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ISOSPECTRAL DEFORMATIONS
OF CLOSED RIEMANNIAN MANIFOLDS

WITH DIFFERENT SCALAR CURVATURE

by C.S. GORDON, R. GORNET, D. SCHUETH,
D.L. WEBB & E.N. WILSON (*)

To the memory of Hubert Pesce (1966-1997),
a gifted colleague and deeply missed friend.

Introduction.

To what extent does the eigenvalue spectrum of a compact Rieman-
nian manifold determine the geometry of the manifold? Various global geo-
metric invariants, such as dimension, volume, and total scalar curvature,
are known to be spectrally determined. Moreover, various manifolds such
as round spheres of dimension less than or equal to six and 2-dimensional
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flat tori are uniquely determined by their spectra. However, we show:

MAIN THEOREM. — For n >_ 4, there exist continuous d-parameter
families {^} of isospectral, non-isometric Riemannian metrics on the
manifold S71 x T, where T is the 2-dimensional torus and 571 is the n-
dimensional sphere. Here d is of order at least 0(n2). These metrics are non-
homogeneous. For some of the deformations, the maximum scalar curvature
of gt depends non-trivially on t.

The metrics can be chosen arbitrarily close to the standard metric,
i.e., to the product of the flat metric on the torus and the round metric on
the sphere.

The first example of isospectral Riemannian manifolds was a pair
of sixteen dimensional flat tori [M]. The past dozen years have seen an
explosion of new examples. See, for example, [BT], [Bu], [GWW], [GW1],
[GW2], [Gtl], [Gt2], [I], [Sch], [Su], [V]. However, until recently, all known
isospectral manifolds were at least locally isometric; in particular, all
isospectral closed manifolds had a common Riemannian cover. This was
due primarily to the fact that most examples could be explained by
Sunada's method [Su] or its generalizations [DG2]. The Sunada methods
rely almost exclusively on representation theory, with the result that
isospectral manifolds constructed using these methods must be locally
isometric. See the expository articles [Be], [Br], [D], [Gl], or [GGt] for
more information about isospectral manifolds in general.

Then Szabo [Sz] constructed pairs of isospectral compact manifolds
with boundary that are not locally isometric, and Gordon and Wilson
[GW3] generalized his construction to obtain continuous families of such
manifolds. Finite families of closed isospectral manifolds with different local
geometry were given in [G2], [G3] and [GW3].

The examples described in the Main Theorem above have several new
features:

• They give the first examples of continuous isospectral deforma-
tions of closed manifolds for which the metrics are not locally isometric.

• They are the first examples of isospectral manifolds with different
scalar curvature.

The isospectral manifolds in the Main Theorem are the boundaries
of the isospectral manifolds constructed in [GW3].

After completing a draft of this paper, the authors learned that
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Z. Szabo has independently shown that the boundaries of the manifolds
he constructed in [Sz] are isospectral. Like the isospectral deformations
considered here, the pairs of isospectral metrics that he constructed are
not locally homogeneous nor locally isometric, although they do have the
same maximum and minimum scalar curvature. Szabo, moreover, explicitly
computed the spectrum of these isospectral metrics. This work is included
in a revised version of the article [Sz].

Construction of isospectral metrics.

The isospectral manifolds constructed in [GW3] are domains in
certain two-step nilpotent Lie groups. They may be described as follows.

NOTATION 1. — Let 3 = R^ and t) = R771 with their standard inner
products, and let j : 3 —> so(u) be a linear map. Let Q be the orthogonal
direct sum Q = t) 03. Define a Lie bracket on Q by declaring 5 to be central
and defining [ , ] : t) x t) —> 3 by

{[x,y},z} = {j{z)x,y)

for all x and y in t) and z in 3. This bracket gives Q the structure of a two-
step nilpotent Lie algebra, and all two-step nilpotent Lie algebras may be
constructed by this method. We denote Q with this structure by Q(j). An
element x € t) is central if and only ifj(z)x = 0 for all z e 3. Without loss
of generality, we assume t) intersects the center trivially; i.e. , 3 coincides
with the center of^(j'). (Note that Q(j) may still have an abelian factor, as
we are not assuming that j is non-singular.) Let G{j) denote the simply-
connected Lie group with Lie algebra s(j). The Lie group exponential map
exp : 0(j) —^ G(j) is a diffeomorphism. Moreover, the center of G{j) is
isomorphic to R^ and expj. is a linear isomorphism from 3 to the center of
GO).

With respect to the global coordinate system G(j) —> t) 0 3 defined
by exp(x -4- z) I—)- (x, z) for a* € t) and z € 3, the Lie group multiplication is
given by

(x,z)'(xf,z/)= (^+^+z'+^,a/]).

The inner product on Q(j) defines a left-invariant metric on G(j), i.e.,
a metric for which the left translations by group elements are isometrics.
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Let C be a lattice of full rank in 3. Identify C with exp(/^), a discrete
central subgroup ofG(j). The quotient G(j) = G(j)/C is again a two-step
nilpotent Lie group, and it inherits a Riemannian metric from its covering
G(j). Its center is isomorphic to the k-dimensional torus ^ / C , and G(j) is
diffeomorphic to t) x ( ^ / ' C). Let B be the closed unit ball in t) and S its
(m — 1) -dimensional boundary sphere. Set

M{j) = {{x, z) 6 G{j) : x € B and z C z / C }

and
N(j) = {(^ z) € G{j) : x C S and z C z / C } .

The manifolds M(j) were studied extensively in [GW3]. The M(j)
are manifolds with boundary that are locally homogeneous; their local
geometry is that of the Lie group G(j). We study their boundaries N(j)
here. Note that N(j) is diffeomorphic to 5'71 x Tk where T^ is a torus of
dimension k = dim (5) and where n = m — 1.

PROPOSITION 2. — The map TTJ : N(j) -^ S given by (x, z} —> x is
a Riemannian submersion with respect to the canonical round metric on S
associated with the inner product on t). The fibers are totally geodesic flat
tori that are orbits of a flat toral group T(j) ^ 3//3 of isometrics acting
freely on N(j).

Proof. — The analogous statement for the nilmanifold G(j) is well-
known; i.e., the map G(j) —> t) given by ( x ^ z ) i—^ x is a Riemannian
submersion with respect to the Euclidean metric on t), and the fibers
are totally geodesic flat tori. The fibers are orbits of the toral group of
isometries given by translations by the elements (0,^), z € 3//^. The
manifold N(j) C G(j) is the restriction of the torus bundle G(j) over
B to the subspace S C B, and the statement follows. D

DEFINITION 3. — Let 0, 3 and C be as above.

(i) A pair j, j ' of linear maps from 3 to so(t)) is called /^-equivalent
if there exist orthogonal linear operators A on t) and C on 3 such that
C(C) = C and

AjW^j^W)

for all z C 3. We call the pair (A, C) an /^-equivalence between j and j ' .

(ii) We say j is isospectral to f', denoted j ~ j f , if for each z € 3,
the eigenvalue spectra (with multiplicities) of j(z) and j\z) coincide, i.e.,
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there exists an orthogonal linear operator Az for which

A,j(z)A^=j\z).

Remark 4. — We address the question of when N(j) is isometric to
A^) later in the paper. For now, we note the following facts about G(j)
and G{j'):

(i) Given orthogonal transformations A of t) and C of 3 such that
C{£) = C, one easily checks that the following statements are equivalent:

(a) The pair (A, (7) is an /^-equivalence between j and j ' .

(b) The map ^(j) -> Q(f) given by x + z ̂  A(x) + C(z) for x <E t)
and z G 3 is a Lie algebra isomorphism.

__ (c) Viewing C as an automorphism of the torus ^ / C , the map r :
G(j) -^ G{j') given by r(x,z) = (A(rr), C(z)) is both a Lie group
isomorphism and an isometry.

(ii) By [W], any isometry between G(j) and G(j'} is of the form
L{x,z) ° T where r : G(j) —> G(j') is both a Lie group isomorphism and
an isometry (and thus arises from an /^-equivalence between j an'd j ' ) and
L{x^ '' G^'} -^ G^j') is left translation by the element (x, z) of ~G(j7). In
particular, G(j) is isometric to G(j') if and only i f j and jf are ^-equivalent.

(iii) If j is /^-equivalent to jf\ then the isometry r : G(j) -^ G(j')
defined in (i)(c) restricts to an isometry from N(j) to A^(j').

THEOREM 5. — Fix inner product spaces u and 3 and a lattice C of
full rank in 5, and let j , j ' : 3 -» so(t?) be linear maps. Ifj ~ j'\ then N(j)
is isospectral to N^j^).

Proof. — The analogous statement for M(j) and M(j') is proved in
[GW3]. The proof that N(j) and N(f) are isospectral is similar, so we
just give the main ideas here. First note that if 3 is one-dimensional and if
j ~ j ' , then j is /^-equivalent to j ' ' , with C in Definition 3 being the identity
map. By Remark 4, the manifolds are isometric, hence trivially isospectral.

Now consider the general case. By Proposition 2, the central torus
TU) ^ 3/^ acts on N(j) by isometries, and the manifold N(j) has
the structure of a torus bundle over the round sphere S. Moreover, the
projection N{j) -^ S is a Riemannian submersion with totally geodesic
fibers. If tD is a codimension-one subspace of 3 spanned by lattice vectors
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in £, then tu covers a codimension-one subtorus H of T(j). Let Nn(j)
denote the quotient of N(j) by the isometry action of this torus. With
the induced metric on A^y(j'), the projection N(j) —^ NnU) ls again a
Riemannian submersion with totally geodesic fibers.

Now Nn(j) is defined in the same way as ^V(j), but with 3 replaced
by tu-1- == 3 e tD, the orthogonal complement of tD in 3, and j replaced by
Jj tu jL . Since j\^± ~ j 1 _ L and since to-1" is one-dimensional, the first part of
the proof shows that Nfi(j) is isometric to A^(j').

Functions on Nn(j) pull back to functions on N(j). Since the pro-
jection is a Riemannian submersion with totally geodesic fibers, a classical
theorem says that eigenfunctions on Nn(j) pull back to eigenfunctions on
N{j) with the same eigenvalue. Thus the spectrum of Nn{j) is part of
the spectrum of A^(j). By a Fourier decomposition argument involving the
action of the torus T(j), one shows that the spectra of the various NnU)
exhaust the spectrum of N(j). We can then use the isospectrality of the
N11(3) with the N H ^ J ' ) to deduce the isospectrality of N{j) with N ( j ' ) .

D

Scalar curvature.

We next express the scalar curvature function seal of the manifold
N(j) in terms of the scalar and Ricci curvatures seal and Ric of the ambient
nilmanifold G(j). Since G(j) is locally homogeneous, seal is a constant
function; we denote its constant value also by seal. The Ricci curvature Ric
does not depend on the point and may be viewed as a bilinear form on the
Lie algebra fil(j).

PROPOSITION 6. — Using- Notation 1, let m = dim(t)). The scalar
curvature seal of N(j) is given at the point p = (.r, z) of N(j) by

scal(p) = seal + (m — l)(m — 2) — Ric(a;, x).

Proof. — Let v denote a unit normal vector field to N(j) in G(j).
Denote by V, V the Levi-Civita connections of G(j) and N(j) respectively.

A routine calculation using the second fundamental form shows that
for p in N{j),

(6.1) scal(p) =scal-2Rlc(^,^)+(trace(V^|T^a)))2-||V^|T^o•)112.
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(The norm in the last term is that on tensors of type (1,1), i.e. , the L2

norm on matrices relative to an orthonormal basis.)

We remark that for any two-step nilpotent Lie group G with Lie
algebra Q and any v in 5, one has the identity

(6-2) ^P^ = ^exp(^)* (Id — ad^ V

Let p = (x,z) and recall that TpG{j) == Lp^Q(j)), where Lp is
left translation by p. Using (6.2), one easily checks that as a subspace
of Lp^(Q(j)), TpN{j) = Lp^x^), where x1- is the orthogonal complement
of span{a;} in g(j). The outward unit normal vector field is then given by
Vp=Lp^x).

Let y e x-L n\) and w_€j. We view x, y , VyX, w, and V^x as left-
invariant vector fields on G(j), so we write, e.g., y? for Lp^y. The curve
c(t) == exp((cos t)x + (sin t) [y + ̂  [.r, 2/]) 4- ̂ ) has initial velocity 2/p. Viewing
v as a vector field along c and computing the covariant derivative yields

V^=%>+(V^)p.
Similarly,

Vwp^=(V^)p.

In summary, for p = (a;, ^) e A^(j') and u e x± = Lp^TpN^j)),

VuV = Lp^projt, ZA + V^a;),
where x is viewed as a left-invariant vector field.

Recall (see [E], Section 2) that for x,y e t) and w e 3,

(6.3) V^ = ̂ [y,x] and V^rr = -^(w)a-.

Thus Va; sends t) ^ 3 and 3 —> t), and it follows immediately
that trace(Va;) = 0, and that trace(V^[TpN(j)) = m - 1. Likewise,
IKv^iT^o-)!!2^^-!)^!!^!!2.

Finally, let 2; i , . . . , Zk be an orthonormal basis of 3. It is known that
(see [E], Section 2)

(6.4) mc(x^x)=^(j(z^x}.
i=l

Equations (6.3) and (6.4) and Notation 1 imply

||Va;||2 = -Ric(;r, a:)
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and Proposition 6 follows. D

COROLLARY 7. — Fix inner product spaces u and 3 and a lattice C
of Ml rank in 3, and let j,f : 3 -^ so(t?) be linear maps. The maximum,
respectively minimum, values of the scalar curvature of N(j) and A^(j')
coincide if and only if the minimum, respectively maximum, eigenvalues of
the Ricci tensors ofG(j) and G{j') restricted to t) (g) t) coincide.

Examples 8. — We briefly review Example 2.3 of [GW3] and show
that some of the isospectral deformations constructed there have changing
maximal scalar curvature.

Take 3 = R2 and 0 = R6 with their standard ordered bases and
standard inner product. For a,b e so(6) and s,t C R, define ja,b{s,t) =
sa + tb. Each linear map j : R2 -^ so(6) is of the form j = ja,b for
some 0,6 e so(6). Fix for the remainder of the discussion an element
a e so(6) that is in block diagonal form with 2 x 2 diagonal blocks^ v_ k->v^v^ .̂LCH, xo 1X1 (̂ l̂ ^JX VJlld^UAlCIA lUl All W1L11 ^ ^ Zi Uld^UlicLl UlUCKy

' Ll < i < 3, where 0 < ai < 02 < 03. Consider all matrices
|_a^ u J[° 0°1.1^[_o, 0 J
b G so(6) of the form

0 0 6i2 0 6i3 0
0 0 0 0 0 0

-6l2 0 0 0 &23 0b=
0 0 0 0 0 0

-6l3 0 -&23 0 0 0

0 0 0 0 0 0

with (&i2,^i3^23) ^ R3. From [GW3], we know that if b and 6' are of
this form, then ja,b ~ Ja,^ H and only if there exists a real number u in

/ L2 L2 \ 7 9 _62 i-^_ -&J3 ;——2 satisfyingmax o ? 9f.^ ^z i — o-i JOo — 0. Oo — 0

(^-^^ai-o2),

(*) W3)2=^3+^-ai),

(&23)2=^3+^(aj-oi).

If we fix any b for which I has non-empty interior and, for each u G J,
define a one-parameter family 6(n) as the unique solution b' of the above
equations for which bij(u) has the same sign as bij for all % , j , it follows
that u —> ja,b{u) ^ a 1-parameter isospectral deformation ofja^.
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Using (6.4) above, we see that Ric(u)(x,x) = . ((a2 + b(u)2)x^x^ for
x € t). For example, letting 01 = 1, 02 = 2, 03 == 3, ^12 = 0, ^13 == I, and
^23 = 0, we obtain, with respect to the standard basis on t),

" 2-5u 0 V5u - 40^2 0 -vT5n 0-[
0 1 0 0 0 0

——, , 1 V5u - 40^2 0 4+82A 0 V3u - 24n2 O
^^-^ O 0 0___ 4 0 0

-v^n O V3u - 24u2 O 10 -3u 0
0 0 0 0 0 9

for n 6 [0, , ] . One easily checks that the eigenvalues of Ric('u) change

non-trivially with u; in particular, —5 is an eigenvalue of Ric(O), but
the eigenvalues of Ric(n) have absolute values strictly less than 5 for

0 < u < -. By Corollary 7, the maximum value of the scalar curvature of
8

N(ja^b(u)) changes non-trivially with u, showing that N(jaUu)) is a non-
trivial isospectral deformation.

Large-dimensional families.

Finally we turn to the Main Theorem, stated in the introductory
remarks. In the proposition below, the notion of equivalence of linear maps
3i31 '• 3 ~^ t) ls identical to the notion of/^-equivalence in Definition 3 except
that the map C is not required to preserve a given lattice C.

PROPOSITION 9 [GW3]. — Let dim 3 = 2, and let m = dimu be
any positive integer other than 1,2,3,4, or 6. Let W be the real vector
space consisting of all linear maps from 5 to so(t)). Then there is a Zariski
open subset OofW (i.e., 0 is the complement of the zero locus of some
non-zero polynomial function on W) such that each jo 6 0 belongs to
a d-parameter family of isospectral, inequivalent elements of W. Here
d > m(m - 1)/2 - [m/2]([m/2] + 2) > 1. In particular, d is of order at
least 0(m2).

Although the expression for d gives 0 when m = 6, Example 8 gives
continuous families of isospectral, inequivalent j maps when m = 6.

Letting n = m — 1, choosing any lattice C in 3, and applying Theorem
5, the families of isospectral j maps in Proposition 9 give rise to continuous
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families of isospectral manifolds N(j)^ or equivalently to continuous families
of isospectral metrics on 5^ x T where T c± 3/£ is a 2-torus and n = m -1.
To complete the proof of the Main Theorem, we need to show that the
manifolds in these deformations are not isometric. Recall that by Remark 4,
G(j) and G{j') are isometric if and only if j and f are /^-equivalent. We
now address the question of whether jC-equivalence of j and j ' is necessary
in order for the submanifolds N(j) and A^'') to be isometric.

PROPOSITION 10. — Fix inner product spaces t) and 3 and a lattice
C of full rank in 3, and let j , j ' : 5 —> so(u) be linear maps. Suppose that
there are only finitely many automorphisms of Q(j) that restrict to the
identity on 3. IfN(j) is isometric to N(f), then j is C-equivalent to j ' .

Remark 11. — For any choice of j, the linear map that restricts to
— Id on t) and to Id on 5 is an automorphism of fl(j'). For generic choices of
j, this is the only non-trivial automorphism that restricts to the identity
on 3.

Before proving Proposition 10, we note that the Main Theorem now
follows immediately:

Proof of Main Theorem. — While the proof of Proposition 9 in
[GW3] is not constructive, the only maps j € W considered there are those
that satisfy the genericity condition in Remark 11, hence the hypothesis of
Proposition 10. Thus each d-parameter family {jt} of isospectral, inequiva-
lent j maps gives rise to a d-parameter family of isospectral, non-isometric
manifolds N{jt). D

In order to prove Proposition 10, we need the following lemma.

LEMMA 12. — Fix inner product spaces u and 3 and a lattice C of
full rank in 3, and let j , j ' : 3 —> so(t)) be linear maps. Ifr : N(j) —^ N(f) is
both an isometry and a bundle map with respect to the bundle structures
defined in Proposition 2, then r extends to a map r : G(j) —> G{j') that is
both a Lie group isomorphism and an isometry. Moreover, j is C-equivalent
to j ' .

Proof of Lemma 12. — Since r preserves the fiber structures, it
induces an isometry on the unit sphere S in t). Such an isometry is given
by an orthogonal transformation A of t).
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Since the principal torus bundles N(j) and A^'') over S are topolo-
gically trivial, we can choose global sections of N(j) and Ar(j'). The torus
action then determines an isomorphism of each fiber of each bundle with
the torus T == ^ / C . For each p € S, the isometry r must restrict to an
isometry Tp of the fiber Tp above p in N(j) to the fiber T^p) above A(p)
in A^(j'). Now Tp must be of the form Cp o Lz , where Cp is an orthogonal
transformation of 3 that preserves £, and Lz denotes translation by some
element Zp of the torus T. Both Zp and Cp must vary continuously with p.
However, Cp stays within a discrete set and hence must be independent of
j?; we thus drop the subscript.

We now show that G(j) and G(j') must be isomorphic. Let x and
y be any orthonormal pair of vectors in t). The 2-plane spanned by these
vectors intersects 5' in a great circle. Choose a lift p of .r in N{j). Lift
the great circle to a horizontal geodesic a in N(j) starting at p. Since T
carries the vertical space at p to the vertical space at r(p), it must induce
an isomorphism between the horizontal spaces as well; this isomorphism is
determined by the orthogonal transformation A of t). In particular, r must
carry a to a horizontal geodesic through r(p); this horizontal geodesic is
the lift of the great circle defined by the 2-plane of the vectors A(x) and
AO/).

lfp= (x, z), the geodesic a is given by a {t) = ({cost)x-{-(smt)y,z(t))
with z(t) = z + t[x,y}/2. Thus a in general is not closed unless x and y
commute. The displacement in the torus fiber between the initial and final
points is given by

(7(27r)-a(0) =7r[x,y].

Similarly,
(r o a)(27r) - (r o a)(0) = ̂ [A(x\ A(z/)].

On the other hand,
(r o cr)(27r) - (r o a)(0) = C(o-(27r) - a(0)).

These equations are to be understood in the sense that all terms are well-
defined modulo C.

We conclude that
(12.1) C{[x,y\) = [A(x)^A{y)} (mod/:)
for each pair of orthonormal vectors x, y G t). We claim that the equivalence
is actually an equality, in fact, that
(12.2) C([x,y})=[A(x),A(y)}
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for all x,y e t). If dim(t)) > 3, the set P of pairs of orthonormal vectors
forms a connected subset of t) x t). By continuity of A and C, there must
exist a constant vector a e C such that C([x,y\) - [A(x), A{y)} = a for all
(x, y) C P. Replacing x by -x in this equation, we see that a must be zero,
i.e., that

C([x^y])=[A(x)^A(y)}

for all (rr, y) ^ P and thus for arbitrary vectors a;, ^/ C t), as claimed. While
the case dim(t)) < 3 is not of interest in our application of Lemma 12, we
note that equation (12.2) can also be proven in all dimensions by lifting
the isometry r to an isometry between the universal coverings of N(j) and
TVfy) and carrying out the entire proof leading up to the equivalence (12.1)
at this level.

From equation (12.2), it follows that the linear map from g(j) to
Q(f) given by x + z ̂  A(x) + C(z) for x e t) and z e 3 is a Lie algebra
isomorphism as well as an orthogonal map. By Remark 4, the pair (A, C)
is an /^-equivalence between j and j', and thus G(j) is isometric to G{j').

However, we still need to show that T itself extends to an isometry
f : G(j) -^ G(j'). Let a : G{j) -^ G{j') be the isometry associated with
the /^-equivalence as in Remark 4(i). Then a\N{j) '• N(j) -^ N ( j ' ) is an
isometry. Moreover, ^ := a7^.. or is an isometry of N(j) that preserves
every fiber and acts on the fiber over p e 5' as translation by Zp.

Fix a point q e S. Compose C with an appropriate element of T(j)
to obtain a fiber-preserving isometry f3 of N(j) that acts trivially on the
fiber over q. Fix a point u in this fiber. Then the differential f3^ restricts
to the identity on the tangent space to the fiber. Moreover, since (3 induces
the identity on S, (3^u also restricts to the identity on the horizontal space
at u. Hence we have both f3(u) = u and /^ = Id. Since any isometry is
uniquely determined by its value and its differential at a single point, it
follows that f3 = Id and so C e T(j). Thus C extends to a left translation
of G(j) and r = a o (^ extends to an isometry of G(j). D

Proof of Proposition 10. — Let Iso(j') be the identity component
in the full isometry group of N(j). Since N(j) is compact, Iso(j') is a
compact Lie group containing the toral group T(j). We first show that
T(j) is a maximal torus in Iso(j'). Any isometry a that commutes with
T(j) must preserve the fiber structure. By Lemma 12, a extends to an
isometry a : G(j) -^ G{j). By Remark 4(ii), a = L(Q^) o /3 for some
z e ^ / C and some automorphism (3 of G(j). The left translation L^^ is
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the extension to G(j) of an element of T(j). Moreover, since a commutes
with T{j), the automorphism (3 commutes with translation by all central
elements of G(j), and thus /3 restricts to the identity on the center of G{j).
By the hypothesis of the proposition, (3 lies in a finite set of automorphisms.
Hence T(j) must have finite index in its centralizer, so T(j) is a maximal
torus in Iso(^').

Now suppose T : N(j) —> A^(j') is an isometry. Then the map
T : Iso(j') —> Iso(j') given by r(/?) = rf3r~1 is an isomorphism from
Iso(j) to Iso(j') and thus carries T(j) to a maximal torus in Iso(j'). Since
dim(T(j')) = dim(3) = dim(r(j')), it follows that T(j') is a maximal torus
in Iso^'7). Since all maximal tori in a compact Lie group are conjugate,
we may assume, after composing T with an isometry of A^(j'), that
r(T(j)) = T{j'). It follows that r is a bundle map, and by Lemma 12,
j is /^-equivalent to j ' . D

Remark 13. — Under the hypothesis of the proposition, we actually
have that Iso(j) = T(j). To see this, fix a point u 6 N(j)^ and define
p : Iso(j') —> N(j) by p{o) = a(u). Then the restriction p\T{j) maps T{j)
to a fiber in N{j) and induces an isomorphism on fundamental groups
p^ : 7ri(r(j))-^7ri(7V(j)). On the other hand, the inclusion L : T{j) —»Iso(j')
of the maximal torus into the compact Lie group Iso(j') induces an injection
on fundamental groups only iflso(j) = T(j). (Indeed, a compact Lie group
K is a product of a compact semisimple subgroup H and a torus. Any
maximal torus T must include a maximal torus in H. Since H has finite
fundamental group, the inclusion of a maximal torus in K cannot induce an
injection of fundamental groups unless H is trivial. On the other hand, if H
is trivial, then K is itself a torus and thus must equal T.) Since pou = P\T{J)^
we conclude that T(j) = Iso(j').
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