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Abstract. We present a reconstruction technique to solve
the steady resistive MHD equations in two dimensions with
initial inputs of field and plasma data from a single space-
craft as it passes through a coherent structure in space. At
least two components of directly measured electric fields
(the spacecraft spin-plane components) are required for the
reconstruction, to produce two-dimensional (2-D) field and
plasma maps of the cross section of the structure. For con-
venience, the resistivity tensorη is assumed diagonal in the
reconstruction coordinates, which allows its values to be es-
timated from Ohm’s law,E +v ×B = η ·j . In the present
paper, all three components of the electric field are used.
We benchmark our numerical code by use of an exact, axi-
symmetric solution of the resistive MHD equations and then
apply it to synthetic data from a 3-D, resistive, MHD numer-
ical simulation of reconnection in the geomagnetic tail, in
a phase of the event where time dependence and deviations
from 2-D are both weak. The resistivity used in the simu-
lation is time-independent and localized around the recon-
nection site in an ellipsoidal region. For the magnetic field,
plasma density, and pressure, we find very good agreement
between the reconstruction results and the simulation, but the
electric field and plasma velocity are not predicted with the
same high accuracy.

Keywords. Magnetospheric physics (Magnetopause, cusp,
and boundary layers) – Space plasma physics (Magnetic re-
connection; Numerical simulation studies)

Correspondence to:W.-L. Teh
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1 Introduction

Over the past few years, reconstruction of two-dimensional
(2-D), time-independent field and plasma structures from
data, taken by a single spacecraft as it passes through the
structures, has been frequently used for the analysis and in-
terpretation of space data. The pioneering reconstruction
method was developed for cases governed by the classical
Grad-Shafranov (GS) equation, in which the plasma flows
are assumed negligible (Sonnerup and Guo, 1996; Hau and
Sonnerup, 1999). GS reconstruction of this type has been
successfully applied in various studies, e.g., of magnetopause
structures (Hau and Sonnerup, 1999; Hu and Sonnerup,
2000, 2003; Hasegawa et al., 2004, 2005; Teh and Hau, 2004,
2007), including flux transfer events (FTEs) (Sonnerup et al.,
2004; Hasegawa et al., 2006; Lui et al., 2008), and also of
flux ropes in the geomagnetic tail (Hasegawa et al., 2007a)
and magnetic flux ropes and cloud structures in the solar
wind (Hu and Sonnerup, 2001, 2002). Sonnerup et al. (2006)
extended the GS reconstruction method to the case where
substantial field-aligned flow is present (see Teh et al., 2007),
and also to the case of streamline reconstruction in flow per-
pendicular to a unidirectional magnetic field (see Hasegawa
et al., 2007b; Eriksson et al., 2009).

Recently, Sonnerup and Teh (2008) showed that recon-
struction can be done directly from the steady, 2-D, ideal
MHD equations. In ideal MHD reconstruction, both mag-
netic field and velocity field maps can be generated, whereas
the GS-based reconstruction produces either a magnetic field
or a velocity field map. The ideal-MHD reconstruction ca-
pability has thus removed the severe restrictions imposed by
the GS equation. It has now been applied to reconnection
events at the magnetopause (Teh and Sonnerup, 2008) and in
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the solar wind (Teh et al., 2009), and also to FTEs associated
with Kelvin-Helmholtz waves at the dusk-side magnetopause
flank (Eriksson et al., 2009). For reconnection events, the
ideal-MHD reconstruction method has the advantage that it
can be performed in the X-line reference frame (Teh and
Sonnerup, 2008; Teh et al., 2009), whereas the earlier GS-
based reconstructions were performed in the deHoffmann-
Teller (HT) frame, in which the flows are field-aligned and
the X-line is in rapid motion.

In ideal-MHD reconstruction, the magnetic field is frozen
in the plasma, i.e.,E +v ×B = 0, and it is only numerical
effects that allow reconnection to occur. However, in real
reconnection events the frozen-in condition is for physical
reasons invalid in the ion and electron diffusion regions. The
mechanisms that break the frozen-in condition within these
regions are thought to be a combination of, or the separate ef-
fects of, resistivity, Hall physics, and electron pressure tensor
and inertia. In the present paper, only resistivity will be in-
cluded. For detailed studies of the ion diffusion region, Son-
nerup and Teh (2009) have developed a 2-D reconstruction
method for ideal and resistive Hall MHD. They derived an
exact axi-symmetric solution and benchmarked the numeri-
cal code for the case of ideal Hall MHD, with Ohm’s law
in the formE + v ×B = (1/ne)(j ×B +∇pe). For resis-
tive Hall MHD, the reconstruction algorithm also exists but,
for lack of a suitable axis-symmetric solution, has yet to be
benchmarked. From the reconstruction algorithm for resis-
tive Hall MHD, we can obtain the case of resistive MHD by
simply omitting the Hall current and electron pressure terms
so that Ohm’s law reduces toE+v×B = η ·j .

In the present paper, we present an exact axi-symmetric
solution for resistive MHD and use it to validate the numer-
ical code. We then apply resistive MHD reconstruction to a
synthetic reconnection event from a 3-D resistive MHD sim-
ulation, where the resistivity is spatially localized and time-
independent. The configuration to be reconstructed is only
weakly time dependent and the deviations from 2-D are also
weak (Denton et al., 2010).

The layout of the present paper is as follows. In Sect. 2
the basic equations for steady, 2-D, resistive MHD are
given. The reconstruction method itself is briefly described
in Sect. 3. In Sect. 4, an exact axi-symmetric solution for re-
sistive MHD is presented and used to benchmark the code. In
Sect. 5, the resistive code is applied to the simulated recon-
nection event. Section 6 contains a summary and discussion
of the reconstruction results.

2 Basic equations

The time-independent equations used for the resistive MHD
reconstruction are:

∇ ·ρv⊥ = 0, (1)

ρv⊥ ·∇v = −∇p+j ×B, (2)

p

γ −1
v⊥ ·∇ ln(p/ργ )= j ·η ·j , (3)

∇ ·B⊥ = 0, (4)

∇ ×E = 0, (5)

∇ ×B =µ0j , (6)

E+v×B = η ·j , (7)

where the subscript⊥ denotes vector components confined
to the x-y-plane (the reconstruction plane), i.e., the plane per-
pendicular to the invariant axiŝz, along which axis∂/∂z= 0,
so that∇ = x̂∂/∂x+ ŷ∂/∂y. The first three equations are
the conservation laws for mass, momentum, and entropy,
respectively. Equations (1) and (4) can be identically sat-
isfied by writingρv⊥ = ∇ψ × ẑ andB⊥ = ∇A× ẑ, where
ψ(x,y) andA(x,y) are the compressible stream function
and vector potential, respectively. Note that, in general, ax-
ial fields and flows are included, i.e.,B = B⊥ +Bz(x,y)ẑ

andv = v⊥ + vz(x,y)ẑ. The electric field is given byE =

−∇φ(x,y)+Ez0ẑ, which satisfies Eq. (5). HereEz0 is
the constant axial electric field andφ is the electric poten-
tial describing the field components in the reconstruction
plane. We assume the resistivity tensor to be diagonal in
the reconstruction coordinate system but allow for two dif-
ferent values of resistivity,η⊥ for currents in the reconstruc-
tion plane, andηz for those in the axial direction, so that
η ·j = η⊥j⊥ +ηzjzẑ. In our paper, this choice is made for
mathematical and computational convenience. In reality, the
resistivity tensor is likely to be organized to a considerable
extent by the complicated magnetic field near the reconnec-
tion site and, in this field, the invariant direction plays an
important role. Note that the two resistivitiesη⊥ and ηz
could be assumed as functions of the current densities|j⊥|

and |jz|, respectively. At the present stage, we assume that
they are spatially uniform in our studies. The current den-
sity can be written asj = (1/µ0)[∇Bz × ẑ− ẑ∇2A] so that
j ×B = −(1/µ0)[∇B

2
z/2+(∇2A)∇A+∇A×∇Bz].

Using the above expressions, Eqs. (2), (3), and (7) give the
following set:

ρ(vx∂/∂x+vy∂/∂y)[(1/ρ)∂ψ/∂y]

= −(∂/∂x)[p+B2
z/2µ0]+(By/µ0)∇

2A (8)

ρ(vx∂/∂x+vy∂/∂y)vy

= −(∂/∂y)[p+B2
z/2µ0]−(Bx/µ0)∇

2A, (9)

ρ(vx∂/∂x+vy∂/∂y)vz = (1/µ0)(Bx∂/∂x+By∂/∂y)Bz,(10)

Ex
′′
≡Ex +vyBz−vzBy =

η⊥

µ0
∂Bz/∂y, (11)

Ey
′′
≡Ey +vzBx −vxBz = −

η⊥

µ0
∂Bz/∂x, (12)
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Ez
′′
≡Ez0+vxBy −vyBx = −

ηz

µ0
∇

2A, (13)

pvx

γ −1

∂

∂x

(
ln
p

ργ

)
−

γpvy

(γ −1)ρ
∂ρ/∂y+

vy

γ −1
∂p/∂y

=
η⊥

µ2
0

[(
∂Bz

∂x

)2

+

(
∂Bz

∂y

)2
]

+
ηz

µ2
0

(∇2A)2 (14)

where∇
2A= ∂2A/∂x2

+ ∂2A/∂y2. Equations (8) to (14)
can be obtained from the equations in the paper of Sonnerup
and Teh (2009) by neglecting the electron pressure and Hall
current terms in the momentum equation and Ohm’s law. In
the next section, Eqs. (8) to (14) will be used as the basis for
the reconstruction code.

3 Reconstruction method

To perform the reconstruction, direct measurements of the
electric field are required. If only two components of the
electric field, usually those in the spacecraft spin-plane, are
measured, a specified resistivity model is then needed for the
reconstruction, as discussed in detail in Appendix B of Son-
nerup and Teh (2009), in which the Hall current and elec-
tron pressure terms are to be deleted for our present purposes.
In what follows, we apply the resistive MHD reconstruction
method under the assumption that all three electric field com-
ponents have been measured.

Before doing the reconstruction, the invariant axisẑ and
the moving frame velocity must be determined, which is a
nontrivial task. A single-spacecraft method, based on the
constancy of the axial electric field component,Ez0, in 2-D,
steady field configurations, exists (Sonnerup and Hasegawa,
2005) but does not work when the electric field is nearly uni-
directional. For further discussion, see the papers on ideal
MHD reconstruction (Sonnerup and Teh, 2008; Teh and Son-
nerup, 2008, 2009). Use of multi-spacecraft information is
often needed and will be employed here.

The vector potentialA(x,y = 0) and compressible stream
functionψ(x,y = 0) can be calculated by integration along
the x-axis, which is chosen as the projection of the spacecraft
path onto the reconstruction plane:

A(x,0)= −

x′
=x∫

x′=0

By(x
′,0)dx′, (15)

ψ(x,0)= −

x′
=x∫

x′=0

ρ(x′,0)vy(x
′,0)dx′. (16)

In our 2-D geometry, all physical quantities and their x-
derivatives are known at points on the x-axis (y = 0). Away

from y= 0, the valuesA(x,y) andψ(x,y) are calculated by
use of Taylor expansions to second order, i.e.,

A(x,y±1y) = A(x,y)±1y∂A(x,y)/∂y

+1/2(1y)2∂2A(x,y)/∂y2, (17)

ψ(x,y±1y) = ψ(x,y)±1y∂ψ(x,y)/∂y

+1/2(1y)2∂2ψ(x,y)/∂y2, (18)

where∂A/∂y=Bx and∂ψ/∂y= ρvx.
To determine the resistivity, we can use Eq. (12) to esti-

mate the value ofη⊥ and then assume thatηz = kη⊥, where
k is a chosen constant. (The special case whereη⊥ = 0 and
ηz 6= 0 is also doable but requires a somewhat different proce-
dure.) After the resistivity has been determined, the values of
y-derivatives (e.g.,∂Bz/∂y, ∂vz/∂y, etc.) can be estimated
in sequence as follows:

1. The values of∂Bz/∂y and∂2A/∂y2 are calculated from
Eqs. (11) and (13), respectively.

2. The value of∂vz/∂y is obtained by substituting the
value of∂Bz/∂y into Eq. (10).

3. The derivatives∂ρ/∂y and ∂p/∂y are calculated by
solving Eqs. (9) and (14) together, using the known
values of ∂Bz/∂y and ∂2A/∂y2, along with mass
conservation, which requires∂vy/∂y = −∂vx/∂x −

(1/ρ)(vx∂ρ/∂x+vy∂ρ/∂y).

4. The values of∂ρ/∂y and ∂2A/∂y2 can be substituted
into Eq. (8) to give∂2ψ/∂y2.

The calculation of the values of∂vz/∂y and ∂2ψ/∂y2 re-
quires that the velocity componentvy 6= 0. At locations
wherevy = 0, we can use nearby grid points and a spline
function to obtain the values of the derivatives by interpola-
tion.

With the known values of these y-derivatives, the quanti-
ties (ρ,p,vz,Bz) can be advanced at each step, e.g.,ρ(x,y±

1y)= ρ(x,y)±1y∂ρ/∂y. By use of Eq. (5), we find that
∂Ex/∂y = ∂Ey/∂x so that the new electric field compo-
nent along the x-axis becomesEx(x,y±1y)=Ex(x,y)±

1y∂Ey/∂x, where∂Ey/∂x is known at each step. The axial
electric field componentEz0 remains unchanged and, finally,
the new set of values ofEy(x,y±1y) are obtained by sub-
stituting the values ofvx,vz,Bx, andBz at y = y±1y into
Eq. (12).

4 Benchmark case

Our axi-symmetric (∂/∂ϕ= 0) exact solution for steady, 2-D
(∂/∂z= 0), resistive MHD is similar to the case presented
in Appendix A of Sonnerup and Teh (2009), except that the
Hall term and electron pressure are eliminated and the resis-
tivity is included. The exact solution depends only on the
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cylindrical radiusr. It is developed in a coordinate system
that rotates at a constant angular rateω around the invariant
axis ẑ, and slides at constant velocity−Ṽz0ẑ along that axis.
In the rotating frame, the momentum equation is expressed
as

ρv′
·∇v′

= −∇p+j ×B +2ρv′
×ω+ρrω2, (19)

where the prime denotes velocities evaluated in the frame
that is rotating and sliding along theẑ direction. Four exact
integrals can be obtained from the conservation of magnetic
flux, mass, angular momentum, andz-momentum:

B̃r = B̃r0/r̃, (20)

ṽ′
r = ṽr = ṽr0/r̃ρ̃, (21)

ṽ′
ϕ = κM−2

A0 B̃ϕ−�r̃+Cϕ/r̃, (22)

ṽ′
z = κM−2

A0 B̃z+Cz, (23)

where κ = B̃r0/ṽr0, � = ωr0/v0, MA0 = v0(µ0ρ0)
1/2/B0,

Cϕ = ṽ′

ϕ0−κM−2
A0 B̃ϕ0+�, andCz = ṽ′

z0−κM−2
A0 B̃z0. Note

that non-dimensional variables are denoted by a tilde; their
reference values are (r0,ρ0,p0,v0,B0), where v2

0 = v2
r0 +

v
′2
ϕ0+v

′2
z0 andB2

0 =B2
r0+B2

ϕ0+B2
z0. The radial components

of Eq. (19) and the entropy law are:

ṽ2
r0

r̃2ρ̃2

dρ̃

dr̃
−

1

γ
M−2
s0
dp̃

dr̃
=M−2

A0 B̃z
dB̃z

dr̃
+M−2

A0
B̃φ

r̃

dr̃B̃φ

dr̃

−
ρ̃

r̃

(
κM−2

A0 B̃φ+
Cφ

r̃

)2

−
ṽ2
r0

r̃3ρ̃
, (24)

−
1

(γ −1)
M−2
s0
p̃

ρ̃

dρ̃

dr̃
+

1

γ (γ −1)
M−2
s0
dp̃

dr̃

= ṽ−1
r0 M

−2
A0 ρ̃r̃(η̃⊥j̃

2
φ+ η̃zj̃

2
z ), (25)

whereMs0 = v0(ρ0/γp0)
1/2. Also, the resistivities and cur-

rent densities have been made non-dimensional using the
normalization constants,µ0v0r0 andB0/µ0r0, respectively.

In the rotating (primed) frame, the electric fieldE′ is as-
sumed to be purely radial. Also, the radial current density
jr must be equal to zero in our special geometry, in which
∂/∂φ = 0 and∂/∂z= 0. The angular and z-components of
the Ohm’s law equation can be written as:

ṽ′
zB̃r − ṽrB̃z = η̃⊥j̃ϕ = −η̃⊥

dB̃z

dr̃
, (26)

and

ṽrB̃ϕ− ṽ′
ϕB̃r = η̃zj̃z = η̃z

1

r̃

d(r̃B̃ϕ)

dr̃
. (27)

By substituting Eqs. (20)–(23) into Eqs. (26) and (27), we
can get

j̃φ = −
dB̃z

dr̃
=

1

η̃⊥

(
B̃r0

r̃
(κM−2

A0 B̃z+Cz)− ṽr0
1

r̃ ρ̃
B̃z

)
, (28)

 22 

 545 

 546 

Figure 1. Comparison of exact benchmark solution with reconstruction, for (a) 547 

10.0z� �� � �� � , and (b) 1.0,  0.5z� �� � �� � . The top panel shows the overlay of the exact 548 

magnetic field lines (black) and streamlines (white) with entropy /S p ���  in color, 549 

while the middle panel shows the corresponding reconstruction results. The error 550 

distribution for entropy S, expressed in percent of the average of | |S  over the 551 

reconstruction window, is shown in the bottom panel. The green line on the left in the first 552 

two panels of Figure 1b indicates the locations where vy= 0. 553 

Fig. 1. Comparison of exact benchmark solution with reconstruc-
tion, for (a) η̃⊥ = η̃z = 10.0, and(b) η̃⊥ = 1.0,η̃z = 0.5. The top
panel shows the overlay of the exact magnetic field lines (black)
and streamlines (white) with entropyS =p/ργ in color, while the
middle panel shows the corresponding reconstruction results. The
error distribution for entropyS, expressed in percent of the average
of |S| over the reconstruction window, is shown in the bottom panel.
The green line on the left in the first two panels of Fig. 1b indicates
the locations wherevy = 0.

j̃z =
1

r̃

dr̃B̃φ

dr̃
=

1

η̃z

(
ṽr0
B̃φ

r̃ ρ̃
− B̃r0

1

r̃

(
κM−2

A0 B̃φ−�r̃+
Cφ

r̃

))
.

(29)

With a specified resistivity, we can now solve Eqs. (24) and
(25) for dρ̃/dr̃ and dp̃/dr̃ by use of Eqs. (28) and (29).
The actual integration of the system is performed by a sim-
ple outward marching procedure, starting atr̃ = 1 where
the flow is taken to be field-aligned, i.e.,(ṽr0,ṽ

′

ϕ0,ṽ
′

z0) =

(B̃r0,B̃ϕ0,B̃z0). The quantities (̃ρ,p̃,B̃ϕ,B̃z, etc.) are then
advanced to first order so that, for example,ρ̃(r̃ +1r̃)=

ρ̃(r̃)+1r̃dρ̃/dr̃. The final step is to revert to the fixed frame
in which the velocity components alonĝϕ and ẑ are trans-
formed as

ṽϕ = ṽ′
ϕ+�r̃; ṽz = ṽ′

z+ Ṽz0. (30)

Ann. Geophys., 28, 2113–2125, 2010 www.ann-geophys.net/28/2113/2010/
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Also, the electric field components (normalized tov0B0)

change to:

Ẽr = Ẽ′
r −�r̃B̃z+ Ṽz0B̃ϕ;

Ẽϕ = −Ṽz0B̃r; Ẽz =�r̃B̃r =�B̃r0 = const.≡ Ẽz0. (31)

The overlay maps of magnetic field lines (black) and stream-
lines (white), with pseudo-entropyS = p/ργ in color, are
shown in the top panel of each of the two panel blocks
in Fig. 1, for the exact solution with (a)̃η⊥ = η̃z = 10.0
and (b) η̃⊥ = 1.0,η̃z = 0.5. The non-dimensional pa-
rameters used are:MA0 = 0.45, Ms0 = 0.40, � = 0.875,
(B̃2
r0,B̃

2
ϕ0,B̃

2
z0) = (ṽ

′2
r0,ṽ

′2
ϕ0,ṽ

′2
z0) = (0.50,0.15,0.35), Ṽz0 =

1.0, andγ = 5/3. Note that the constant axial electric field
Ẽz0 is 0.62 for both cases. The data taken from the exact so-
lution along the liney = 0 are used as initial values for the
reconstruction, the results of which are shown in the mid-
dle panel of each panel block. Error distribution maps are in
the third panel of each block. Within the reconstruction do-
main, the errors are less than 1.0% for all quantities, includ-
ing those not shown in the paper. For the case in panel (b) of
Fig. 1, the green line shown in the first two panels indicates
locations wherevy = 0. The results indicate that the interpo-
lation is doing well at locations fairly close to the liney = 0
(the spacecraft path), but that the errors start to grow when
the integration is extended to locations further away. The
overall results show that the reconstruction method is able
to recover the field and plasma configurations accurately for
a relatively narrow domain, elongated along the liney = 0.
We have also performed experiments for various numerical
parameters, namely, doubling the grid resolution and extend-
ing the domain to 50% larger|y| value. The results for the
errors are summarized in Table 1.

From the benchmarking exercises described above, we
conclude that the numerical code functions properly and
gives accurate results in an elongated region surrounding the
data line aty = 0, provided the base assumptions of the re-
construction, namely that the object reconstructed is 2-D and
time independent, are precisely satisfied.

5 Case study: simulated magnetotail reconnection
event

We now apply the resistive MHD reconstruction code to a
synthetic reconnection event in the geomagnetic tail, ob-
tained from a 3-D, resistive MHD simulation (e.g., Birn et
al., 2009). In the simulation model, the resistivity, assumed
isotropic, is given by

η= η0/coshs, (32)

where s = [((x′
− x0)/Lx)

2
+ (y′/Ly)

2
+ (z′/Lz)

2
]
1/2 and

η0,z0,Lx,Ly, andLz are non-dimensional constants. The
reference values used for the simulation areL0 = 1000 km,

 23 

 554 

Figure 2. Plot of magnetic field lines (black) and streamlines (white) in the x z� ��  plane 555 

of the simulation, with the extremely weak, normalized (in units of 20 nT) field yB �  in 556 

that plane shown in color. Also shown are six simulated spacecraft paths through the 557 

vicinity of the reconnection site. The spacecraft paths are in reality inclined by 19.5° to the 558 

x z� ��  plane. The simulated spacecraft 1 - 4 form a tetrahedron configuration while the 559 

spacecraft 5 and 6 are used as auxiliaries for verification of the reconstruction results. The 560 

region to be reconstructed is within the black box. In the simulation, the y�  axis is the 561 

axis of approximate invariance. 562 

Fig. 2. Plot of magnetic field lines (black) and streamlines (white)
in thex′

−z′ plane of the simulation, with the extremely weak, nor-
malized (in units of 20 nT) fieldBy′ in that plane shown in color.
Also shown are six simulated spacecraft paths through the vicinity
of the reconnection site. The spacecraft paths are in reality inclined
by 19.5◦ to thex′

−z′ plane. The simulated spacecraft 1–4 form a
tetrahedron configuration while the spacecraft 5 and 6 are used as
auxiliaries for verification of the reconstruction results. The region
to be reconstructed is within the black box. In the simulation, the
y′-axis is the axis of approximate invariance.

W0 = 1000 km s−1, andB0 = 20 nT, for the length, the ve-
locity, and the magnetic field, respectively, and the resistiv-
ity is normalized byµ0W0L0. In the expression fors, the
x′ andy′ axes are directed tailward and duskward, respec-
tively, andz′ = x′

×y′. We see that the resistivity is spatially
localized and time-independent. Figure 2 shows the mag-
netic field line and streamline configurations in thex′

− z′

plane, with the axial fieldBy′ in color, from the simulation,
along with six simulated spacecraft paths through the vicin-
ity of the reconnection site. The axial field is seen to be ex-
tremely weak. Field lines and streamlines were obtained by
direct integration, using the simulated field and flow compo-
nents in the plane. In the simulation, the valuesη0 = 0.05,
x0 = 8, Lx = 4, Ly = 8, andLz = 1 were used. The simu-
lated spacecraft 1–4 form a tetrahedron configuration, while
the spacecraft 5 and 6 are used as auxiliaries for verifica-
tion of the reconstruction results. Figure 3 shows the mag-
netic field, electric field, and plasma data for all six simu-
lated spacecraft; the reconstruction interval is sandwiched
between the two gray vertical lines. Note that the simula-
tion data were all taken at a single instant and therefore com-
prise snapshot information about the structure. The coordi-
nate system used in Fig. 3 was intentionally rotated by one
of us (J. B.) in a way that was unknown to the other authors
who analyzed the results, and the rotated data was used in
the reconstruction. The purpose of this blind test was to see
if the orientation of the invariant direction, as well as any
motion of the X-line, could be independently deduced from
the spacecraft data. In the rotated coordinates, the positions
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Table 1. Reconstruction errorsa.

Resistive MHD
(MA0 = 0.45,Ms0 = 0.40,�= 0.875,Ṽz0= 1.0, γ = 5/3,

η̃⊥ = η̃z = 10.0)

Grid (nx/ny) Grid (nx/ny) Grid (nx/ny)

51/101, 101/201, 101/301,
Window (2ly/lx) Window (2ly/lx) Window (2ly/lx)

0.20b 0.20c 0.30d

ErrorA (%) 0.014 0.005 0.010
Errorψ (%) 0.030 0.011 0.019
ErrorBz (%) 0.001 0.000 0.000
Errorvz (%) 0.002 0.001 0.002
ErrorS (%) 0.013 0.012 0.057
ErrorEx (%) 0.156 0.059 0.105
ErrorEy (%) 0.701 0.257 0.527

a Average, in domain−lx/2≤ x ≤ lx/2, of error magnitudes aty= ±ymax≡ ±ly expressed in percent of average magnitude of corresponding
quantity (e.g.,Bz) over the window. For the test case,(B̃2

r0,B̃
2
ϕ0,B̃

2
z0)= (ṽ

2
r0,ṽ

2
ϕ0,ṽ

2
z0)= (0.5,0.15,0.35).

b Benchmark case shown in Fig. 1a.
c Grid resolution inx andy increased by factor 2.
d The larger grid resolution andly increased by 50%.
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Figure 3. Plots of the magnetic field, electric field, and plasma data for all six simulated 564 

spacecraft. The color used for spacecraft 1 to 6 are black, red, green, blue, cyan, and 565 

magenta, respectively. In the rotated coordinates (see text for details), the positions for the 566 

spacecraft 1-6 at 0t �  are: [0,  0,  0] , [ ,  0,  0]a , 31
2 4[ ,  ,  0]a a , 1 1 2

2 12 3[ ,  ,  ]a a a , 567 

3
2[ ,  ,  0]a a , and 3 3

2 2[ ,  ,  0]a a , respectively, where 100 kma � . The reconstruction time 568 

interval is enclosed by the two vertical lines. 569 

Fig. 3. Plots of the magnetic field, electric field, and plasma data for all six simulated spacecraft. The color used for spacecraft 1 to 6 are
black, red, green, blue, cyan, and magenta, respectively. In the rotated coordinates (see text for details), the positions for the spacecraft 1–6
at t = 0 are: [0,0,0], [a,0,0], [1/2a,

√
3/4a,0], [1/2a,

√
1/12a,

√
2/3a], [3/2a,a,0], and [3/2a,3/2a,0], respectively, wherea = 100 km. The

reconstruction time interval is enclosed by the two vertical lines.
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 570 

Figure 4. (a) Plot of the measured axial electric field in the reconstruction interval, 571 

evaluated in the moving frame and based on the data from spacecraft 3. (b) Plot of the 572 

dimensionless resistivity ��  in the reconstruction interval used in the simulation (squares) 573 

and recovered from the reconstruction (circles). 574 

Fig. 4. (a) Plot of the measured axial electric field in the recon-
struction interval, evaluated in the moving frame and based on the
data from spacecraft 3.(b) Plot of the dimensionless resistivityη⊥
in the reconstruction interval used in the simulation (squares) and
recovered from the reconstruction (circles).

of the spacecraft 1–6 at some chosen timet = 0 are:[0,0,0],
[a,0,0], [1/2a,

√
3/4a,0], [1/2a,

√
1/12a,

√
2/3a], [3/2a,a,0], and

[3/2a,3/2a,0], respectively, wherea = 100 km. We see that
at t=0, all spacecraft, except spacecraft 4, are in thez= 0
plane of the rotated system. We also know that the space-
craft paths are all parallel but initially we do not know their
orientation relative to the rotated coordinate axes. As de-
scribed in detail in a separate paper (Denton et al., 2010),
the multi-spacecraft method developed by Shi et al. (2005,
2006), which is based on the gradient of the magnetic
field, was used to estimate the orientation of the invari-
ant axis and the spacecraft motion through the field con-
figuration. In the unknown, rotated coordinates, Denton et
al. (private communication, 2010) derived the invariant axis
ẑ= [−0.5579,−0.0771,0.8263] and the frame velocityV0 =

[−16.2,10.0,−3.5] km s−1, which are then used for the re-
construction. Those values agree well with the actual values
in the simulation, namelŷzs = [0.5591,0.0560,−0.8272]
andV0s = [−16.9,10.3,−2.7] km s−1. The frame velocity
V0s has a finite component alonĝzs , because the spacecraft
paths are inclined by 70.5◦ to theẑs axis. By using the recov-
ered axis and velocity instead of the exact values, this angle
comes out as 73.9◦. Since this is a 3-D simulation model, the
invariant axis is defined as the direction along which∂B/∂z
is minimized, which is they′-axis in the simulation coordi-
nates. Note that the results above are based on data from the
tetrahedron spacecraft configuration (1–4). The method of
Sonnerup and Hasegawa (2005) did not work for this event,
because the axial component of the electric field, which is
much larger than the components in the reconstruction plane,
is in fact not precisely constant, while the in-plane compo-
nents are small as a consequence of the small axial magnetic
field and flow in the simulation and therefore have only small
variations.
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 575 

Figure 5. (a) Plot of magnetic field lines in the reconstruction (x-y) plane, with the axial 576 

field zB  in color. The map is obtained by projection of the simulation results, evaluated 577 

in the x z� ��  plane, onto the x-y plane. The reversal of zB  across the layer, which is not 578 

present in Figure 2, occurs because the z-axis used in the reconstruction does not coincide 579 

exactly with the y�  axis in Figure 2 (they form an angle of 1.3°). (b) Resistive MHD 580 

reconstruction map of the magnetic field lines (black solid lines) with axial field zB  in 581 

color, based on data measured by spacecraft 3 at points along its path. The horizontal 582 

dashed lines are the spacecraft paths, projected onto the reconstruction plane, relative to 583 

which they are tilted by 16.1°. Some of the color differences between the maps in parts (a) 584 

and (b) are caused by this tilt in combination with the weakly 3D nature of the simulation. 585 

Spacecraft 1-4 form a tetrahedron configuration while spacecraft 5 and 6 are used as 586 

auxiliaries for verification of the reconstruction results. 587 

Fig. 5. (a) Plot of magnetic field lines in the reconstruction (x-y)
plane, with the axial fieldBz in color. The map is obtained by pro-
jection of the simulation results, evaluated in thex′

−z′-plane, onto
the x-y-plane. The reversal ofBz across the layer, which is not
present in Fig. 2, occurs because the z-axis used in the reconstruc-
tion does not coincide exactly with the y′-axis in Fig. 2 (they form
an angle of 1.3◦). (b) Resistive MHD reconstruction map of the
magnetic field lines (black solid lines) with axial fieldBz in color,
based on data measured by spacecraft 3 at points along its path.
The horizontal dashed lines are the spacecraft paths, projected onto
the reconstruction plane, relative to which they are tilted by 16.1◦.
Some of the color differences between the maps in panels (a) and
(b) are caused by this tilt in combination with the weakly 3-D nature
of the simulation. Spacecraft 1-4 form a tetrahedron configuration
while spacecraft 5 and 6 are used as auxiliaries for verification of
the reconstruction results.

All of the following reconstruction results are based on
analysis of the data from the simulated spacecraft 3. In the
reconstruction (as opposed to in the simulation itself), the
reference valuesb0, n0, v0, and l0 for the magnetic field,
the density, the velocity, and the length are, respectively, the
maximum value of the magnetic field strength, the maximum
value of the density, the Alfv́en speed based on theb0 andn0
values, and the ratio of the maximum value of the vector po-
tentialA and the reference fieldb0.

Figure 4a shows the measured axial(ẑ) electric field in the
reconstruction interval, evaluated in the frame moving with
velocityV0. One sees that the axial electric field is in fact not
precisely constant in the simulation data but varies by about
10%. As a result, the minimum variance direction of the elec-
tric field (Sonnerup and Hasegawa, 2005) is not a useful pre-
dictor of the invariant axis. The non-constancy of the axial
electric field indicates the presence of time-dependent and 3-
D effects. In the reconstruction,Ez0= 1.353 mV m−1 will be
used, which is the average value. We use Eq. (12) to estimate
the dimensionless values ofη⊥ (normalized byµ0v0l0) along
the path of spacecraft 3 through the structure. Figure 4b

www.ann-geophys.net/28/2113/2010/ Ann. Geophys., 28, 2113–2125, 2010



2120 W.-L. Teh et al.: Resistive MHD reconstruction of 2-D coherent structures in space

 27 

 588 

 589 

Figure 6. Snapshot plots of the predicted magnetic fields (red dashed lines) from the 590 

reconstruction map based on spacecraft 3 and the corresponding fields (black lines) taken 591 

by the other spacecraft directly from the simulation. 592 

 593 

Fig. 6. Snapshot plots of the predicted magnetic fields (red dashed lines) from the reconstruction map based on spacecraft 3 and the
corresponding fields (black lines) taken by the other spacecraft directly from the simulation.

shows a plot of dimensionlessη⊥ values in the reconstruction
interval, used in the simulation (squares) and recovered from
the reconstruction (circles). The agreement between the cal-
culated and the actual values is much better for timest > 0
than that fort < 0, but overall, the agreement is not good.
This problem arises because the axial magnetic field is very
small in our simulation model so that the factor∂Bz/∂x that
multipliesη⊥ in Eq. (12) is also small. By converting time to
distance, using the moving frame velocityV0, one finds that
the resistivityη⊥does have a spatial variation with distance
along the spacecraft path, even though the variation differs
significantly from that in the simulation setup. In the recon-
struction, a constant non-dimensional resistivityη⊥ = 0.05
will be used, which is the maximum calculated value ofη⊥;
we also assume thatηz = η⊥. This choice of the values of
η⊥ andηz will give the best correlation coefficient between
the predictions from the reconstruction map and the measure-
ments from the other five simulated spacecraft (which are not
otherwise used in the reconstruction). The resistivity value
η⊥ = 0.05 used for the reconstruction is close to the value at
the location of the magnetic X-point at (x′

' 9,y′
= 0,z′ = 0)

in Fig. 2, which is about 0.97η0 = 0.0485.

Figure 5a shows the field line map from the simulation
data, taken in thex′

− z′ plane (y′=0), i.e., the field lines
in Fig. 2, and then projected onto the reconstruction coor-

dinates. TheBz values in color are the projections of the 3-D
magnetic field vectors (at points in thex′

− z′ plane) onto
the invariant (z-) axis. Although there is only a small an-
gle of 1.3◦ between they′-axis of the simulation and thez
axis of the reconstruction, this angle causes the pronounced
anti-symmetric behavior ofBz. Figure 5b shows the recon-
structed map of magnetic field lines (black solid lines), us-
ing data from the simulated spacecraft 3, again with the ax-
ial field Bz in color. The horizontal dashed lines denote
the spacecraft trajectories (as deduced from the data), pro-
jected onto the reconstruction plane. Thex and y recon-
struction axes are:̂x = [0.7100,−0.5600,0.4270] and ŷ =

[0.4300,0.8249,0.3670], in the rotated coordinate system.
By comparing the reconstructed map with the simulation, we
see that the X-point position is well predicted by the resis-
tive MHD reconstruction. Figures 6, 7, 8, and 9 show plots
of the predicted values from the reconstruction map based on
spacecraft 3 (red dashed line) and those actually measured by
the other 5 spacecraft (black line), for the magnetic field, the
plasma velocity, the electric field, and the plasma density and
pressure, respectively. There is excellent agreement of mag-
netic field and plasma pressure between the reconstruction
and the simulation results themselves, with correlation coef-
ficientscc= 0.999 andcc= 0.996, respectively. The plasma
density and the electric field components (onlyEx andEy)
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 595 

Figure 7. Snapshot plots of the predicted plasma velocities (red dashed lines) from the 596 

reconstruction map based on spacecraft 3 and the corresponding velocities (black lines) 597 

taken by the other spacecraft directly from the simulation. 598 

 599 

Fig. 7. Snapshot plots of the predicted plasma velocities (red dashed lines) from the reconstruction map based on spacecraft 3 and the
corresponding velocities (black lines) taken by the other spacecraft directly from the simulation.

are less well predicted, withcc= 0.961 andcc= 0.927, re-
spectively. The plasma velocity is rather poorly predicted,
with cc= 0.804. For spacecraft 4, which is closest to space-
craft 3, the plasma velocity is predicted withcc= 0.904, in-
dicating that the velocity field can be fairly accurately re-
constructed, but only within a very narrow region surround-
ing the path of spacecraft that provides the source data for
the reconstruction. To reach these results, we have slightly
changed the plasma velocities aty= 0 so as to obtain a con-
stant axial electric field of 1.353 mV m−1. This step turns out
to improve not only the velocity prediction (fromcc= 0.284
to cc= 0.804) but also the other predictions, in particular
for density (fromcc= 0.914 tocc= 0.961) and electric field
(from cc= 0.747 tocc= 0.927). The corrections to the veloc-
ity at y= 0 are made by maintaining the velocity component
parallel to the field but modifying the one perpendicular to
the field so as to produce a constant axial electric field, ex-
cept as noted in the discussion section. In addition, we exper-
imented with different frame velocities for the reconstruction
but did not achieve any further improvement of the velocity
prediction.

6 Summary and discussion

We have extracted the steady, 2-D resistive MHD reconstruc-
tion theory from the more general theory for resistive Hall
MHD (Sonnerup and Teh, 2009), by simply neglecting the
Hall term and the electron pressure in Ohm’s law and mo-
mentum equation. The resistive MHD reconstruction algo-
rithm then becomes very simple compared to that needed for
resistive Hall MHD. Resistive MHD reconstruction is dif-
ferent from reconstructions based on ideal equations in one
important respect: In the presence of resistivity, entropy is
no longer conserved along streamlines so that data fitting to
produce a curve of entropyS versus stream functionψ is not
a part of the integration scheme.

At least two components of the measured electric field,
usually those in the spacecraft spin plane, are required for re-
sistive MHD reconstruction to be possible and then only by
use of a specified resistivity model. When all three compo-
nents of the electric field are measured, we show that the val-
ues ofη⊥ at points on the spacecraft trajectory can be calcu-
lated by use of the y-component of Ohm’s law,E+v×B =

η ·j . For simplicity, the resistivity tensor is diagonal and has
ηz = kη⊥, wherek is a constant (in our application chosen to
bek= 1). We have developed an exact axi-symmetric solu-
tion of the steady, 2-D resistive MHD and used it for valida-
tion of the resistive MHD reconstruction code. As illustrated
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 601 

Figure 8. Snapshot plots of the predicted electric fields (red dashed lines) from the 602 

reconstruction map based on spacecraft 3 and the corresponding fields (black lines) taken 603 

by the other spacecraft directly from the simulation. 604 

 605 

Fig. 8. Snapshot plots of the predicted electric fields (red dashed lines) from the reconstruction map based on spacecraft 3 and the corre-
sponding fields (black lines) taken by the other spacecraft directly from the simulation.

in Fig. 1 and indicated in Table 1, the results show that the
field and plasma configurations are accurately reconstructed
in an elongated region surrounding the data line aty= 0, pro-
vided the base assumptions of 2-D and time independence
are precisely satisfied.

We have then applied the resistive MHD reconstruction to
a synthetic reconnection event from a 3-D resistive MHD nu-
merical simulation, in which the resistivity is spatially local-
ized and time independent. Six synthetic spacecraft cross the
structure in different places, providing snapshot information.
Data from one of the spacecraft is used for the reconstruction
and a comparison is then made between the observations by
the other five spacecraft and the predictions from the recon-
structed field and plasma maps. This was a blind test in the
sense that one of us (W. L. T.) did not know the orientation
of the rotated coordinate system until after the reconstruction
was done. Good agreement is obtained for magnetic field,
plasma pressure, and density, with correlation coefficients of
0.999, 0.996, and 0.961, respectively. However, the elec-

tric field and plasma velocity are not predicted with the same
high accuracy, the worst prediction being that of the velocity.
To improve the velocity prediction, we tried three different
schemes: (1) using different frame velocities; (2) modifying
the input plasma velocities aty = 0 to produce a constant
axial electric field of 1.353 mV m−1; (3) using the exact in-
variant axis and frame velocity. Only the second method re-
sulted in significant improvements of the velocity prediction
(reachingcc= 0.804). To avoid making the large corrections
of the velocity that would be required where the field magni-
tude is small, the velocity correction is only made where the
magnetic field magnitude is greater than some critical value
Bc. The valueBc = 2 nT was chosen because it gave the best
correlation coefficient for the velocity components.

Possible explanations for the lower quality of the pre-
dictions for the electric field, plasma velocity and density
are: (1) weak time-dependence is present, as illustrated in
the measured axial electric fieldEz0 (Fig. 4a), which is not
precisely constant as it should be in a time-stationary 2-D
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Figure 9. Snapshot plots of the predicted plasma density N and pressure p (red dashed 608 

lines) from the reconstruction map based on spacecraft 3 and the corresponding values 609 

(black lines) taken by the other spacecraft directly from the simulation. 610 

 611 

Fig. 9. Snapshot plots of the predicted plasma densityN and pressurep (red dashed lines) from the reconstruction map based on spacecraft 3
and the corresponding values (black lines) taken by the other spacecraft directly from the simulation.

structure; (2) the 2-D assumption is also violated to a small
extent in the simulation; (3) the resistivity is assumed to be
constant everywhere in the reconstruction plane whereas, in
the simulation, it has a spatial variation. The combination of
these effects could have a significant influence on the behav-
ior of the predicted electric field, plasma velocity, and den-
sity. The integration of the vector potentialA is performed
by use of Eq. (17), in which the value of∂2A/∂y2 is calcu-
lated from Eq. (13). Equation (13) is only weakly coupled to
the plasma density and the electric field, which is a possible
reason why the magnetic field is obtained with such high ac-
curacy compared to the other quantities. The reason why the
plasma pressure is extremely well predicted, but the velocity
is not, cannot be readily seen from the equations.

Figure 10 shows the spacecraft-3 based reconstruction
map of the magnetic field, resulting from the use of ideal
MHD (Sonnerup and Teh, 2008) instead of resistive MHD.
Comparison of the maps in Figs. 5b and 10 indicates that
the resistive MHD reconstruction, withcc= 0.999, is doing

 31 
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 613 

Figure 10. Ideal MHD reconstruction map of the magnetic field lines (black solid lines) 614 

with axial field zB  in color, based on spacecraft 3. The format is the same as in Figure 5. 615 
Fig. 10. Ideal MHD reconstruction map of the magnetic field lines
(black solid lines) with axial fieldBz in color, based on spacecraft 3.
The format is the same as in Fig. 5.

slightly better than the ideal MHD reconstruction, for which
cc= 0.998. In particular, it is noted that the magnetic X-point
can be successfully recovered in the resistive MHD recon-
struction while, in ideal MHD reconstruction, it has moved
outside the window of view. Therefore the ability we have
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developed in this paper to do resistive MHD reconstruction
is of great potential importance for studies of reconnection
configurations that include, or are near, the reconnection site
itself. However, it must be kept in mind that 2-D reconstruc-
tions cannot properly describe 3-D topological features of the
field lines.

Although the base assumptions of 2-D and time stationar-
ity for resistive MHD reconstruction are not exactly valid in
our simulation model, the reconstruction experiment we have
reported on here is a worthwhile first test, showing the via-
bility of the new method. In future studies, the use of various
2-D and 3-D numerical simulation models will be desirable
for further diagnosis of the strengths and weaknesses of the
method and the conditions under which it gives accurate re-
sults. We conclude that resistive reconstruction can become
a valuable new tool for the interpretation of space data.
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