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Abstract. For two events observed by the CLUSTER space-
craft, the field line distribution of mass densityρ was inferred
from Alfv én wave harmonic frequencies and compared to
the electron densityne from plasma wave data and the oxy-
gen densitynO+ from the ion composition experiment. In
one case, the average ion massM≡ρ/ne was about 5 amu
(28 October 2002), while in the other it was about 3 amu (10
September 2002). Both events occurred when the CLUSTER
1 (C1) spacecraft was in the plasmatrough. Nevertheless,
the electron densityne was significantly lower for the first
event (ne=8 cm−3) than for the second event (ne=22 cm−3),
and this seems to be the main difference leading to a dif-
ferent value ofM. For the first event (28 October 2002),
we were able to measure the Alfvén wave frequencies for
eight harmonics with unprecedented precision, so that the er-
ror in the inferred mass density is probably dominated by
factors other than the uncertainty in frequency (e.g., mag-
netic field model and theoretical wave equation). This field
line distribution (atL=4.8) was very flat for magnetic lati-
tude |MLAT |.20◦ but very steeply increasing with respect
to |MLAT | for |MLAT |&40◦. The total variation inρ was
about four orders of magnitude, with values at large|MLAT |

roughly consistent with ionospheric values. For the second
event (10 September 2002), there was a small local maxi-
mum in mass density near the magnetic equator. The in-

Correspondence to:R. E. Denton
(rdag@rdenton.fastem.com)

ferred mass density decreases to a minimum 23% lower than
the equatorial value at|MLAT |=15.5◦, and then steeply in-
creases as one moves along the field line toward the iono-
sphere. For this event we were also able to examine the spa-
tial dependence of the electron density using measurements
of ne from all four CLUSTER spacecraft. Our analysis in-
dicates that the density varies withL at L∼5 roughly like
L−4, and thatne is also locally peaked at the magnetic equa-
tor, but with a smaller peak. The value ofne reaches a den-
sity minimum about 6% lower than the equatorial value at
|MLAT |=12.5◦, and then increases steeply at larger values
of |MLAT |. This is to our knowledge the first evidence for
a local peak in bulk electron density at the magnetic equa-
tor. Our results show that magnetoseismology can be a useful
technique to determine the field line distribution of the mass
density for CLUSTER at perigee and that the distribution of
electron density can also be inferred from measurements by
multiple spacecraft.

Keywords. Magnetospheric physics (Magnetospheric con-
figuration and dynamics; MHD waves and instabilities; Plas-
masphere)

1 Introduction

The field line dependence of magnetospheric mass density
will affect the propagation of magnetosonic (fast mode)
waves, the eigenmode structure of Alfvén waves, and the
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growth and propagation of electromagnetic ion cyclotron
(EMIC) waves. The field line dependence of electron den-
sity affects the growth and propagation of magnetospheric
whistler waves, hiss and chorus.

Direct measurement of mass density in the Earth’s magne-
tosphere is difficult because it requires particle detectors with
mass discrimination capable of measuring particles with low
(∼eV) energies. Because of this, and also because of the po-
tential for remote sensing, toroidal (azimuthally oscillating)
Alfv én wave frequencies have increasingly been used to de-
termine magnetospheric mass density both from the ground
(Waters et al., 2006) and from space (Denton, 2006). We
sometimes refer to this as magnetoseismology.

Assuming a power law form for the mass density, a num-
ber of authors have used toroidal Alfvén wave harmonic fre-
quencies to infer the field line dependence of mass density
(see references in Denton, 2006, and Waters et al., 2006).
Price et al.(1999) cast the wave equation into finite differ-
ence form in order to solve for the mass density at several
locations along a field line.Denton et al.(2001, 2004) solved
for the field line dependence of mass density using a polyno-
mial expansion in a coordinate related to distance along the
field line. These last two studies revealed an equatorial peak
in mass density. Statistical studies (Takahashi et al., 2004;
Denton et al., 2006; Takahashi and Denton, 2007) have re-
vealed that the tendency for the mass density to peak at the
magnetic equator is greatest for largeL&6 in the afternoon
local time sector, especially during geomagnetically active
times. We defineL to be the maximum radius to any point
on the field line (based on the TS05 model (Tsyganenko and
Sitnov, 2005)) divided byRE . In dipole coordinates, this is
the ordinaryL shell.

For this paper we return to an event study. Although the
statistical studies of toroidal Alfv́en frequencies have the
greatest potential for revealing the typical field line depen-
dence and give some indication of the range of variability, it
is not clear exactly how much of the variability in possible
solutions is due to actual variation in the field line depen-
dence at different times and how much is related to the un-
certainty of the frequencies measured for individual events
(Takahashi and Denton, 2007). (Takahashi and Denton ar-
gued that both of these contribute to the range of possible
solutions.) For instance, we can conclude from Takahashi
and Denton’s results that forL>6 in the afternoon local time
sector, there is on average a peak in mass density at the mag-
netic equator, but we are not sure how much variability there
is in the statistical distribution, that is, to what extent the dis-
tribution can be more or less peaked. For this reason, it is still
of interest to look at individual events, particularly if the fre-
quencies can be measured with great accuracy. In this study,
we use toroidal Alfv́en frequencies observed by the CLUS-
TER spacecraft on 28 October 2002 in order to find what is
probably the most precise field line distribution of mass den-
sity determined to date, one for which the errors in the in-
ferred mass density are probably dominated by factors other

than the uncertainty of the Alfv́en frequencies (e.g., magnetic
field model and theoretical wave equation).

The best technique for determining the field line depen-
dence of electron density is probably the active sounding
technique ofReinisch et al.(2004), but this technique has
so far been useful for detecting the near-equatorial density
distribution only in the plasmasphere, where electron den-
sity is relatively flat (Denton et al., 2006). Here we develop
a least squares fitting technique for probing the distribution
of electron density using plasma wave observations by the
four CLUSTER spacecraft. For an event on 10 September
2002, we find (to our knowledge for the first time) an equa-
torial peak in bulk electron density at the same time that we
find a (larger) equatorial peak in mass density inferred from
Alfv én wave frequencies. In Sect. 2, we describe our method
for inferring mass density; in Sect. 3, we describe our least
squares fitting method for determining the spatial distribu-
tion of electron density; in Sect. 4, we describe our results
for the field line distribution of the mass density on 28 Octo-
ber 2002; in Sect. 5, we describe our results for the field line
distribution of mass and electron density for 10 September
2002; in Sect. 6, we compare the densities to other density
measurements and compare the two events to each other; and
in Sect. 7, we end with discussion.

2 Solving for the mass density

Our method for solving for the mass densityρ is described
by Denton et al.(2004). In brief, we solve the Alfv́en
wave equation (Singer et al., 1981) with perfectly conducting
ionospheric boundaries using the TS05 magnetic field model
(Tsyganenko and Sitnov, 2005) and the following form for
the base 10 logarithm of the mass densityρ

log10ρ = c0 + c2τ
2
+ c4τ

4
+ c6τ

6
+ . . . , (1)

with up to seven terms (up toc12τ
12). The Alfvén crossing

time coordinateτ is

τ ≡

∫
ds

VA

, (2)

whereds is the differential length along the field line andVA

is the Alfvén speed. The integral in Eq. (2) is calculated from
the magnetic equator (position of minimumB0) to any posi-
tion along the field line. The coordinateτ is the most natural
choice for evaluating the mass density, since in the WKB ap-
proximation, the nodes of an Alfvén wave are evenly spaced
with respect to this coordinate. Note that we only use even
powers, assuming that the distribution ofρ symmetric about
the magnetic equator. This assumption has been functionally
required because the solutions are not well constrained if we
allow the distribution to be asymmetric about the magnetic
equator (see discussion byDenton et al., 2004); however, in
this paper, we present evidence that the field line distribution
of ne is symmetric about the magnetic equator, at least for
the 10 September 2002 event.
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Because the coordinateτ is itself a function of the field
line distribution forρ that we are seeking, we need to assume
a field line dependence forρ for the purpose of definingτ .
Here, we use a power law field line distribution,

ρ = ρ0

(
LRE

R

)α

, (3)

whereR is the geocentric radius, andLRE is the largest value
of R at any point on the field line (normally the magnetic
equator); at the location corresponding to this largest value of
R, the mass density isρ0. The power law coefficient is found
from the slope of the observed frequencies as described by
Denton and Gallagher(2000). Please note carefully that the
power law form here is used only to define the coordinate
τ used by our method. The resulting field line distribution
using Eq. (1) is not restricted to the form of Eq. (3).

To find the coefficientsci yielding theoretical frequencies
fth−n best matching the observed frequenciesfobs−n, we
minimize

σ ≡

√√√√ 1

Nfreq

Nfreq∑
n=1

(
fth−n

fobs−n

− 1

)2

, (4)

wheren is the harmonic number (number of antinodes be-
tween the ionospheric boundaries for the electric field or ve-
locity perturbation) andNfreq is the number of harmonics ob-
served. We first do a grid search over a range of values for
the coefficientsci , and then use a root finding or minimiza-
tion routine to zero in on the solution (Press et al., 1997).

Alternately we may solve for the density using

log10ρ = C0 + C2z
2
+ C4z

4
+ C6z

6
+ . . . , (5)

wherez=
√

1−R/(LRE), whereR is the geocentric radius,
andLRE is defined as the maximum distance to any point
along the field line. In dipole coordinates,L is the usual
L shell, and z is the sine of the dipole coordinate latitude
MLAT. (It was not possible to use the coordinateτ ′ used
by Takahashi and Denton(2007) because the usefulness of
that coordinate requires that the mass density not have a
large variation along the field line, and we found that there
was a large variation, especially for the event observed on
28 October 2002.) For the solution of the wave equation,
we assume a perfectly conducting boundary at a height of
300 km (120 km) for the 28 October 2002 (10 September
2002) event. (There is no good reason for using different val-
ues, but the difference in results is so small that it’s not worth
redoing the calculations to make these values the same. For
the 28 October 2002 event, using the 300 km height leads
to values ofρ that are 0.9% higher at the magnetic equator,
and 14% higher at a height of 300 km. See the discussion by
Denton, 2006.)
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Fig. 1. CLUSTER spacecraft (where C1, C2, C3, and C4
are black, red, green, and blue, respectively) in a meridian with
X=R cos(MLAT ) andZ=R sin(MLAT ). The dotted tracks show
the spacecraft orbits from 11:40 UT to 12:07 UT on 10 September
2002, and the position of the spacecraft at 12:07 UT is indicated by
the squares. The displacement in the out of plane (azimuthal) direc-
tion at 12:07 UT is indicated by the numerals next to the squares.

3 Method for detecting the distribution of electron den-
sity using multiple spacecraft

For the 10 September 2002 event, we have electron density
measurements from all four spacecraft, so it should be possi-
ble in principle to infer the distribution of density. We started
out using calculations of the density gradient (Darrouzet et
al., 2006). However, tests revealed that the gradients were not
accurate. In particular, if we created simulated density mea-
surements having a dependence(LRE/R)α(5/L)β , whereα

is a power law coefficient for the parallel dependence (Eq.3)
andβ is a power law coefficient for theL shell dependence,
then we inferred the coefficients from the gradient based on
simulated data, the inferred coefficients varied greatly from
the coefficients of the simulated data. For instance, withα=0
andβ=4 for the simulated data, we inferred from the den-
sity gradientα=2–4 (depending on exactly how we define
the coefficient) andβ=8 at L=5 with the effectiveβ vary-
ing greatly with respect toL. We conclude based on this test
that the gradient calculated from the four spacecraft does not
accurately represent the actual gradient at the center of mass
of the four spacecraft. The gradient method would work if
the gradient were constant over the region of space occu-
pied by the four spacecraft, but that was not the case for our
data, and the spatial arrangement of the spacecraft was not at
all tetrahedral, accentuating the problem. See Fig.1, which
shows the orientation of the CLUSTER spacecraft; note that
the separation of C1 (black) and C3 (green) at 12:07 UT is
2.7RE and C1, C2 (red), and C4 (blue) are nearly in a line.

www.ann-geophys.net/27/705/2009/ Ann. Geophys., 27, 705–724, 2009



708 R. E. Denton et al.: Field line distribution of density

We then developed the following least squares fitting
method to examine the distribution of electron density for
the 10 September 2002 event. If several CLUSTER space-
craft pass through a region and we are able to determine the
local electron densityne along the trajectories (this method
could be used with any number of spacecraft, but several are
needed to constrain the possible solutions), we are able to de-
termine the spatial and temporal distribution ofne under the
key assumptions of separability and smoothness. We assume
that we can separate the dependence ofne into a product of
terms

ne,mod =
(
ne,L

) (
ne,‖

) (
ne,MLT

) (
ne,UT

)
, (6)

wherene,L is a function only ofL, ne,MLT is a function only
of MLT, ne,‖ is a function only of a parallel coordinate (ide-
ally orthogonal toL and MLT), andne,UT is a function only
of the time in hours. In addition, we assume that these sep-
arated dependencies are relatively smooth (first few deriva-
tives continuous) so that we can describe them in terms of a
superposition of a few simple functions (like polynomials).

The problem becomes easier to solve numerically if we
take the (natural) logarithm of Eq. (6),

ln
(
ne,mod

)
= ln

(
ne,L

)
+ ln

(
ne,‖

)
+ ln

(
ne,MLT

)
+ ln

(
ne,UT

)
. (7)

Now suppose that we can write the individual logarithmic
dependencies in terms of a sum of terms depending on the
coordinate. For instance, for theL dependence, we may use

ln
(
ne,L

)
= aL,0 + aL,1 ln(5/Ld), (8)

whereLd is theL value based on a dipole field, that is,

Ld =
R

cos(MLAT ′)2
. (9)

whereR is the geocentric radius, MLAT′ (defined in Eq.11)
has values very close to those of the magnetic latitude MLAT,
and the number “5” in Eq. (8) is an arbitrary choice. With (8),
ne,L is exp

(
ln
(
ne,L

))
, or

ne,L = exp
(
aL,0

) ( 5

Ld

)aL,1

, (10)

showing that this is a power law dependence in terms ofLd .
The adjusted magnetic latitude MLAT′ is

MLAT ′
≡ MLAT − MLAT 0. (11)

Using the TS05 magnetic field model to map the position
of the CLUSTER spacecraft to the position of maximum
geocentric radius, we find that this position is offset from
MLAT=0 by MLAT 0 (1.63◦ for the 10 September 2002
event), and we judge MLAT=MLAT0 to be a better descrip-
tion of the location of the magnetic equator. Note that the
measured values ofne observed by the CLUSTER spacecraft

for the 10 September 2002 event peaked at this slightly offset
value.

Alternately, we may use a more general polynomial ex-
pansion,

ln
(
ne,L

)
= aL,0 + aL,1Ld + aL,2L

2
d + aL,3L

3
d, (12)

where in most cases we drop the last (cubic) term. Keep in
mind that thea terms are constants that multiply field values
(e.g.,Ld ). With Eq. (12), ne,L is

ne,L = exp
(
aL,0 + aL,1Ld + aL,2L

2
d + aL,3L

3
d

)
. (13)

For the parallel dependence (along the field lines), we use
either

ln
(
ne,‖

)
= a‖,1 ln (Ld/R) , (14)

or

ln
(
ne,‖

)
= a‖,1z

′
+ a‖,2z

′2
+ a‖,3z

′3
+ a‖,4z

′4

+a‖,5z
′5

+ a‖,6z
′6, (15)

where only a limited number of these terms is typically kept.
Equation (14) yields ne,‖= (Ld/R)aL,1, which is the power
law form (3) for ne (rather thanρ) with α=a‖,1. For a dipole
field, (Ld/R)aL,1 =1/ cos2(MLAT ), a function of MLAT;
MLAT is not an orthogonal coordinate toLd , and neither
is MLAT ′. (This is not a terrible problem, but it should be
kept in mind thatLd and MLAT′ are not entirely indepen-
dent.) Equation (15) is a polynomial expansion in terms of
z′, where

z′
= sin

(
MLAT ′

)
(16)

only on theLd=5 magnetic field line. At other field lines,z′

is really a function of the parallel dipole coordinate

µ =
sin
(
MLAT ′

)
R2

(17)

that is orthogonal toLd . Our procedure is to mapµ to z′ on
the Ld=5 magnetic field line (through a lookup table). At
other values ofLd , we use the same mapping to determine
z′ from the localµ value. At Ld 6=5, z′(µ) is not equal to
the local value of sin(MLAT ′), becauseµ depends on both
MLAT ′ andLd . Since the dipole coordinateµ is orthogo-
nal toLd (surfaces of constantµ are orthogonal to surfaces
of constantLd ), z′(µ) is also orthogonal toLd . (Using z′

rather than sin
(
MLAT ′

)
leads to a small but not crucial im-

provement in the agreement between the model and observed
densities. That is, one could satisfactorily use sin

(
MLAT ′

)
instead ofz′ if he didn’t want to go to the trouble of convert-
ing to z′.)

We also can add terms proportional to MLT′=MLT−MLT0
and to UT′=UT−UT0, where MLT0 is the average MLT
value sampled by the spacecraft and UT0 is the average time

Ann. Geophys., 27, 705–724, 2009 www.ann-geophys.net/27/705/2009/
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Fig. 2. Fourier spectrogram of differenced magnetic field data in field aligned coordinates for (bottom) parallel or compressional component
(ẑ), (middle) azimuthal or toroidal component (ŷ ∝ R̂×ẑ), and (top) radial or poloidal component (x̂ = ŷ×ẑ). In the second panel, magenta
numerals indicate the harmonic number withn=1 for the fundamental,n=2 for the second harmonic, etc.

of the event. In a number of cases, we use a term proportional
to

MLT ′′
= MLT ′

− UT′. (18)

This combination takes into account corotation (for constant
MLT ′′, MLT ′ and UT′ increase together) and leads to a bet-
ter match between the observations and the model than does
MLT alone if explicit UT dependence is not modeled.

A full list of the possible terms used in the method appears
in the middle range (between the second and third horizontal
lines) of the first column of Table1. (The specific fits will be
discussed in Sect.3.) In schematic form, we have a string of
observations ofne, ne(j), wherej is a single subscript rep-
resenting the variation in time and spacecraft, and we want
to approximate the values of ln(ne(j)) by

ln
(
ne,mod(j)

)
=

∑
k

a(k) t (j, k), (19)

where the indexk represents one of the termst (j, k) used in
the model (one of the terms listed in Table1). The coeffi-
cientsa(k) are determined to minimize the averaged squared
difference between the observed values, ln(ne(j)), and the
model values, ln

(
ne,mod(j)

)
. Since the model values come

from a linear superposition, this (linear algebra) problem has
a unique answer, and the standard difference

χ =

√√√√(∑
j

(
ln
(
ne,mod(j)

)
− ln (ne(j))

)2)
/Nj (20)

can be determined, whereNj is the number ofj values (num-
ber of observations). Since the standard differenceχ is that
of the natural logarithm of the density, in order to get a mea-
sure of the agreement of the observed and model densities,
we take exp(χ). The resulting value gives a multiplicative
error; the model values are likely to be in the range of the
observation multiplied or divided by exp(χ). If exp(χ) is

www.ann-geophys.net/27/705/2009/ Ann. Geophys., 27, 705–724, 2009
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Table 1. Fit coefficients for ln(ne) for 10 Septtember 2002 event.

Fit
Term 1 2 3 4 5 6

1 2.90 9.85 13.1 10.1 9.99 10.0
ln(5/Ld ) 4.21 – – – – –

Ld – −1.96 −3.78 −2.06 −2.05 −2.06
L2

d
– 0.120 0.453 0.127 0.129 0.129

L3
d

– – −0.0200 – – –
ln(Ld/R) 1.81 – – - – –

z′ – – – 0.143 – 0.0311

z′2 – −3.38 −2.08 −2.72 −2.73 −2.68

z′3 – – – 0.706 – −0.137

z′4 – 31.3 9.37 32.4 29.8 29.6

z′6 – – 83.8 – – –
MLT ′′

≡MLT ′
−UT′ (h) −0.0114 −0.114 −0.118 −0.0931 – –

MLT ′
≡MLT−11.3 (h) – – – – 0.124 0.106

UT′
≡UT−12.1 (h) – – – – 0.114 0.110

χ 0.0845 0.0504 0.0490 0.0451 0.0431 0.0430
exp(χ) 1.088 1.052 1.050 1.046 1.044 1.044

close to unity, then exp(χ) −1 is the fractional error. Bothχ
and exp(χ) are listed at the bottom of Table4.

4 Field line distribution of mass density for the 28 Oc-
tober 2002 event

4.1 Alfvén wave frequencies for 28 October 2002

Survey plots of power spectra of 4 s resolution magnetic field
data from the CLUSTER Flux Gate Magnetometer (FGM)
(Balogh et al., 2001) were scanned to look for toroidal
Alfv én wave events. Clear events with dominant toroidal (az-
imuthal) polarization and with harmonics were not common,
but there were a few. A Fourier spectrogram for one of these
events observed by CLUSTER spacecraft 1 (C1) on 28 Oc-
tober 2001, is shown in Fig.2.

In order to detect toroidal Alfv́en frequencies with suf-
ficient accuracy, it is necessary to take a Fourier transform
over a sufficiently long time at nearly constantL shell. For a
spacecraft like CRRES, the best opportunity for determina-
tions of mass density based on Alfvén frequencies is at space-
craft apogee (Denton et al., 2004). For the CLUSTER space-
craft, the orbit apogee is at geocentric radiusR∼20RE (Es-
coubet et al., 2001). At this distance, magnetic field models
are not reliable. Probably the best location for magnetoseis-
mology using CLUSTER data is at spacecraft perigee with
R∼4–5RE . On 28 October 2001, perigee occurred at about
02:50 UT, at which time the C1 spacecraft was 3.7◦ north of
the SM magnetic equator at magnetic local time MLT=8.7
(dawn). The middle panel of Fig.2 shows the power spec-
trum of the toroidal (azimuthal) component of the magnetic

field and bands of wave power are clearly evident at around
02:40–02:45 UT for the second harmonic (n=2 at 27 mHz
marked by the magenta label “2”) and 4th harmonic (n=4 at
55 mHz). The spacecraft crossed the SM magnetic equator
at 02:43 UT, which is about the time with the clearest Alfvén
wave bands. At earlier and later times (02:00 and 03:05 UT),
wave power can be seen at the fundamental frequency (n=1
at 11 mHz). Weaker but still evident at 02:43 UT are other
wave bands such as the 3rd harmonic (41 mHz), 5th har-
monic (67 mHz), 6th harmonic (80 mHz), and even the 8th
harmonic (103 mHz). The harmonic indexn is the number
of anti-nodes in the electric field or velocity perturbation be-
tween the ionospheric boundaries. Modes with odd harmonic
numbern, the fundamental, 3rd harmonic, 5th harmonic, etc.
have a node (antinode) in the wave magnetic field (electric
field) at the magnetic equator, while modes with evenn, the
2nd harmonic, 4th harmonic, etc. have an antinode (node) in
the wave magnetic field (electric field) (Denton et al., 2004).
Because of this, the 2nd harmonic and 4th harmonic are the
strongest modes seen near the magnetic equator.

In order to measure the frequencies of the harmonics, we
use a semiautomated procedure. Figure3 shows a grayscale
plot of the power spectrum of the azimuthal component of
the magnetic field near the magnetic equator (middle panel
of Fig. 2). Here the darker shades correspond to higher wave
power. The power spectrum was calculated from 4 s resolu-
tion data using 20 min windows with a Welch window (Press
et al., 1997) and a moderate amount of frequency whitening
(wave power at higher frequencies enhanced by multiplying
by the frequency). Using an interactive program, we select
wave bands by using mouse clicks (red diamonds in Fig.3).
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Fig. 3. Plot of power spectrum of the azimuthal component of the
magnetic field with red diamonds at the position of mouse clicks and
red lines showing the computer generated fits to the wave bands.

Then the program finds the best linear fit to the power spec-
trum in the vicinity of the mouse clicks (red lines in Fig.3).
This is done by computing the integrated wave power (in-
tegrated with respect to time and frequency) around the fit
weighting the power at each frequency in the power spectrum
by a Gaussian in the difference between the wave frequency
and the fit frequency with a Gaussian width of 5 mHz.

Figure4 is like Fig. 3, except for the power spectrum of
the radial component of the electric field from the Electric-
Field and Wave experiment (EFW) on Cluster spacecraft 1
(Gustafsson et al., 1997). The resolution of the data is the
same as for the FGM instrument, and the power spectrum
is calculated exactly the same way. In the case of the elec-
tric field, the strongest waves are observed for the funda-
mental and 3rd harmonic (because these harmonics have an
anti-node in the electric field at the magnetic equator). The
fit lines in Figs.3 and4 have a similar slope, and we nor-
malized the frequencies to the second harmonic frequency to
reduce the effect of changing frequency. These normalized
frequency ratios(fn/f2) are listed in Table2 as a function of
the harmonic numbern (=1 for the fundamental) for the mag-
netic field data ((fn/f2)B ) and electric field data ((fn/f2)E),
where the uncertainties are found from the variation of the
frequency ratio(fn/f2) from the fit curves over the common
frequency range that was fit for bothfn andf2.

In the past, we have found the uncertainties of observed
frequencies by finding the width of the frequency peaks
(Denton et al., 2001, 2004, 2006; Takahashi et al., 2004).
However, this method probably overestimates the error be-
cause the error in the mean of a distribution is less than the
width of the distribution (Takahashi and Denton, 2007). Un-
fortunately, our method of estimating the error listed in Ta-
ble 2 (error from range of variation in the values offn/f2
from the linear fits) yields uncertainties that are too low.
We can see this by comparing the values of(fn/f2)B and
(fn/f2)E . For modesn=3, 4, and 5, the difference in these

Fig. 4. Like Fig. 3, but using the power spectrum of the radial
component of the electric field.

values is 0.015, 0.023, and 0.038. These values are larger
than the uncertainties listed in Table2. However, they are
smaller than the uncertainties that would result from the fre-
quency resolution of the 20 min time window used for the
Fourier analysis (0.8 mHz). If the uncertainty of each har-
monic frequency is assumed to be the same value1f , the
uncertainty of(fn/f2), 1(fn/f2) would be

1

(
fn

f2

)
=

(
fn

f2

)√(
1f

fn

)2

+

(
1f

f2

)2

=

(
1f

f2

)√
1 +

(
fn

f2

)2

. (21)

With 1f =0.8 mHz, or 1f/f2=0.031 (using
f2=26.63 mHz), Eq. (21) yields 1(fn/f2)=0.057, 0.071,
and 0.084 forn=3–5, which is larger than the difference
between(fn/f2)B and(fn/f2)E (0.015, 0.023, and 0.038).
If we take1f/f2=0.014, we get1(fn/f2)=0.026, 0.032,
and 0.038 forn=3–5, all of which are at least as great as
(fn/f2)B−(fn/f2)E (0.015, 0.023, and 0.038). The uncer-
tainties in Table2 for (fn/f2) are found using1f/f2=0.014,
using Eq. (21), but the values of1(fn/f2) for n=3–5 have
been reduced by a factor of 1/

√
2 to account for the fact

that these values come from two measurements ((fn/f2)B
and (fn/f2)E). The unnormalized frequencies are labelled
fn−input (mHz) in the next to last column of Table2. These
are found by multiplying(fn/f2) by f2=26.63 mHz.

4.2 Inferred mass density for 28 October 2002

Given the frequencies of the toroidal Alfvén harmonics in
Table2, we can solve for the mass density distribution along
the field line. Besides solving for the field line distribution of
mass density consistent with the peak frequencies, we also
do a Monte Carlo simulation for the mass density solution
using Gaussian distributions of harmonic frequencies with
mean and standard deviation equal to the mean values and

www.ann-geophys.net/27/705/2009/ Ann. Geophys., 27, 705–724, 2009



712 R. E. Denton et al.: Field line distribution of density

Table 2. Frequencies of toroidal harmonics for 28 October 2002 event.

n (fn/f2)B (fn/f2)E (fn/f2) fn−input (mHz) fn−solution (mHz)

1 0.410±0.003 0.410±0.015 10.92±0.40 10.95±0.42
2 1 1 1 26.63 26.63
3 1.549±0.013 1.564±0.019 1.556±0.018 41.44±0.48 41.32±0.32
4 2.038±0.005 2.061±0.006 2.050±0.022 54.59±0.59 54.63±0.37
5 2.491±0.007 2.529±0.009 2.510±0.027 66.84±0.72 67.03±0.54
6 2.999±0.001 2.999±0.044 79.86±1.2 79.23±0.84
7 3.388±0.012 3.388±0.049 90.22±1.3 90.66±0.95
8 3.883±0.010 3.883±0.056 103.4±1.5 103.3±1.3

MLAT (˚) ( )ER R
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⎛ ⎞
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Fig. 5. (Top) Mass densityρ, (middle) Alfvén speedVA normal-
ized to unity at the magnetic equator (MLAT=0), and (bottom) the
Alfv én crossing time coordinateτ versus MLAT (left) and geocen-
tric radiusR (right) based on solutions forρ found from Alfvén
wave frequencies observed on 28 October 2002.

uncertainties listed forfn−input in Table2. In other words,
we pick a random set of combinations of harmonic frequen-
cies such that the distribution of the frequencies of each har-
monic is consistent with the mean and uncertainty offn−input
for the harmonic numbern. In order to determine the range
of mass density distributions consistent with the frequency
uncertainties, we solve for the mass density using 51 com-
binations of random frequencies. However, when using all
eight frequencies as input to our mass density inversion code,
and using the field line distribution (Eq.1) with 5 polyno-
mial terms (c0 to c8), our code did not converge on a solution

for all combinations of the frequencies we tried. We only
consider solutions valid if the theoretical frequencies found
by the code are within the uncertainties of the original mea-
surements from the input frequencies (which may include the
random variation discussed immediately above). In fact, only
51 out of 209 frequency combinations attempted resulted in
a valid solution. (We keep trying random combinations until
we get 51 solutions.) The actual mean and standard devia-
tion of the frequencies of the harmonics used in the Monte
Carlo simulation (those frequency combinations yielding a
valid solution) are listed asfn−solution in Table 2. As can
be seen from Table2, these values are within the range of
frequencies listed forfn−input, but have a somewhat smaller
standard deviation.

The resulting solutions for mass density are displayed in
the top panels of Fig.5. The bold curve is the mass den-
sity based on the peak frequencies. There are three thin solid
curves plotted in Fig.5a and b. At every value of MLAT,
the middle thin curve shows the mean value from the Monte
Carlo simulation of random combinations of harmonic fre-
quencies, while the upper and lower curves show the mean
plus or minus one standard deviation. However, these four
curves are so close together that it is difficult to see the vari-
ation. (Fig.5c–f are discussed in Sect.7.3.)

In order to better show the variation in the solutions, we
show in Fig.6a the values of mass density from the Monte
Carlo simulation divided by the solution for mass density us-
ing the peak frequencies (thick curves in Fig.5a and b). As in
our earlier solutions for the field line density ofρ (Denton et
al., 2001, 2004, 2006; Takahashi et al., 2004; Takahashi and
Denton, 2007), the greatest variation in the solutions occurs
at high latitude. However, the solutions here are staggeringly
more precise than those from our earlier studies. We have a
variation in the solutions of about a factor of 2 (Fig.6) with
a variation ofρ with respect to MLAT of more than four or-
ders of magnitude (Fig.5a and b). There are two reasons
for the improvement. First of all, the relative uncertainty of
the frequencies is about a factor of six smaller than in the
study ofDenton et al.(2004). The relative uncertainties are
lower partly because of our better method for finding the fre-
quencies (Figs.3 and4), but the main reason is that we were
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able to use a comparable time window for the Fourier analy-
sis (20 min versus 30 min used byDenton et al., 2004) while
the frequencies were about a factor of 10 higher (because of
the lowerL=4.8 shell sampled at the perigee of CLUSTER
compared toL∼7 sampled by CRRES).

While τ may be in some sense the ideal coordinate (see
Sect. 2), it is difficult to interpret the meaning of particular
polynomial coefficients. For this reason, we have also solved
for the field line distribution using a 5 polynomial fit forρ
with respect to thez coordinate. Figure6b shows that this so-
lution also lies within the range of solutions from the Monte
Carlo simulation using theτ coordinate. This polynomial
function is

log10ρ = 1.57+ 0.35z2
+ 0.83z4

+ 3.95z6
+ 4.12z8, (22)

for ρ expressed in amu/cm3.

5 Mass and electron density distributions inferred for
10 September 2002

5.1 Alfvén wave frequencies and inferred mass density
for 10 September 2002

For our second event, observed at around 12:07 UT on 10
September 2002, the Alfvén wave data is not as complete or
accurate, but this event is interesting because we have better
data forne andnO+ and because this event has a somewhat
different field line distribution. This event occurred when
the C1 spacecraft was again at perigee (geocentric radius
R=4.8RE) at MLAT=−0.2◦ and MLT=11.55 (noon).

The Alfvén frequencies are found as described for the
28 October 2002 event and the frequencies and uncertain-
ties are listed in Table3 using magnetic and electric field
data from the C1 spacecraft. As was the case in the first
event, the uncertainties of the frequencies listed in the sec-
ond and third columns found from the measured frequency
ratios were judged to be too small. Based on frequency ra-
tios found from the C2 spacecraft (for which the wave spectra
were of lower quality; otherwise we would have used these
to help calculate the harmonic frequencies), we used an error
model like that used for the first event to find the uncertain-
ties of the frequency ratios listed in the next-to-last column
of Table3, and those uncertainties were used in the following
calculations.

Using a three polynomial fit with respect to the square
of the Alfvén crossing coordinateτ (Eq. 2), we ran our
mass density inversion code to get the field line distributions
shown in Fig.7a–d (black solid curves). There is a slight
peak inρ near the magnetic equator at MLAT′

=0 (MLAT ′
=0

is at the position where the geocentric radius is maximum and
the magnetic field is minimum as described in Sect.3). The
height of this peak is only 23% (as compared to a factor of
2 in the afternoon local time sector at largeL&6 (Takahashi
and Denton, 2007)). The distribution of solutions from the

MLAT (˚)

z

7

(a)

(b)

peaks

ρ
ρ

Fig. 6. (a)The (log average) mean mass densityρ (middle curve)
and the meanρ plus or minus one standard deviation (upper and
lower curves) at each value of MLAT based on the solutions ofρ

from the Monte Carlo simulation using a 5 polynomial fit with re-
spect toτ and using the eight Alfv́en wave frequencies observed
on 28 October 2002. Here the values ofρ are divided by the mass
density found using the peak frequencies in order to better show the
difference between the solutions.(b) Same curves forρ plus or mi-
nus one standard deviation (upper and lower curves). The middle
solid (dotted) curve is the solution using the peak frequencies but
with a 7 polynomial term fit with respect toτ (a 5 polynomial fit
with respect toz). Both of these functions are also divided by the
value ofρ found using the peak frequencies using the 5 polynomial
fit with respect toτ .

Monte Carlo simulation indicated by the spread of the up-
per and lower black thin solid curves in Fig.7b does not ex-
clude the possibility that the real distribution is flat. The solu-
tion using three polynomial terms with respect toz is similar
to that usingτ and is plotted as the black dotted curves in
Fig. 7a–d. This solution is

log10ρ = 1.79− 1.69z2
+ 8.38z4, (23)

for ρ expressed in amu/cm3. (Fig. 7e–h will be discussed in
the Discussion section.)

5.2 Spatial electron density distribution for 10 Septem-
ber 2002 found from data from all four spacecraft

For this event, there is a strong band of upper hybrid emis-
sions observed by all four CLUSTER spacecraft, and the
electron densityne can be easily determined. Because of
this, we are able to estimate the distribution of the electron
density using the method of Sect.3. Figure8 shows thene

values and position for all four spacecraft using the defini-
tions in Sect.3 (see also Fig.1). For the purposes of using
the method described in Sect.3, we used thene data shown
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Table 3. Frequencies of toroidal harmonics for 10 September 2002 event.

n (fn/f3)B (fn/f3)E (fn/f3) fn−input (mHz) fn−solution (mHz)

1 0.272±0.003 0.272±0.014 8.28±0.43 8.25±0.40
2 0.683±0.011 0.683±0.017 20.82±0.52 20.84±0.49
3 1 1 1 30.48 30.48

in Fig. 8a but excluded the dotted portion of the green curve
(C3). The reason for excluding this segment of data is that
only C3 sampled the largeLd and large negative MLAT′ val-
ues. The lowne values of C3 could be modeled by alteration
of either the terms describing theLd or MLAT ′ dependence,
and which of these was affected was not well determined,
leading to unnecessary variation in the solutions depending
on the exact terms included in the model. Aside from C3, for
which we used a start time of 12.1 UT (h), the data was used
between 11.75 and 12.7 UT (times plotted in Fig.8). These
limits were chosen because of large oscillations in the C3
ne (plasma frequency) at earlier times and because C4 pene-
trated into the plasmasphere at later times (not shown). How-
ever, a more general treatment would allow different time
limits for each spacecraft.

As described in Sect.3, we find an optimal fit to the ob-
served values of ln(ne) using a superposition of particular
model functions. The models we used are listed in Table1.
For the first model, fit 1,

ne,mod 1 = exp(2.90+ 1.81 ln(Ld/R)

+4.21 ln(5/Ld) − 0.0114 MLT′′
)

'

(
18.2 cm−3

)(Ld

R

)α ( 5

Ld

)β

, (24)

(using theL shell dependence in Eq. (8) and the parallel de-
pendence in Eq.14) where we have neglected the (small)
MLAT ′′ dependence in the last line and the power law co-
efficients for the parallel andLd directions areα=1.81 and
β=4.21. This distribution of density is extremely reason-
able. Denton et al.(2004) state thatα=2–3 is typical in the
plasmatrough. Values ofβ equal to 4.5 (Carpenter and An-
derson, 1992), 4.0 (Sheeley et al., 2001), and 3.5 (Denton
et al., 2004) have been found in statistical studies of plas-
matrough density. The valueβ=4 results from the assump-
tion that the flux tube content per magnetic flux is constant
(Denton et al., 2004). The standard difference (of the natu-
ral logarithm) isχ=0.0845, leading to a multiplicative error
factor exp(χ)=1.088 (approximately a 9% error in the linear
density).

In Fig. 9a, we plot the observedne values (solid curves)
and model values for fit 1 (dashed curves) for all four CLUS-
TER spacecraft. The model curves fit the data fairly well. We
noticed, however, that the model curves in Fig.9a have lower
density than the observedne at the places where the space-
craft cross MLAT′=0. These locations are indicated in Fig.8

as vertical dashed lines for C1 (black) and C2 (red). In addi-
tion, C4 reaches MLAT′=0 at the right side of the plot. Note
the local increase inne at these positions. This observation
led us to explore sets of model functions with a more general
field line dependence. The second set of model functions for
the natural logarithm ofne (fit 2 in Table1) includes terms
proportional toz′2 andz′4 (parallel dependence (Eq.15)) in-
stead of the power law field line dependence. (Here, sym-
metry about MLAT′=z′

=0 is assumed; see definitions in
Sect.3.) Fit 2 also has a quadraticLd dependence (constant,
Ld , andL2

d terms). For fit 2,χ=0.0504 or exp(χ)=0.0504
(roughly a 5% error), a significant improvement. The model
functions for fit 2 are shown in Fig.9b (dashed curves). The
field line dependencene,‖ (see Eq.6) for fits 1 and 2 is shown
in Fig. 10. Fit 2 yields a local peak inne at MLAT′

=0 with
a drop ofne of about 8% to MLAT′∼13◦ beforene starts to
increase again at larger values of|MLAT ′

|. It should be kept
in mind that the parallel dependence inferred here is derived
from and therefore representative of the densities observed
by all four spacecraft, and may not exactly correspond to the
exact parallel dependence on any particular field line; we ex-
pect that it represents a typical or average field line depen-
dence within the region sampled by the four spacecraft.

TheLd dependence ofne, ne,Ld
, normalized to its value at

Ld=5 is shown in Fig.11 for fit 1 (solid black curve) and for
fit 2 (dashed blue curve). Both of these show a monotonic
decrease inne,Ld

with respect toLd , but the quadratic fit 2 is
slightly less steep. Motivated by the better agreement of fit 2,
we tried fit 3 with a cubic dependence inLd andz′2, z′4, and
z′6 terms for the field line dependence. In this case, however,
there was not a significant improvement in the fit. The value
of χ was 0.0490 (versus 0.0504 for fit 2) and exp(χ) was
1.050 (versus 1.052 for fit 2). In Fig.11, ne,Ld

for fit 3 is
plotted as the dashed red curve, and it is not significantly
different from the blue dashed curve (fit 2). Based on this
comparison, we used only a quadratic fit forLd and terms
only up toz′4 for the remaining models.

The remaining models were partly motivated by the dis-
agreement between the model and observed curves for C2
(red curves) and C4 (blue curves) in Fig.9b. Noting that
these differences occur at the right side of the plot where
the spacecraft are moving to larger values of MLAT′, we
tried a model with an asymmetric distribution with respect to
MLAT ′. Fit 4 included terms forz′, z′2, z′3, andz′4. The red
solid curve in Fig.10showsne,‖ for this fit. This solution still
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Fig. 7. (a, b) Mass densityρ (black curves) and electron density
ne (red curves) versus MLAT′ (left) andR (right). The black solid
curves are all found using a three term polynomial expansion for
ρ with respect toτ . The thick black solid curve is the solution
based on the peak frequencies in Table3, the middle thin black solid
curve (obscured in (a, b) by the thick black solid curve) is the mean
solution from the Monte Carlo simulation using the uncertainties
listed in Table3, and the upper and lower thin black solid curves are
the mean solution plus or minus one standard deviation (in the log
value). The black dotted curves are found using a three polynomial
expansion with respect toz. The red curve isne found from fit
5 as described in the text.(c, d) The same quantities are plotted
with a smaller linear scale. Here, the values ofne (red curve) are
multiplied by a factor 2.5.(e, f) Average ion massM≡ρ/ne based
on the thick solid black and red curves in (a–d).(g, h) Species
densities (of species s) based onM assuming a three species plasma
with H+, O+, and electrons. The values ofnO+ are multiplied by a
factor of 10.

has a local peak at MLAT′=0, but the dip inne,‖ is greater for
negative values of MLAT′ than for positive values. The re-
sulting values ofχ and exp(χ) are 0.0451 and 1.046, respec-
tively, versus 0.0504 and 1.052, respectively, for fit 2 (Ta-
ble 1). While fit 4 does improve the agreement between the
observed and model values of density, slightly better agree-
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Fig. 8. Quantities for each of the four CLUSTER spacecraft (black,
red, green, and blue for C1, C2, C3, and C4, respectively) plotted as
a function of UT,(a) ne values inferred from the upper hybrid noise
band,(b) Ld calculated using the dipole field model (Eq.9) with
the modified magnetic latitude MLAT′ (Eq. 11), (c) the geocentric
radiusR, (d) MLAT ′, (e) magnetic local time MLT, and(f) the co-
rotation local time MLT′′ (Eq.18).

ment is achieved with fit 5, which uses only even terms with
respect toz′ (z′2 and z′4), but includes terms proportional
to both MLT′ and UT′ (rather than MLT′′≡MLT ′

−UT′ for
fit 4). (As described in Sect.3, the primes for MLT′ and UT′

merely indicate that the average value has been subtracted.)
In this case,χ and exp(χ) are 0.0431 and 1.044, respectively,
versus 0.0451 and 1.046, respectively, for fit 4 (Table1).
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Fig. 9. Observed values ofne (solid curves) and model values
(dashed curves) versus UT for all four CLUSTER spacecraft (black,
red, green, and blue color for C1, C2, C3, and C4, respectively) for
(a) fit 1, (b) fit 2, and(c) fit 5 in Table1.

1

2

4
5, 6

MLAT '

e,n �

Fig. 10. Parallel dependence ofne, ne,‖, versus the magnetic lat-
itude MLAT′ for fits with ne,‖ symmetric with respect to MLAT′

(black curves): fit 1 (solid black curve), fit 2 (dotted black curve),
and fit 5 (dashed black curve); and for asymmetric (with respect to
MLAT ′) dependencies (red curves): fit 4 (solid red curve), and fit 6
(dashed red curve).

In Fig. 9c, we compare the observed and model densities
for fit 5. The agreement is good in most regions; there is still
some disagreement for C2 (red curves) at the largest values of
UT. This remaining disagreement is either because we have
not used general enough model functions, or the assumption
of separability in Eq. (6) is not exactly valid. Nevertheless,
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Fig. 11. TheLd dependence ofne, ne,Ld
, normalized to its value

at Ld=5 is shown for fit 1 (solid black curve), fit 2 (blue dashed
curve), fit 3 (red dashed curve), and fit 5 (green dashed curve).

we regard the fit shown in Fig.9c to be very good. TheLd

dependence for fit 5 is the dashed green curve in Fig.11, and
it’s clearly very close to the curves for fits 2 and 3 (blue and
red dashed curves, respectively). The parallel dependence
for fit 5 is the black dashed curve in Fig.10. There is still
a local peak inne at MLAT′

=0, but the peak has slightly
less amplitude (6% drop inne from the value at MLAT′=0
to the minimum value versus a 9% drop for fit 2). Fit 6 is
the same as fit 5 (with terms for MLT′ and UT′) but with
asymmetric terms inz′ allowed like for fit 4. That is, terms
for z′, z′2, z′3, andz′4 were all included. Theχ and exp(χ)

values, 0.0430 and 1.044, respectively, were almost identical
to those for fit 5 (0.0431 and 1.044, respectively), as shown
in Table1. The coefficients of the odd terms inz′ (z′ andz′3)
were very small compared to those of the even terms, so that
the field line dependence was almost the same, as can be seen
by comparing the red dashed curve (fit 6) to the black dashed
curve (fit 5) in Fig.10.

While the value ofχ is not greatly smaller for fit 5 than
for fit 4 (0.0431 for fit 5 as compared to 0.0451 for fit 4), we
believe that fit 5 better represents the distribution ofne for
several reasons. First of all, fit 5 has one less fit parameter
than fit 4, yet achieves a better fit. Secondly, it is hard to
understand physically why the distribution of density with
respect to MLAT′ would be asymmetric, especially for 10
October, a date near the equinox, for which the ionospheric
conditions should be similar at both ends of the field line.
Third, fit 5 yields a more reasonable dependence for MLT.
Fit 5 has a positive coefficient for the term proportional to
MLT ′, indicating that the density increases with respect to
MLT ′. Fit 4, on the other hand, has a negative coefficient for
MLT ′′

≡MLT ′
− UT′, indicating that at UT′=0, the density

decreases with respect to MLT. Seeing as the position is near
local noon (Table4), an increase inne with respect to MLT is
expected sincene generally peaks in the afternoon local time
sector. Finally, when both explicit MLT′ and UT′ terms and
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Fig. 12. Sounder data measured by the WHISPER instrument on the C1 spacecraft showing the labelled resonances.

odd terms inz′ are included (fit 6), the resulting fit is nearly
identical to that of fit 5.

Now we return to Fig.7, where we make use of the par-
allel distribution ofne from fit 5. In Fig. 7a and b, the red
curve is the product of theLd dependence of fit 5 evaluated
at Ld=4.8 (the L value of C1 at the time the Alfv́en fre-
quencies were observed) and the parallel dependence of fit
5, n5,‖. In Fig. 7c and d, the same values are plotted but
multiplied by 2.5 (to aid comparison to the curves forρ).
Fit 5 for ne has a local peak inne at the magnetic equator,
like ρ, but the amplitude of the peak inne is smaller, a 6%
drop in ne from MLAT ′

=0 to the minimum value versus a
23% drop inρ for the solution based on the peak frequen-
cies (thick solid black curve in Fig.7a). Using this last curve
for ρ with the red curve forne, we can derive the average
ion massM≡ρ/ne within the region of overlap in MLAT′;
M is plotted in Fig.7e and f. The value ofM is largest at
MLAT ′

=0.

Some earlier work has indicated that the He+ density,
which is usually small, is not nearly as sensitive to geomag-
netic activity as is that of O+ (Craven et al., 1997; Krall et al.,
2007). This suggests that ifM is significantly greater than
unity,nO+/ne is as a first approximation equal to(M−1)/15.
Combining this relation with quasineutrality for an H+/O+
plasma (1=nH+/ne+nO+/ne), we can use the field line dis-
tribution of M to derive the field line distribution of H+ and
O+ and these curves are plotted in Fig.7g and h. The field
line distribution of H+ is less peaked than that ofne (3% peak
for H+ versus a 6% peak forne), while the field line distribu-
tion of O+ is more peaked than that ofρ (34% peak for O+
versus a 23% peak forρ).

6 Comparison to other density measurements

The purpose of this section is to check for consistency of the
measured density values, and then to compare the two events.
For consistency, the average ion massM≡ρ/ne should be
greater or equal to 1 amu (corresponding to pure H+ plasma),
and the directly measured heavy ions should be less than
that needed to account for the mass density inferred from the
Alfv én wave frequencies.

6.1 Other measurements for 28 October 2002

We were able to estimate the electron density for the C1
spacecraft at 02:48 UT on 28 October 2002 (when the Alfvén
frequencies were measured) using the WHISPER instrument
sounding data (Rauch et al., 2005). Natural plasma wave
emissions were at a high level, saturating the receivers. Ac-
tive sounder emissions are shown in Fig.12. Harmonics of
the gyrofrequency Fce are marked with green dashed ver-
tical lines. Our interpretation of the resonances leads to
the conclusion that the plasma frequency is between 22 and
27.5 kHz. The value 22 kHz (dashed vertical red line) corre-
sponds to the cold part of the electron population deduced
from the Bernstein resonance series (starting from Fq3 at
∼26.4 kHz). The value 27.5 kHz results if the highest res-
onance is placed at Fptot, a global resonance involving the
core of the population including cold and warm part (prob-
ably not including the high energy part). It is generally, as
illustrated in this case, placed within the bar (0.9–1) Fmax,
where Fmax (blue dashed line, 31.4 kHz here) is calculated
by taking the frequency position of the maximum of the
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Fig. 13. (Top) Spectrogram of the flux of O+ ions with energy from 1-40 keV, and (bottom) density of O+ integrated over the same energy
range for the 28 October 2002 event.

smoothed spectrum. The smoothing uses a common ad hoc
filter function, providing in all regions a first approximation
of the plasma frequency Fp. It is based on the fact that all res-
onance peaks (Fce, Fqs, Fp, Fuh) appear in a frequency range
more or less centered near Fp. A value of Fp between 23 and
27.2 kHz leads to an electron densityne of about 8 cm−3.

Oxygen ions (O+) can be detected using the Cluster Ion
Spectrometry (CIS) instrument (Rème et al., 2001). A spec-
trogram of the flux of O+ ions with energy from 1–40 keV
is shown in the top panel of Fig.13, and the density of O+

integrated over the same energy range is shown in the bottom
panel. Below 1 keV, the signal to noise ratio was too low to
get a reasonable estimate. At about 02:30 UT, the measured
O+ density is about 0.5 cm−3.

Table4 summarizes our information about the 28 October
2002 event. The negativeDst value =−49 nT is indicative
of a significant ring current population. The instantaneous
Kp and〈Kp〉3 (average of previousKp values weighted with
exp(−(t−tKp)/(3 days))) values (4.6 and 4.1, respectively)
indicate a moderately high level of geomagnetic fluctuations.
The C1 spacecraft was close to the magnetic equator (MLAT
= −5.4◦), and the inferredρ at the spacecraft location was
37.6 amu/cm3 (Fig. 17c and Eq.22). The shape of the
field line distribution was flat in the middle region (around
MLAT=0) and very steep at large|MLAT | (close to the iono-
sphere), as shown in Fig.16. Using ρ=37.6 amu/cm3 and
ne=8 cm−3, the average ion massM≡ρ/ne=4.7 amu. In a
plasma composed of H+, He+ and O+, the average ion mass
will be

M = 1 + 3

(
nHe+

ne

)
+ 15

(
nO+

ne

)
. (25)

To have a value ofM=4.7 would requirenO+/ne=0.25 in
an H+/O+ plasma, ornO+=2 cm−3. If nHe+/ne=0.20 (a
typical upper limit),nO+/ne=0.21 is needed, correspond-
ing to nO+=1.7 cm−3. We observednO+=0.5 cm−3 with

energy>1 keV, and the plot of the flux of O+ (bottom panel
of Fig. 13) indicates that there is more O+ at lower energies.
Thus we observed a substantial fraction of the needed O+,
enough to raiseM to the valueMO+,obs=1.9 in Table4, but
not enough to raise it toM=4.7.

6.2 Other density measurements for 10 September 2002

At the time of this event,ne=22 cm−3 at the position of C1.
From the solution based on the peak frequencies (thick solid
curve) plotted in Fig.7, ρ=63.0 amu/cm3 there, leading to
M=2.8. In this case, we were able to measure O+ down
to 40 eV (Fig.14), and find an integrated oxygen density
nO+=0.6 cm−3. The measured O+ is by itself enough to
raiseM to a value of 1.4. These values are listed in Table4.
As in the previous case, there is a significant amount of flux
at the lower range of energy, so it is likely that there was more
oxygen present. From Eq. (25), a value ofM=2.8 would re-
quirenO+/ne=0.12 in an H+/O+ plasma, ornO+=2.7 cm−3

(as compared to 1.7–2 for the 28 October 2002 event). With
nHe+/ne=0.2 (a typical upper limit), there would need to be
nO+/ne=0.08, ornO+=1.8 cm−3 (as compared to 1.7–2 for
the 28 October 2002 event). Based on these numbers, the to-
tal amount of O+ could be similar for the two events. As can
be seen in Fig.14, there are two populations of O+, one with
energy lower than 1 keV, and another with higher energy.
About 0.5 cm−3 of the total O+ (0.6 cm−3) is in the higher
energy range, and this is the same amount measured for the
28 October 2002 event (Table4). Based on the pitch an-
gle distribution (not shown), the higher energy population is
trapped (distribution peaked around 90◦ pitch angles), but the
lower energy population is field aligned (distribution peaked
around 0 and 180◦ pitch angles).
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Table 4. Densities for the two events.

Event UT MLT Dst Kp 〈Kp〉3 ρ Shape ne M nO+ MO+,obs

(Hours)
(

amu
cm3

)
(cm−3) (cm−3)

28 Oct 2002 0233 8.7 −49 4.6 4.1 37.6 flat/steep 8 4.7 0.5 (>1 keV) 1.9
10 Sep 2002 1207 11.6 −61 3.6 2.7 62.6 slightly peaked (23%) 22 2.8 0.6 (>40 eV) 1.4
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Fig. 14. (Top) Spectrogram of the flux of O+ ions with energy from 40 eV to 40 keV, and (bottom) density of O+ integrated over the same
energy range for the 10 September 2002 event.

6.3 Comparison of the two events

The density of ring current (>1 keV) O+ is about the same
for both cases and the total amount of O+ could be similar,
but the electron density is larger for the 10 September 2002
event (22 cm−3 as compared to 8 cm−3 for 28 October 2002),
leading to a smaller value ofM for the 10 September 2002
event (2.8 as compared to 4.7 for the 28 October 2002 event).
TheDst values for the two events are similar (Table4), con-
sistent with similar values for the O+ density with energy
>1 keV. TheKp value for the 10 September 2002 event is
somewhat lower (3.6 as compared to 4.6 for the 28 October
2002 event). There is a greater difference in〈Kp〉3 (average
of Kp weighted with 3 day exponential decay as described
in Sect. 3.3). The indicesDst andKp are plotted for the two
events versus time in Fig.15, showing thatKp was consis-
tently higher during the two days leading up to the 28 Oc-
tober 2002 event. This probably correlates with greater con-
vection leading to lowerne even though for both events, the
CLUSTER spacecraft are in the plasmatrough (based on IM-
AGE EUV images not shown). In summary, the ring current

populations of the two events are similar (at least for O+),
but the cold electron density is larger for the 10 September
2002 event, leading to a lower average ion massM.

7 Discussion

7.1 The difference in the two events

Before discussing the results for the field line distribution of
density, we discuss the results presented in Sect.6. Ideally,
we would like to show that the value of mass densityρ in-
ferred from Alfvén wave frequencies is equal to the sum of
measured ion densities. Unfortunately, we cannot show that
because the ion composition instrument on CLUSTER does
not measure the cold (∼eV energy) heavy ions (ions heavier
than H+). (Given the heavy ion densities, we can infer the
proton density from the electron densityne.) We have shown
that the measured O+ densitynO+,obs leads to an average ion
mass that is significantly greater than unity, yet still less than
the value implied byρ. Because of this, our values ofne
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28 Oct 2002 10 Sep 2002

Dst

Kp

Day of Month

Fig. 15. Dst (top) andKp (bottom) versus time for the 28 October
2002 (left) and 10 September 2002 (right) events, with the event
time at the right side of each panel.

andρ are at least possibly correct. In the two events consid-
ered (Table4), both of which were in the plasmatrough, the
Dst values and density of O+ with energy>1 keV were sim-
ilar (see discussion in Sect.6.2), and the total amount of O+
may also possibly be similar. The main difference between
the two events seems to be that the total density was greater
for 10 September 2002 than for 28 October 2002 (Table4).
Although the field line distribution is slightly peaked for 10
September 2002, both field line distributions are relatively
flat compared to field line distributions studied byDenton et
al. (2006) (23% peak for 10 September 2002 versus about a
factor of 2 forL=6–8 in Fig. 8 of Denton et al.). Denton et
al. found that the field line distribution of mass density was
typically flat forL=4–5, but slightly peaked forL=5–6; the
value ofL in this study, 4.8, is close to the boundary between
these two ranges.

7.2 Variation in solutions for the mass density for 28 Oc-
tober 2002

Here we consider how the solution for the field line depen-
dence varies if we use different assumptions for the field line
dependence or if we use a smaller number of harmonics. In
Fig. 16, we show the solutions forρ using different num-
bers of polynomial termsNpoly in Eq. (1). Solutions with
Npoly<7 are shifted down by factors of 10 so that the solu-
tions do not overlap, as indicated in the caption. The three
solid curves represent solutions using all the observed fre-
quenciesNfreq=8, but the dotted curves are solutions using
Nfreq=Npoly. (The vertical lines are there to help the viewer
more accurately compare the different curves.) There are no
solid curves for Fig.16 with Npoly≤4 because when using
8 input frequencies (Nfreq=8) our code only converged on
valid solutions whenNpoly was at least 5. This is proba-
bly because the field line distribution ofρ is very flat for
|MLAT |.20◦ but very steeply increasing with respect to

MLAT (°)
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Npoly =

Fig. 16. Solutions for mass density based on the peak frequencies
fn−input from Table2. The numerical labels indicate the number of
polynomialsNpoly used in Eq. (1). The values ofρ for Npoly<7 are

divided by 107−Npoly so that they do not overlap. The solid (dotted)
curves show the solutions usingNfreq=8 (Nfreq=Npoly) frequen-
cies. The dashed curve is a second solution forNfreq=Npoly=6 as
described in the text.

|MLAT | for |MLAT |&40◦, and this distribution cannot be
fit with a small number of polynomials. The solid curves
for Npoly=5 and 6 are nearly identical. The solid curve for
Npoly=7 is very similar but increases less at the largest values
of |MLAT |. Despite this, the solution forNpoly=7 still lies
within the range of solutions for the Monte Carlo simulation
with Npoly=5, as can be seen from Fig.6b.

While there are no solutions forNpoly≤4 using all eight
input frequencies (Fig.16), we can find solutions if we re-
duceNfreq. The dotted curves in Fig.16 show the solutions
usingNfreq=Npoly input frequencies. It is clear that using
less frequencies leads to less detailed information about the
field line distribution. With only one frequency, there is no
information about the field line dependence. With four fre-
quencies, the steep rise inρ begins to appear at large values
of |MLAT |. Except at the very largest values of|MLAT |,
five frequencies yields a good description for the field line
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distribution ofρ. (Compare the solid and dotted curves in
Fig. 16for Npoly=5.) We cannot guarantee that our solutions
are unique. In fact, forNfreq=Npoly=6, we found two solu-
tions. The second solution is the large dashed curve in Fig.16
(that goes to the same values ofρ as the otherNpoly=6 curves
at MLAT=0◦). However, the chances of finding solutions that
differ are greatly reduced ifNfreq>Npoly because the extra
information constrains the values of the polynomial coeffi-
cients. For that reason, theNpoly=5 or 6 solutions (which
are nearly identical) may actually be more accurate than the
Npoly=7 solution. (Though as we noted before, theNpoly=7
solution does lie within the range of the values from the
Monte Carlo simulation usingNpoly=5.)

For the 28 October 2002 event, we have eight frequen-
cies, but most often when mass density is inferred from
Alfv én frequencies, there is far less information available.
To show how less information could influence the results,
we show several different solutions forρ in Fig. 17. The
bold solid curve is our solution withNpoly=5 (τ expansion)
with Nfreq=8. The thin solid curve is our solution using
Npoly=3 with Nfreq=3. The dashed curves are found us-
ing only the fundamental frequency (Nfreq=1), and assum-
ing the power law form (Eq.3) with α=1 (dotted), 2 (small
dashes), 4 (medium dashes), and 6 (large dashes), as labelled
in Fig. 17b. UsingNfreq=3, the three term polynomial solu-
tion does a fairly good job of modelling the field line distri-
bution up to|MLAT |=35◦, but does not model the steep in-
crease at large|MLAT | (at ionospheric altitudes) represented
in the 5 polynomial solution. Clearly the power law form
does not well describe the variation ofρ over the entire range
of MLAT either. The field line distribution ofρ is very flat
within |MLAT |=20◦ (thick solid curve), and the best power
law fit for this region is withα=1 (dotted curve). The value
α=6 (large dashes) yields best agreement at large|MLAT |

(close to the ionosphere). If three frequencies are used to
determine the best power law fit, the inferred power law co-
efficient isα=2.25 and the resulting solution (not shown) is
very close to theα=2 curve in Fig.17 (found using only
the fundamental frequency). As stated previously, our code
does not converge on a valid solution usingNfreq=8 with the
uncertainties in Table2. However, if we increase the uncer-
tainties by a factor of 10, we can find the best fitting power
law solution, which hasα=4.05; the resulting solution (not
shown) is very close to theα = 4 solution in Fig.17. Denton
et al.(2006), using CRRES data, suggested thatα=2 was the
best choice forL=4–5 if the power law form is used. These
results also show thatα=2 would work fairly well for the 28
October 2002 event up to about|MLAT |=35◦. The use of a
power law solution withα = 4 better represents the values of
ρ at larger|MLAT |, but as can be seen from Fig.17, this so-
lution leads to equatorial and topside ionosphere values ofρ

that are too low, and mid-range values that are too high (com-
paring theα=4 medium dashed curve with the thick solid
curve).

(a) (b)

(c) (d)

MLAT (˚) ( )ER R
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Fig. 17. The bold solid curve is our solution forρ versus MLAT
(left) and geocentric radiusR (right) using 5 polynomial terms to fit
the 8 peak frequencies in Table2. The thin solid curve is the solu-
tion using 3 polynomial terms to fit 3 frequencies. The four dashed
curves are the solutions using only one frequency (the fundamen-
tal) assuming the power law form (Eq.3) for α=1 (dotted), 2 (small
dashes), 4 (medium dashes), and 6 (large dashes), as labelled in(b).
The bottom panels are the same as the top panels, except that the
range ofρ values plotted is smaller.

7.3 Discussion of the mass density field line distribution
for 28 October 2002

For the 28 October 2002 event, we were able to determine
a large number of harmonic frequencies with unprecedented
precision. The resulting solution for mass density was also
very precise because of the large number of harmonics mea-
sured and the smaller relative uncertainties in the harmonic
frequencies (Fig.6). The net result is that the error in the
inferred mass density is probably dominated by factors other
than the uncertainty in frequency (e.g., magnetic field model
and theoretical wave equation). As shown in Fig.6, our
solution for the field line distribution on 28 October 2002
(at L=4.8) is very flat for |MLAT |.20◦ but very steeply
increasing with respect to|MLAT | for |MLAT |&40◦. Be-
cause of the improved precision of the observed frequen-
cies, we are able to see a steep increase inρ as MLAT ap-
proaches ionospheric values (Fig.5a and b). And because
of this increase, the Alfv́en speedVA≡B/

√
4πρ (in CGS

units) does not keep increasing as|MLAT | increases; the
increase inρ at large|MLAT | causes a decrease inVA at
the largest values of|MLAT | as shown in the middle pan-
els of Fig.5. (Thus we observe the ionospheric Alfvén res-
onator (Polyakov, 1976; Lysak, 1993), a dip in the value of
VA at low altitudes.) BecauseVA does not increase greatly
as |MLAT | increases (less than a factor of 4 from Fig.5c
and d), the mass density at all values ofρ significantly
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Fig. 18. The solid curves are the same solutions forρ that were
plotted in Fig.5a and b, but shown with respect to heighth from the
Earths surface within the southern(a) and northern(b) ionospheres.
The large dashed curve is the mass density from the International
Reference Ionosphere (IRI) model (Bilitza, 2001). The dotted curve
is the mass density from the IRI due to O+.

affects the solutions for the frequency of the Alfvén wave
harmonics. This can be seen from the values ofτ (the
Alfv én crossing time coordinate defined in Eq.2) shown in
Fig. 5e and f. In the WKB approximation, the Alfvén fre-
quency∼1/(

∫ N
S ds/VA)=τN−τS, where the integral is eval-

uated from the southern ionosphere (S) to the northern iono-
sphere (N). The contribution toτN−τS in each differential
change in latitude dMLAT goes like the slope ofτ in Fig. 5e,
and the slope ofτ versus MLAT is non-negligible at every
value of MLAT, showing that all regions of MLAT contribute
to the Alfvén frequencies. This is the second reason for the
improved precision at large values of|MLAT |; the values
of ρ at large|MLAT | are having a significant effect on the
frequencies. (In our previous solutions (e.g.,Denton et al.,
2004), ρ did not increase nearly so much at large|MLAT | so
thatVA became very large at large|MLAT | (due to the large
value ofB at low altitude) and the differential contribution to
τ , dτ=ds/VA, became small.)

Considering the tremendous imprecision of our previous
solutions at large values of|MLAT | (Denton et al., 2001,
2004, 2006; Takahashi et al., 2004; Takahashi and Denton,
2007), one might well question whether our technique can
actually determine a variation inρ of more than four orders
of magnitude. While we cannot prove that this field line dis-
tribution of ρ is accurate, several pieces of evidence argue
that the values ofρ may actually increase steeply as we have
found. First of all, we do not find valid solutions for the
field line distribution of log10ρ using less than five polyno-

mial terms. (We also do not find a solution using the power
law description withρ∼R−α.) Secondly, polynomial fits to
ρ (rather than log10ρ) did not yield valid solutions, indicat-
ing that we need a functional form that can represent a very
steep increase inρ at large values of|MLAT |. Third, the dis-
tribution seems to have converged with respect toNpoly for
Npoly=5. Fourth, the values ofρ that we find at the largest
values of|MLAT | compare reasonably well with ionospheric
mass densities. This is shown in Fig.18 for the southern
(a) and northern (b) ionospheres. Note that our values ofρ

are intermediate between the IRI values at heighth.600 km
and those ath&1400 km. Therefore, our estimate of mass
density based on Alfv́en frequencies may be probing into the
ionosphere while not resolving its detailed structure.

Further work should be done to verify whether the four or-
der of magnitude variation inρ with respect to MLAT is justi-
fied based on our method, but it is encouraging that the iono-
spheric values ofρ are consistent with values from the IRI
model. Such a dependence with increasing steepness away
from the magnetic equator is also consistent with the field
line dependence ofne inferred from active radio sounding by
IMAGE RPI (Reinisch et al., 2004; Denton et al., 2006, and
references therein). An important effect of the steep increase
in ρ at large|MLAT | is that the large|MLAT | (low altitude)
portion of the field line contributes to the global frequency of
oscillation, even for the fundamental mode (Fig.5e).

7.4 Discussion of the field line distribution of mass den-
sity for 10 September 2002

For the second event, 10 September 2002, we measured only
three harmonic frequencies and the solution was not as ac-
curate (partly because of the small number of Alfvén wave
harmonics observed). In this case, we found a small local
peak in mass density near the magnetic equator. This peak is
similar to those we have found in earlier studies, but smaller
in amplitude, 23% (as compared to a factor of 2 in the after-
noon local time sector at largeL&6 (Takahashi and Denton,
2007)). Because this peak is small, and because the range of
solutions from the Monte Carlo simulation does not exclude
a flat distribution (Fig.7), we would be reluctant to confi-
dently state that this peak is real based on this data alone.
However, our analysis of the field line distribution of elec-
tron density for this event also indicates that the density is
peaked at the magnetic equator.

7.5 Discussion of the electron density distribution for 10
September 2002

We first tried to determine the spatial distribution ofne us-
ing the gradient calculated from the measurements by the
four CLUSTER spacecraft, as described byDarrouzet et al.
(2006). However, tests of the method using simulated data
with a known spatial distribution at the positions of the real
spacecraft on 10 September 2002 showed that the calculated
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gradient did not accurately represent the actual gradient of
the known distribution at the center of mass of the four space-
craft. Because of this, we developed a least squares fitting
technique that can infer the density distribution under the key
assumptions of separability and smoothness (Sect.3). Un-
fortunately, the results depend somewhat on the exact model
used. Nevertheless, tests using a number of models give a
good indication of the terms that are necessary or not neces-
sary. In particular, the model associated with fit 5 in Table1
appeared to do a good job of describing thene distribution.
This fit modeled the natural logarithm ofne with a superposi-
tion of terms including a quadratic dependence in the dipole
L value, a quadratic dependence with respect to the square
of the sine of the magnetic latitude (z′2 andz′4 terms; see
Sect.3), and a linear dependence with respect to MLT and
UT. Tests with other models showed that a cubic dependence
with respect toL and odd terms with respect to MLAT were
not necessary.

The model fits yielded the following results: there is a
small rate of increase of the density with respect to both
MLT and UT. TheLd dependence, while not exactly de-
scribed by a power law, is roughly consistent withL−4

d at
Ld∼4.8 (see discussion immediately following Eq.24). The
field line dependence has a local peak at the magnetic equa-
tor (MLAT ′

=0), decreases to a minimum value at a magnetic
latitude|MLAT ′

| of about 12.5◦, then increases steeply away
from the magnetic equator (Fig.10). Besides the fact that this
dependence results from our model fits, it is noteworthy that
we can see peaks in the rawne data as the CLUSTER space-
craft cross MLAT′=0 (Fig.8a). To our knowledge, this is the
first indication that the electron density in the plasmatrough
may be locally peaked at the magnetic equator.

There is furthermore a remarkable similarity between the
inferred field line distribution ofne based on the method de-
scribed in Sect.3 and that ofρ based on Alfv́en wave fre-
quencies (Fig.7). The inferred distribution ofρ also has a
local peak at the magnetic equator, decreasing to a minimum
value at about 15◦. We brazenly used the inferred distribu-
tion of ρ andne to calculate the field line distribution of H+
and O+. Considering the possible errors in bothρ andne,
it is hard to know at this point how seriously to take these
distributions. Nevertheless, they are consistent with our ex-
pectations for a distribution of O+ gravitationally trapped at
the magnetic equator (K. Ferriere, private communication,
2005). Given the same temperature, O+ would have a much
smaller thermal speed than H+ and would be more strongly
affected by the centrifugal force. Therefore, the H+ distri-
bution might be relatively flat at MLAT′=0 while the distri-
bution of O+ is peaked there. The electrons are peaked just
enough to bring about quasineutrality (Fig.7). Denton et
al. (2006) plotted the log average value ofne from the CR-
RES spacecraft versus MLAT (their Fig. 5). They did not
emphasize the small peak near MLAT=0 because that peak
was much less than what they found forρ. Here we find the

same result for 10 September 2002: Bothρ andne show a
local peak in density at the magnetic equator, but the peak is
stronger forρ. On the other hand, for the 28 October 2002
event we do not have any evidence that the density is peaked.

7.6 Conclusions

These results show some promise for using CLUSTER data
to infer the distribution of both mass density and electron
density near perigee. Unfortunately, a quick examination of
a number of magnetic field spectrograms showed that Alfvén
harmonic frequencies are not often clearly visible. What is
most needed is an automated method of determining toroidal
Alfv én frequencies using both magnetic and electric field
data and using the polarization information (e.g., ratio of
magnetic to electric power (Denton et al., 2004)) to identify
the harmonics. Semi-automatic techniques are being used to
build a database of CLUSTERne measurements and some of
these are available on the CLUSTER Active Archive (CAA).
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