reconstruction, the X-point, if any,
was outside the map but would be moving in the same man-
ner.

The second panel in Fig. 6 shows the streamlines obtained
from the reconstruction. Because these lines are drawn at
constant increments of the mass flux, almost no lines are seen
in the magnetosphere, where the plasma density is low. But
the white arrows, representing measured flow speeds (trans-
formed to the moving frame) in the reconstruction plane
from both C3 and C1, show that the velocities seen in the
reconstruction frame are larger in the magnetosphere than
in the magnetosheath. The reason is that the X-line moves

Ann. Geophys., 26, 2673–2684, 2008 www.ann-geophys.net/26/2673/2008/



W.-L. Teh and B. U.Ö. Sonnerup: First results from ideal 2-D MHD reconstruction 2679

Figure 4 

 

 

Figure 5 

 

 

 

 

 

 

 

 

Fig. 5. (a)Plot of axial convection electric fieldEz for 12 consecutive points in the interval (06:23:53–06:24:37 UT) within the reconnection
wedge (between the two green triangles in the first panel of Fig. 6).(b) Plot of the entropy S versus the stream functionψ and the fitting
curve for the reconstruction interval (06:22:00–06:25:21 UT).

downstream at about 140 km/s, i.e. at nearly the magne-
tosheath flow speed. The largest velocities are measured by
C3 in the magnetopause itself. They represent the exhaust
jet on the sunward/poleward side of the reconnection site.
The white arrows are not everywhere precisely parallel to the
streamlines as a result of the adjustments, mentioned above,
in the component ofv⊥(x,0) perpendicular toB⊥(x,0).

The third panel in Fig. 6 shows an overlay of field lines
(black) and streamlines (white), with the transverse velocity
magnitude|v⊥| in color. In this map, the inflow of plasma
from the magnetosheath as well as from the magnetosphere
into the wedge of reconnected field lines can be seen, along
with the higher-velocity reconnection exhaust, located within
the wedge.

The fourth panel again shows magnetic field lines but now
with the axial convection electric field,Ez=−(v×B)·ẑ, in
color. As a result of the aforementioned nudging, this elec-
tric field component (the reconnection electric field) is con-
stant, except near the reconnection site, where its constancy
could not be implemented for numerical reasons, and where
it should not remain constant for physical reasons. The total
axial electric field should remain constant everywhere but,
within a few ion inertial lengths of the reconnection site, it
contains, not only the convection field, but also contributions
from Hall and perhaps resistive electric fields that are not in-
cluded in the reconstruction. And, within a few electron in-
ertial lengths from the X, the axial component of the electron
pressure tensor, perhaps in combination with resistivity, are
the agents responsible for the reconnection electric field. In
the region, appearing in purple in the figure, the convection
field, Ez, starts to decrease for numerical reasons as the X-
point is approached. In a qualitative sense this is the expected
behavior. WhenEz threatens to become negative, which did
occur but should not happen in the real case, it was replaced
by zero, leading to some errors in the streamline geometry

near the X-point. The actual size of the region where ideal
MHD becomes invalid must, in reality, be much smaller than
the purple region shown in the map.

The fifth panel shows the electric current lines, with the
axial current in color. The largest current component in the
reconstruction plane is located in the magnetopause and is di-
rected from right to left. It is associated with the large change
in Bz across the layer and also, via the forcej⊥×n̂(B·n̂),
with the changes seen invz. The axial current is also concen-
trated in the magnetopause. Elsewhere, the current density is
weak but the current lines exhibit a great deal of small-scale
structure.

The sixth panel shows the equipotential lines (red) in the
reconstruction plane overlayed on the magnetic field lines
(black). One sees that the electric field in the reconstruc-
tion plane is directed toward the magnetopause layer on both
sides. This behavior causes electric drift in the negative axial
ẑ direction on both sides of the magnetopause. This motion
can be seen in panel two of the figure.

The seventh and eighth panels in Fig. 6 illustrate that the
transition in the plasma density and pressure from low to high
values occurs slightly outside the earthward boundary of the
reconnection wedge.

The four scatter plots in Fig. 7 show, on the upper left,
the relation between field components measured by the three
other Cluster spacecraft (C1, C2, and C4) and those predicted
by the C3-based field map. The correlation coefficient in this
plot is cc=0.979, which should be compared with the earlier
results, cc=0.975 by Hasegawa et al. (2004) and cc=0.968 by
Teh et al. (2007b). It is seen that the present result is slightly
better but is not as good as the result (cc=0.988) from the
combined optimal map produced by Hasegawa et al. (2005).
The upper right scatter plot in Fig. 7 shows the relation be-
tween the velocity components measured by C1 and those
predicted by the reconstructed streamline map from C3. The
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Fig. 6. MHD reconstruction results for the C3 magnetopause crossing on 5 July 2001. The first two panels show a portion of the magnetic
field and streamline maps, with the axial magnetic field and axial velocity in color. The third panel is an overlay of magnetic field lines
(black) and streamlines (white) with the magnitude of the transverse velocity,|v⊥|, in color. The fourth panel shows the magnetic field lines
with the strength of the axial convection electric field in color. The fifth panel shows the in-plane current lines with axial current density
in color. The sixth panel shows an overlay of electric equipotentials (red) and magnetic field lines (black), with the in-plane convection
electric fields aty=0 denoted by blue arrows. The last two panels show the magnetic field map with the ion density and pressure in color.
Magnetosphere (magnetosheath) is in lower left (upper right) of the map; sunward/northward is to the right.

correlation coefficient in this plot (cc=0.969) is somewhat
lower. For the velocity, and also the density and pressure
correlations in the bottom two panels, only C1 data were
used because the plasma spectrometer CIS/HIA was func-

tional only on C1 and C3. The relationship between mea-
sured plasma density and pressure at C1 and corresponding
values predicted by the C3 map is less good for two main
reasons: (1) The density and pressure levels measured by the
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Figure 8 

 

 

Fig. 7. Comparison of magnetic field components measured by C1, C2, and C4, and of plasma parameters measured by C1, with correspond-
ing values predicted by the MHD reconstruction maps created from the C3 data.

C1 and C3 instruments do not agree in the magnetosheath
and also not in the magnetosphere; (2) the C3 map does not
predict the center time of the rapid transitions in density and
pressure in the C1 crossing with high accuracy. The extent
to which the discrepancies have instrumental origin is not
known. But actual time variations must also play a role.

We stress that the correlation coefficient is not an optimal
tool for judging the quality of the maps for our event, be-
cause the configuration has undergone a substantial change
in the time interval between the C4 and C1 crossings and the
C2 and C3 crossings. The poor prediction (see upper left
panel in Fig. 7) ofBz at points along the path of C4, the
spacecraft furthest away from C3, may be the result of this
temporal evolution. It contributes in a significant way to the
lowering of the magnetic correlation coefficient. Finally, we
note that the correlation coefficient is not always suitable for
the inter-comparison of different events, because, apart from
temporal effects, the smaller the separation of the spacecraft,
compared to the size of the structure being reconstructed, the
higher will be the correlation coefficient.

Table 1. C3 basic parameters for 5 July 2001 event.

Time interval [UT] Quantity Valuea

06:22:00–06:25:21 x̂ +0.57543 +0.21177 +0.78996
ŷ +0.42349−0.90347−0.06628
ẑ +0.69967 +0.37268−0.60957

06:23:32–06:24:49 n̂b +0.56080−0.81509 +0.14536
VHT −236.0−94.5 +125.5 [km/s]
VHT ·n̂ −37.1 [km/s]

06:23:53–06:24:37 V 0 −80.6−29.6−110.6 [km/s]
E0 +0.47 [mV/m]
(〈v〉−VHT )·n̂ −13.8 [km/s]

a Vector components are GSE.
b From minimum variance analysis of the magnetic field with con-
straintn̂·ẑ=0.

4 Discussion

The basic parameters for our event are summarized in Ta-
ble 1. The reconstruction results for the magnetic field are
qualitatively consistent with those obtained from the earlier,
GS-based, reconstructions indicating that, in spite of their
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Figure 7 

 

 

Figure 8 

 

 
Fig. 8. Schematic, in a plane tangential to the magnetopause, of
magnetic fields and invariant axis (X-line). The horizontal (vertical)
axis is along the intermediate (maximum) variance direction from
MVAB0. The scale is arbitrary. The angleα is 28◦ for the axis
(green arrow) deduced from the reconstructions (Hasegawa et al.,
2004). For the model proposed by Sonnerup (1974),α=56◦, i.e.
the axis is perpendicular to the dashed line; the bisector of the angle
θ is atα=θ/2 = 50◦, and the angle predicted by Swisdak and Drake
(2007) is atα=34◦.

shortcomings, the GS methods can produce robust results.
Onset of reconnection at a proximate site occurred some-
time in the time interval between the crossing by C1 and that
by C3. The average reconnection electric field was at least
0.47 mV/m (corresponding to a dimensionless reconnection
rate of at least 0.025) but the shape of the wedge of recon-
nected field lines in the MHD reconstruction suggests that
the configuration obtained from the C3 data may have been
the result of a burst of reconnection at substantially larger re-
connection field, leading to the bulge seen at the bottom right
of the wedge. It was followed by an interval of lower re-
connection rate, producing the narrow tongue of reconnected
field lines extending to the X-point in the map. This feature
helps produce good correlation between the magnetic fields
predicted by the C3-based map (Fig. 6) and the fields mea-
sured by C1 and C4 prior to the onset of reconnection, when
the magnetopause was a thin layer, as shown in Fig. 3.

The orientation and motion of the invariant axis (see
Table 1) indicate that the X-line was moving tail-
ward/equatorward along the magnetopause at some 135
km/s, with the spacecraft on its sunward/poleward side. At
the same time the magnetopause itself was moving earthward
at about 37.1 km/s for a total X-line speed of 140 km/s. In the
field map, the X-point is stationary and located at a distance

along the magnetopause of some 5300 km from the point in
the map where C3 crossed the reconnection wedge. Rela-
tive to our new map in the X-line frame, the HT frame, in
which the earlier GS-based reconstructions were performed,
moves to the right at a speed of about 86 km/s. In the 60 s
time required for the reconnection wedge to blow past C3,
this velocity gives a displacement of more than 5000 km.

We stress that, in the immediate vicinity of the X-point in
Fig. 6, the reconstruction results are not valid because the
assumption of ideal MHD breaks down there. Our steady 2-
D reconstruction method also cannot address the question of
how precisely the X-line represents an actual magnetic sepa-
rator line, connecting two nulls in the full 3-D magnetopause
configuration.

The axial magnetic-field componentBz (the “guide field”)
was not the same on the two sides of the magnetopause: As
illustrated in Fig. 8, it was strong in the magnetosphere and
weak in the magnetosheath. Thus it did not behave as pre-
dicted by the traditional model of component reconnection
(e.g. Sonnerup, 1974), in which the guide field is the same
on the two sides. This early model was based on a comment,
made by Petschek (1964), to the effect that, in incompress-
ible MHD, a constant guide field could be added to his ba-
sic anti-parallel reconnection geometry without causing it to
change. But, later on, Cowley (1976) used an analytical, in-
compressible MHD model of reconnection to show that the
process does not require the guide field to remain constant.
Another common assumption is that the X-line should bi-
sect the angleθ between the field vectors on the two sides so
thatα=θ/2. Figure 8 shows that this assumption also does
not provide a good prediction of the X-line orientation. Re-
cently, Swisdak and Drake (2007) proposed that the X-line
orients itself so as to maximize the flow speed in the recon-
nection exhaust. Using this hypothesis, and taking into ac-
count the density change across the reconnection layer, they
developed a simple theory for determination of the angleα

in terms of the density ratio, the field magnitude ratio, and
the angleθ . As indicated in the figure caption, this predic-
tion is by far the best and falls within 6◦ of our invariant axis.
However, in reality the orientation of the X-line may not be
determined exclusively by local conditions but may also be
influenced by the global configuration of flow and field in the
magnetopause region. The Swisdak-Drake theory also leads
to a value of the maximum exhaust speed in the xy-plane. In
our event, their prediction is 227 km/s, which should be com-
pared to the value 191 km/s, derived from the measurements
(after transformation to the reconstruction frame moving at
velocityV 0). The agreement is not perfect but is satisfactory,
given the 6◦ discrepancy in axis orientation, the simplifica-
tions used in the theory, and the time dependence present in
the actual event.

The MHD reconstruction shows inflow of magnetosheath
plasma into the reconnection wedge and associated accel-
eration by the magnetic slingshot effect. The flow com-
ponent measured by C3 along the direction normal to the

Ann. Geophys., 26, 2673–2684, 2008 www.ann-geophys.net/26/2673/2008/
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magnetopause confirms the presence of this flow. One also
expects inflow into the wedge from its magnetospheric edge.
This flow is also seen in the reconstructed map but, with the
exception of one data point, is not present in the normal-flow
components, actually measured by C3 in the magnetosphere.
The reason for this discrepancy lies in the small changes of
the velocity vectors aty=0 that were made prior to the start of
the integration in order to obtain a strictly constant value of
the axial convection electric field, the assumption being that,
at each point on the C3 trajectory (i.e. aty=0), the convection
field (the axial convectionEz) agrees with the total electric
field (the total axialEz). Possible causes of the difficulties
include temporal variations of the magnetopause speed, in-
accuracy of the normal vector, or less precise velocity mea-
surements in the low-density magnetospheric plasma. As in-
dicated by the large fluctuations in the measured convective
Ezthat remain in the reconstruction frame (see Fig. 5), it is
clear that the reconstructed maps are time aliased as a result
of variations, not only in magnetopause speed and orienta-
tion, but probably also in X-line velocity and in reconnection
rate. Some details of the actual configuration are therefore
likely to be smeared out in the reconstruction. However, all
of the reconstruction results for this event indicate that the
longer duration of the C2 and C3 crossings, compared to
those by C1 and C4 (see Fig. 2) cannot to be explained by
a lower magnetopause speed during the C2 and C3 crossings
than during the C4 and C1 crossings (as was attempted by
Haaland et al., 2004). The reconstructions show the longer
durations to be the result of a thickening of the magnetopause
layer caused by a burst of reconnection.

In summary, we have shown that the new MHD-based re-
construction method (Sonnerup and Teh, 2008) is a viable
tool for the study of reconnection at the magnetopause, and
therefore presumably in other locations and contexts as well
(see, e.g. Eriksson et al., 20081). It gives results that are
qualitatively consistent with earlier GS-based studies but dif-
fers from them in a fundamental way: The reconstruction of
a reconnection event is performed, not in the deHoffmann-
Teller frame, but in a frame of reference moving with the
X-line of the reconnection configuration. It is in this frame
that a reconnection event should be viewed because, in it, the
configuration and the plasma flow are not contaminated by
extraneous time variations, caused by translation along the
reconnection layer (see Fig. 1). And it is in this frame that
the exhaust jets from the reconnection site are most clearly
seen. Determination of the orientation and motion of the X-
line remains a problem. In principle, they can be obtained
(Sonnerup and Hasegawa, 2005) from the requirement that,
in a 2-D steady configuration, the total electric field com-
ponent in the invariant direction (along the z-axis) must be
strictly constant,Ez=E0, i.e. it must be independent of the
reconstruction coordinates x and y. But temporal variations
of the motion and of the field geometry often prevent this
method from giving meaningful results. This was the case in
the event studied here. Fortunately, the z-axis and a reason-

able estimate ofE0 had been established in earlier studies,
which allowed the motion of the X-line to be determined.

We emphasize that, at present, our present code does not
include dissipation, via resistive effects or plasma mixing,
and that it does not accommodate pressure anisotropy. All
of these effects are likely to play some role in reconnection
events. Resistive effects can be readily included (by use of
a one-step spatial lag in the integration) so as to allow for a
low-level description of slow-mode MHD shocks. A model
to describe entropy generation and other effects caused by
mixing would need to be developed in order to include this
process. Pressure anisotropy can in principle be included by
use of double-polytropic laws (see Appendix of Sonnerup et
al., 2006).

The MHD reconstruction presented in our paper shows
results, in unprecedented detail, concerning the large-scale
structure of a reconnection event at the magnetopause, in-
cluding maps of magnetic field, flow field, electric current
and electric potential distributions, as well as the distribution
of plasma pressure and density (see Fig. 6). The reconnec-
tion site itself, seen near the edge of the reconstruction do-
main, is now stationary. In the immediate vicinity of this
site, i.e. in the diffusion region, spatial scales comparable
to the ion inertial length and smaller are expected to be im-
portant but are not included in our reconstruction where, in-
stead, numerical effects allow the reconnection electric field
to be maintained in the diffusion region. Streamlines on the
ion-inertial scale can be properly described only by including
Hall physics, i.e. by using the generalized (two-fluid) form of
Ohm’s law. We have recently shown that, in principle, recon-
struction can be performed also in the two-fluid description,
including localized effective resistivity phenomena, if any,
(work in progress, Sonnerup and Teh, 2008). Reconstruction
at the electron scale is needed at the reconnection site itself.
Such reconstruction appears possible as well but remains to
be developed in detail.
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