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Abstract—This paper addresses the problem of on-line traffic
grooming in WDM paths. Each request consists of a source node,
a destination node, and the desired bandwidth for the connection.
Connections may be multi-hop, permitting the use of multiple
lightpaths. We describe a new distributed on-line algorithm for
this problem that is provably wide-sense non-blocking under cer-
tain assumptions. Moreover, we use simulations to demonstrate
that the algorithm is extremely effective even when some of these
assumptions are relaxed.

I. INTRODUCTION

The combination of high speed and bandwidth have made
optical networking increasingly attractive for applications
ranging from local area to backbone networks. Because the
bandwidth of an optical fiber far exceeds that of network
nodes, wavelength division multiplexing (WDM) is used to
partition the optical fiber into separate channels, allowing
multiple simultaneous connections to be established over the
same fiber.

Furthermore, connection requests typically require only a
small fraction of the total capacity of a wavelength. Therefore,
traffic grooming is used to pack or “groom” multiple con-
nections onto a single wavelength, thereby further enhancing
bandwidth utilization.

A lightpath comprises a sequence of physical links on
which a message may be routed entirely optically on a
single wavelength. In a multi-hop network, connections may
comprise several contiguous lightpaths, and these lightpaths
need not be on the same wavelength. At a node joining two
lightpaths, the connection is converted from the optical domain
into the electronic domain before being retransmitted onto the
next lightpath. This optical-electronic-optical retransmission
requires a receiver to terminate the incoming lightpath and
a transmitter to initiate the outgoing lightpath. A collection of
lightpaths on a physical topology, together with the associated
tuning of the transceivers needed to realize these lightpaths,
constitute a virtual topology.

This paper considers applications in which connection
requests arrive on-line. Since requests must be established
quickly, we assume that the virtual topology cannot be recon-
figured on the fly; network reconfiguration will delay the estab-
lishment of the connection and potentially introduce delays to
existing connections [1]. Therefore, we assume that the virtual

* This work was supported by the National Science Foundation under
grant CNS 0451293 to Harvey Mudd College. Please address correspondences
regarding this work to Ran Libeskind-Hadas at hadas@cs.hmc.edu.

topology must be configured in advance and remains static.
When connection requests arrive on-line, they must be routed
and groomed with a fast and simple distributed algorithm [2].
Thus, the problem considered in this paper comprises two
parts: the construction of a static virtual topology and the
design of a distributed on-line grooming algorithm on this
topology.

We make several simplifying assumptions in the interest
of obtaining fundamental results for this problem. Many of
these assumptions can evidently be relaxed and our results
can thus be generalized in various ways. For example, while
we restrict our attention to bidirectional paths, our results
extend naturally to rings. Extensions to other topologies is
a challenging and interesting problem for future research.
Furthermore, we assume that all nodes have the same upper
bound on the amount of traffic that they may generate or
receive. A heterogeneous network model, while more realistic,
results in significant additional complexity and is therefore not
considered in this initial study of the problem.

A sequence of connection requests is said to be k-allowable
if, at any given time, every node is the source of at most k
units of traffic and the destination of at most k units of traffic,
an extension of the definition from [4]. In other words, k is
an upper-bound on the amount of traffic originating from or
destined for a node.

We describe a virtual topology for bidirectional paths, a
distributed grooming algorithm, and a value k such that:

• When connections are permanent, the algorithm provably
satisfies every k-allowable sequence of requests and is
wide-sense nonblocking (i.e. requires no reconfiguration
of existing connections).

• When connections have finite duration, experimental re-
sults suggest that the algorithm has very low blocking
probability or, alternatively, requires few reconfigurations
of existing connections.

A number of authors have considered the problem of on-
line wavelength assignment and traffic grooming. Bartal and
Leonardi [5] and Saengudomlert et al. [4] address dynamic
wavelength assignment in all-optical networks, but assume that
each connection request reserves an entire wavelength and do
not allow wavelength conversion. Zhang and Yang [6] consider
optimal on-line wavelength assignment in WDM networks
with some wavelength conversion abilities, but again do not
consider grooming. In [7], Xu, Li and Wang study dynamic
routing in multi-fiber WDM networks without wavelength
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conversion. In [8], Srinivasan and Somani compare the per-
formance of several dynamic algorithms on WDM networks
that implement traffic grooming; however, none of them are
distributed. Huang and Dutta’s survey of dynamic traffic
grooming reviews many centralized algorithms for routing
dynamic groomed traffic [2].

While much of the existing literature examines centralized
routing, wavelength assignment, and grooming algorithms,
distributed algorithms are needed in many contexts [2], [9].
To the best of our knowledge, this work is among the first to
examine distributed on-line traffic grooming algorithms.

The remainder of this paper is organized as follows: Section
II provides a description of the dynamic traffic grooming
problem addressed in this paper, as well as terminology and
notation. Section III describes the construction of a virtual
topology on a given path network and presents the dynamic
grooming algorithm. Section IV provides a proof that under
certain conditions, our dynamic grooming algorithm will sat-
isfy any k-allowable sequence of requests and then proves
that this result cannot be significantly improved. Section V
provides experimental results demonstrating that our algorithm
is very effective. Section VI concludes with some directions
for future research.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we formally describe the dynamic grooming
problem studied in this paper and introduce notation that will
be used throughout. The problem can be characterized as
follows:

Given:

• A bidirectionally connected path.
• N , the number of nodes in the path.
• T , the number of transceivers at each node.
• A set of W wavelengths denoted {λ1, . . . , λW }, each

with capacity C.
• An upper bound, k ≤ C, on the amount of bandwidth

that can be sent by a node or received by a node. Any
sequence of requests that satisfies the constraint that each
node generates or receives at most k units of bandwidth
is said to be k-allowable.

Objective:

• Construct a virtual topology over the physical topology
by appropriately tuning transceivers.

• Provide a distributed algorithm for grooming any k-
allowable configuration of on-line traffic across this vir-
tual topology.

In order to satisfy arbitrary k-allowable connection request
sequences, we restrict the values of N , T , k, and C such that

N ≤ C

k
(T )(T + 1).

This constraint and its justification are further explained in
Section IV.

We assume that a connection request consists of an ordered
pair (i, j) with an associated bandwidth request β. We model

TABLE I
SUMMARY OF NOTATION

Notation Description

k the maximum number of requests sourced
by and the maximum number of requests
destined for each node

N the number of nodes in the network
T the number of transceivers per node
W the number of wavelengths available
λj a wavelength
C the capacity of each wavelength

(i, j) a connection request from node i to node j

a request for greater than unit bandwidth as a contiguous
sequence of β unit requests. Thus, without loss of generality,
we henceforth restrict our attention to on-line sequences of
unit bandwidth requests.

Finally, note that a node v may be the source of up to k
units of bandwidth and may be the destination of up to k units
of bandwidth. In addition, some traffic may be routed through
node v, since multi-hop communication permits a connection
to undergo optical-electronic-optical (OEO) conversion at v.
This additional traffic does not consume any of the bandwidth
allotted to the node by the k-allowability constraint.

The notation used in the remainder of this paper is summa-
rized in Table I.

III. VIRTUAL TOPOLOGY AND DYNAMIC GROOMING

In this section, we describe a virtual topology on the path,
and then introduce a dynamic grooming algorithm on this
topology. Without loss of generality, we consider the part of
the virtual topology oriented from left to right and restrict our
attention to connection requests whose sources are to the left
of their destinations. The analogous construction is used to
facilitate connections from right to left.

A. Virtual Topology Construction

We construct a virtual topology where every node in the
network is connected to each of its neighbors within a pre-
specified distance r (whose value is established below) by a
lightpath. To this end, we tune the transceivers at each node
as follows:

First, one transceiver at each node is tuned to the first wave-
length, λ1. This creates a lightpath with grooming capacity C
between every pair of adjacent nodes (see Fig. 1).

1 2 3 40 5 6 7 . . . 

}C�
1

Fig. 1. Each node has a lightpath to the nodes immediately to its left and
right.
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Next, at each node in {0, 2, 4, ...}, a transceiver is tuned to
λ2, and at each node in {1, 3, 5, ...}, a transceiver is tuned to
λ3, providing a lightpath with capacity C between all pairs of
nodes that are distance 2 apart (see Fig. 2).

1 2 3 40 5 6 7 . . . 

}C�
1

}C

}C

�
2

�
3

Fig. 2. Each node now has a lightpath to its neighbors at distance 2, using
the next pair of wavelengths.

In general, we tune each subset of nodes

{a + mb : m ∈ Z and 0 ≤ a + mb ≤ N − 1}

where b ≤ r and a ≤ b to the next available wavelength, which
constructs a lightpath with capacity C between each pair of
nodes separated by distance b. Because there are r possible
values for b, it follows that we will require r transceivers at
each node, and thus we consider r = T . From the perspective
of an individual node, the virtual topology appears as in Fig.
3.

B. Dynamic Grooming Algorithm

A connection request c is represented as an interval
(L(c), R(c)), where 0 ≤ L(c) < R(c) ≤ N −1, and signifies
a request for one unit of directed bandwidth from node L(c)
to node R(c).

1 2 3 40 5 6 7 . . . 

C�
1

}C�
3

}

�
5

}C

r = 3

Fig. 3. A node has direct connections to all nodes within local radius, r. In
this example, r = 3.

Dynamic Grooming Algorithm (DGA)
Input: A connection request c and a network state

function U .
Output: Returns true if c was satisfied and false

otherwise. If it was satisfied, U and S(c) reflect
the new network state.

S(c)← ∅1

s← (L(c),min{R(c), L(c) + r})2

while L(s) &= R(s) do3

if U(s) < C then4

// s is available to be used by c
U(s)++5

let S(c) contain s6

s← (R(s), min{R(c), R(s) + r})7

else8

// a conflict occurs with s
s← (L(s), R(s)− 1)9

end10

end11

return R(s) == R(c) // true iff connection12

is successfully satisfied

A segment s can be written as the pair (L(s), R(s)) and
corresponds to the lightpath from L(s) to R(s) reserved by
the virtual topology construction in Section III-A. We define
a length function d(s) = R(s)−L(s); recall that all segments
have the property d(s) ≤ r. To satisfy a request, we designate
a sequence of segments S(c) such that their concatenation
equals the entire interval c. We say that a satisfied connection
uses each segment in the sequence S(c).

The state of the network is represented by a function U
mapping segments to integers. U(s) = u indicates that s
is used by u satisfied connections. Before any connection
requests are satisfied, C units of bandwidth are reserved for
communication between any two nodes whose distance is at
most r by the construction in Section III-A. This is signified
by letting U(s) = 0 initially for every s. In any valid network
state, U(s) ≤ C for all segments s because no segment may
be used by more than C connections.

When a request c arrives on-line, it is handled by the
Dynamic Grooming Algorithm (DGA), shown above. The
DGA is a greedy algorithm that attempts to use the longest
possible segments first. Recall that all segments have length
between 1 and r. In general, the algorithm first tries to use
a segment of length r. If no such segment is available, the
algorithm next tries a segment of length r−1 and so forth until
the first available segment is found or, if no available segment
is found, the algorithm fails to satisfy the connection. Recall
that since each segment may be used by up to C connections,
a segment is unavailable if and only if U(s) = C.

Once the algorithm finds the longest available segment, it
greedily commits to using that segment and never backtracks
to replace that segment with one of different length. Although
such backtracking might appear be advantageous, it can result
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in exponential worst-case running time. Moreover, we prove
below that our greedy algorithm is essentially optimal.

The algorithm repeats this process starting from the right
endpoint of the previously used segment. When the algorithm
reaches a node that is within distance r or less from the
destination, the algorithm begins by considering the segment
of length equal to this distance.

Henceforth, when the DGA is invoked on a connection c, we
say that it attempts to satisfy c. When the algorithm reaches the
top of the loop on line 4, we say that it considers the segment
s. If the conditional statement branches to line 8, we say that
a conflict occurs with segment s. Note that the occurrence of a
conflict with s implies that U(s) ≥ C; furthermore, because no
segment may be used by more than C connections, U(s) = C
in the case of a conflict.

Note that the DGA does not explicitly assign wavelengths to
segments or connections. By the virtual topology construction
in Section III-A, bandwidth for each segment is reserved on
a specific wavelength; that is, the selection of wavelengths is
implied by the algorithm’s selection of segments.

The DGA can be implemented in a distributed fashion. The
only network state required by the algorithm is the function U .
Because the domain of U is the set of segments in the network,
its values for a given segment s may be stored at its endpoint
nodes L(s) and R(s). A connection request propagates from
source to destination, possibly traversing multiple lightpaths;
at every node that terminates a lightpath, only local state
information is required. Finally, note that the total running
time of the DGA, per connection request, is bounded by
O(rN) = O(TN) since each of the N nodes in the network
examines at most r = T possible segments.

IV. ANALYSIS OF THE DGA

In this section, we prove that the DGA, when run on a
path such that N ≤ C

k (r)(r + 1), can satisfy any k-allowable
sequence of connection requests assuming that the requests
have infinite duration. Additionally, we demonstrate that no
algorithm can satisfy arbitrary k-allowable connection request
sequences if N ≥ C

k (r)(r + 1) + 2 given the proposed virtual
topology. Finally, we propose strategies for grooming traffic
with finite-duration connections.

A. Traffic Satisfaction Guarantee

We first prove that if the algorithm considers a segment of
length less than r (that is, tests whether the segment may be
used in satisfying a connection), then a conflict (an inability
to use a segment) must have previously occurred.

Lemma 1. If the DGA considers segment s while attempting
to satisfy connection c where R(s) &= R(c) and d(s) < r,
the algorithm previously encountered a conflict with segment
(L(s), R(s) + 1).

Proof: Assume, by way of contradiction, that s is the
result of an assignment in line 2 or 7 of the algorithm. In either
case, R(s) = R(c) or R(s) = L(s) + r. If R(s) = R(c), we
contradict the condition that R(s) &= R(c). If R(s) = L(s)+r,

then d(s) = r, another contradiction. Our initial assumption
must therefore be false and we conclude that s is the result of
the only remaining assignment in the algorithm, that on line
9, and s = (L(t), R(t)− 1) for another segment t. It follows
that t = (L(s), R(s) + 1). Line 9 is only executed in the case
that a conflict occurs with this segment t.

We can also prove the result of Lemma 1 given an alternate
hypothesis. Rather than assuming that the segment considered
is not at the destination of a connection, we base our proof on
the hypothesis that a conflict occurs at the segment.

Corollary 1. If the DGA encounters a conflict with segment s,
and d(s) < r, then a conflict occurred previously with segment
(L(s), R(s) + 1).

Proof: Because a conflict occurred at s, it follows that
U(s) = C. Consider the C previously-satisfied connections
that use s as well as the connection the algorithm was
attempting to satisfy when the conflict occurred. Of these
C + 1 connections, at most k may have R(s) as their
destination. Because k ≤ C < C+1, at least one connection’s
destination is not R(s); call this connection c′. It follows that
R(c′) > R(s).

The algorithm considered s while attempting to satisfy c′
where R(s) &= R(c′), so the hypotheses of Lemma 1 are
satisfied, and therefore the DGA encountered a conflict with
(L(s), R(s) + 1).

Under the hypothesis of either Lemma 1 or of Corollary
1, we apply induction to prove the existence of a series of
conflicts.

Lemma 2. Consider a segment s where d(s) < r. If the DGA
encountered a conflict with s, or s ∈ S(c) where R(s) &=
R(c), then, for every # where 1 ≤ # ≤ r − d(s), a conflict
occurred previously with a segment (L(s), R(s) + #), denoted
s!.

Proof: The proof is by induction on #.
Basis: # = 1. If a conflict occurred at s, Corollary 1 applies.

Otherwise, if s ∈ S(c), line 6 executed when the DGA was
run with input c. The algorithm considered s while attempting
to satisfy c and Lemma 1 applies. In either case, a conflict
occurred with s!.

Inductive Step: Assume that a conflict occurred at s! where
1 ≤ # < r−d(s). It follows that d(s!) = (R(s)+ #)−L(s) is
less than (R(s)+ r− d(s))−L(s), which equals r. Corollary
1 applies and a conflict occurred with s!+1.

We now apply these lemmata to obtain our main result,
which guarantees the satisfaction of any k-allowable traffic
sequence under the aforementioned constraints.

Theorem 1. Consider a unidirectional path network with N
nodes such that the grooming capacity for each wavelength is
C. If k ≤ C and

N ≤ C

k
(r)(r + 1),

then executing the DGA satisfies any k-allowable sequence of
connection requests with infinite duration.
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Proof: Assume, by way of contradiction, that the DGA
returns false (fails) when invoked on c where c is an element
of a k-allowable connection request sequence on a network
satisfying the given constraints.

The DGA fails only when it encounters a conflict with an
interval s where d(s) = 1. By Lemma 2, conflicts previously
occurred with each of the r − 1 other segments whose left
endpoint is L(s). Each of the r segments (including s) with left
endpoint L(s) must therefore be used by C previously-satisfied
connections. No single connection may use two segments with
equal left endpoints, so there must be C ·r distinct connections
that use a segment with left endpoint L(s). Let D be the set
containing these C · r connections along with the connection
the algorithm was attempting to satisfy when the DGA failed.

Let E = {e ∈ D | L(e) &= L(s)}, the subset of existing
connections (including the current connection request) that do
not begin at L(s), but use a segment that does. Note that |E| =
(Cr + 1) − |D − E|. The number of remaining connections
|D−E|, all of whose sources are L(s), is at most k. Because
k ≤ C, it follows that |D − E| ≤ C, and therefore |E| ≤
Cr + 1− C = C(r − 1) + 1.

The connections in E each use a segment with right
endpoint L(s). There are r such segments: (L(s) − i, L(s)),
1 ≤ i ≤ r. It follows that each segment with right endpoint
L(s) is used by at least one connection in E. Thus, Lemma
2 applies for each segment (L(s) − i, L(s)), proving the
existence of conflicts with every segment in

I = {(L(s)− i, L(s) + j) | 1 ≤ i ≤ r and 1 ≤ j ≤ r − i}.

Let F be the set of connections that use a segment in I . Be-
cause every segment in I contains the interval (L(s)−1, L(s)),
each segment in I must be used by C distinct connections in
F . It therefore follows that |F | = C|I| = C

∑r
i=1(r − i) =

C (r)(r−1)
2 .

By definition, no connection in F uses a segment whose left
or right endpoint is L(s), and therefore F and D are disjoint.
Thus, |D ∪ F | = |D| + |F | = (C · r + 1) + C (r)(r−1)

2 =
C (r)(r+1)

2 + 1.
Because C (r)(r+1)

2 +1 connection requests have been made,
there are 2(C (r)(r+1)

2 + 1) = C · r(r + 1) + 2 connection
endpoints on the network. Note that the source of every
connection in D ∪ F is at most L(s) and the destination
of every such connection is at least L(s) + 1. Thus, each
node is exclusively a source or exclusively a destination of
connections in D ∪ F and, because the request sequence
is k-allowable, every node is an endpoint of at most k
connections in D ∪ F . The network must contain at least⌈

1
k (C · r(r + 1) + 2)

⌉
=

⌈
C
k (r)(r + 1) + 2

k

⌉
nodes.

This contradicts the assumption that N ≤ C
k (r)(r + 1).

Thus, the initial hypothesis must be false, and therefore no
failure can occur under any k-allowable request sequence.

B. Tightness

We now show that it is impossible to significantly improve
on the satisfying capacity of the DGA. We have shown that

any k-allowable sequence of requests can be satisfied by our
algorithm provided that N ≤ C

k (r)(r + 1). In fact, for any
N ≥ C

k (r)(r + 1) + 2, there is a k-allowable sequence of
requests that is unsatisfiable regardless of the algorithm used.

Such a sequence can be constructed by requesting all
connections such that, for every connection c in the sequence,
L(c) ≤

⌊
N
2

⌋
− 1 and R(c) ≥

⌊
N
2

⌋
, and the sequence

remains k-allowable. The order in which these connections
are requested is insignificant. Because there are

⌊
N
2

⌋
possible

sources for connections, and at least as many possible desti-
nations for those connections, f =

⌊
N
2

⌋
k requests are made.

Assume, by way of contradiction, that this sequence of f
connection requests is satisfiable by some traffic grooming
algorithm given the virtual topology constructed in Section
III-A. Because of our bound on N ,

f ≥
⌊

1
2

(
C

k
(r)(r + 1) + 2

)⌋
k

=
⌊

C

2k
(r)(r + 1) + 1

⌋
k

=
⌊

C

2k
(r)(r + 1)

⌋
k + k

The fractional part of the floored quantity is strictly less than 1.
We rewrite

⌊
C
2k (r)(r + 1)

⌋
as C

2k (r)(r +1)−α where α < 1.
Thus, the inequality above can be written as

f ≥
(

C

2k
(r)(r + 1)− α

)
k + k

=
C

2
(r)(r + 1)− αk + k

Because α < 1, αk < k, and

f >
C

2
(r)(r + 1)− k + k

=
C

2
(r)(r + 1)

Our k-allowable connection sequence thus consists of
more than C

2 (r)(r + 1) connections containing the interval(⌊
N
2

⌋
− 1,

⌊
N
2

⌋)
. Each of these connections must use a seg-

ment whose left endpoint is at most
⌊

N
2

⌋
− 1 and whose right

endpoint is at least
⌊

N
2

⌋
.

For a given length #, there are # segments s where d(s) = #
that satisfy the above property:

(⌊
N
2

⌋
− i,

⌊
N
2

⌋
+ #− i

)
where

1 ≤ i ≤ #. Over all 1 ≤ # ≤ r, then, there are
∑r

i=1 i = r(r−1)
2

segments that contain the interval
(⌊

N
2

⌋
− 1,

⌊
N
2

⌋)
. Because

each segment may be used by at most C connections, at
most C

2 r(r−1) connections contain this interval, contradicting
the assertion that f > C

2 (r)(r + 1). This contradicts our
assumption that this k-allowable connection request sequence
is satisfiable given our virtual topology.

We have thus shown that our virtual topology construction
cannot satisfy arbitrary k-allowable request sequences when
N ≥ C

k (r)(r + 1) + 2. Because it can satisfy arbitrary k-
allowable request sequences when N ≤ C

k (r)(r + 1), the
performance of the DGA is close to optimal for this virtual
topology.
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These results apply only to the virtual topology proposed in
Section III-A. However, we conjecture that in order to satisfy
arbitrary k-allowable request sequences, the maximum number
of nodes is within a constant factor of C

k (r)(r +1) regardless
of the static virtual topology used.

C. Finite-Duration Traffic

As shown in Section IV-A, the DGA is guaranteed to
satisfy any k-allowable request sequence if the connections
are permanent. However, if connections have finite duration,
the proof does not apply. Even if the set of active connections
remains k-allowable, we have no satisfaction guarantee (as in
Theorem 1) if connections can depart. In fact, it is possible
to construct such a sequence of connection requests that the
DGA is unable to satisfy if connections terminate in finite
time. This necessitates a means of dealing with such failures
when they occur.

We propose two methods for coping with failures that may
occur when handling finite-duration traffic. The first method
is simply to block any requests which cause a failure. Experi-
mental results provided in the next section show the blocking
probability to be extremely small in general (at most 1 in
108 for sufficiently large values of the network parameters).
Because blocking has relatively negligible overhead, does not
impact existing connections, and occurs infrequently using
the DGA, we believe that compromising the non-blocking
behavior is suitable for many practical applications.

Alternatively, in situations where we must maintain the
ability to satisfy any k-allowable request sequence without
blocking, an approach that reconfigures connections may be
more desirable. When a failure occurs, all existing connections
on the network are temporarily taken down and re-groomed
using the DGA from left to right. To accomplish this, a mes-
sage is broadcast to all nodes to tear down their connections.
Then, the leftmost node invokes the DGA to reestablish its
connections. When those connections are completed, the next
node reestablishes its connections. This process is repeated
until all nodes have completed reconfiguration. Because the set
of active connections is k-allowable, the proof in Section IV-A
guarantees that they will all be successfully reestablished.

The drawback of this method is that it requires brief network
downtime whenever a failure occurs. However, experimental
data suggests that the probability of incurring such a connec-
tion reestablishment event is extremely small.

V. EXPERIMENTAL RESULTS

We constructed a path network simulator capable of mod-
eling sequences of connection arrivals and departures, em-
ploying an implementation of the DGA to satisfy requests.
Connections arrived randomly such that the length of time be-
tween each pair of connections followed a negative exponential
distribution. Arriving connections were chosen randomly such
that the set of active connections remained k-allowable. The
duration of each connection was also chosen from a negative
exponential distribution.

TABLE II
SUMMARY OF EXPERIMENTAL RESULTS

T C k N ρ
blocks
million

reconfigurations
million

3 2 1 24 1/2 0.64 0.48
3 2 1 24 3/8 0.24 0.16
3 2 1 24 1/4 0.04 0.04
3 2 2 12 1/2 399.2 252.28
3 2 2 12 3/8 195.44 147.56
3 2 2 12 1/4 38.12 30.24
3 4 4 12 1/2 9.702 6.34
3 4 4 12 3/8 2.63 2.238
3 4 4 12 1/4 0.118 0.082
3 8 8 12 1/2 0.022 0.018
4 2 2 20 1/2 24.835 18.027
4 2 2 20 3/8 7.13 5.806
4 2 2 20 1/4 0.416 0.378
4 4 4 20 1/2 0.037 0.026
5 2 2 30 1/2 1.041 0.885
5 2 2 30 3/8 0.146 0.132
6 2 2 42 1/2 0.03 0.022

Simulation parameters and frequencies of failures (blocks or
reconfigurations) per million connection requests are given. Results are only

shown for simulations where the failure frequencies are at least 1 in 108.

We assume that the activity on the network is proportional
to the number of nodes, N , and to the bandwidth constraint,
k. Thus, the mean of the probability distribution used to
select connection duration is proportional to Nk times that
of the distribution selecting the delay between connection
arrivals; that is, µduration = ρNk·µdelay for some proportionality
constant, ρ. In our simulations, ρ took the values 1

2 , 3
8 , and 1

4
to model three different load patterns. Letting ρ = 1

2 induces
an average of k live connections per node, an appropriate full-
load model, but other values of ρ are useful when considering
lighter loads.

Both of the methods described above for dealing
with failures were implemented. Under the first policy,
connections that could not be satisfied were blocked
and we recorded the number of blockings; under the
second, all live connections were removed and re-
established when the DGA encountered unresolvable
conflicts and number of reconfigurations was recorded.
We tested T ∈ {3, . . . , 8} with the following pairs (C, k):
(2, 1); (2, 2); (4, 1); (4, 2); (4, 4); (8, 4); (8, 8); (16, 8); (16, 16).
In every case, we set r = T and let N be the maximum value
guaranteed by Theorem 1.

For each configuration of the above parameters, several
request sequences were generated. In general, for every set
of parameter values, we simulated 10 request sequences of
100 million connections each. For ρ = 3

8 and ρ = 1
4 , we

executed only 5 runs of the same size. In the cases where
T = 3 and C = 2, each run consisted only of 5 million
connections because of computational resource constraints.

The results of our tests are summarized in Table II. For
brevity, we omit configurations in which blocking or re-
configuration occurred less often than once per 100 million
connections. In the vast majority of the omitted configura-
tions, our simulations generated zero blocked connections or
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reconfigurations.
The probabilities of blocking and reconfiguration rates

quickly become very small as T and C increase. In particular,
in cases where C > k, nearly every set of parameter values
yielded negligible failure rates. Lighter average traffic loads
(smaller values of ρ) also yield vastly reduced failure rates, in
some cases by two orders of magnitude.

While unresolvable conflicts are consistently less common
under the reconfiguration model than under the blocking
model, we note that the greater cost involved in reestablishing
the entire set of active connections partially counteracts this
advantage.

For configurations with T = 7 or T = 8, only one blocked
connection was observed in billions of simulated connection
requests, indicating that, for larger networks, the non-blocking
property of the DGA is nearly preserved under a finite-duration
traffic model.

VI. CONCLUSION

In this paper, we have described a distributed on-line traffic
grooming algorithm for paths and a static virtual topology to
support it. We have proven that this algorithm can satisfy arbi-
trary k-allowable sequences of permanent connection requests
under reasonable conditions. When connections have finite
duration, experimental results have shown that our algorithm
very rarely encounters unresolvable conflicts; furthermore,
simple policies exist for coping with these conflicts if they
do occur.

Our analytical results have shown that our algorithm is
nearly optimal given the proposed virtual topology, but we
conjecture that it is asymptotically optimal for any fixed virtual
topology. Future work might attempt to produce theoretical
bounds on the number of satisfied connections that may be
guaranteed on a path, independent of virtual topology.

While we have restricted our analysis to paths, the DGA
extends naturally to bidirectional ring networks with minor
adaptation. Similar results for other physical topologies are
interesting open problems. Other generalizations, including
heterogeneity in the traffic matrix (i.e. extending from a fixed k
bandwidth upper-bound to one that varies from node to node),
merit further study. In addition, while our experimental work
has explored the effects of many parameters, the impact of
other parameters (such as the distribution of the values of
β, the actual bandwidth of a connection request) also merit
further study.

Finally, while our experimental results regarding finite-
duration requests are very promising, we have not provided
theoretical bounds on the probability of blocking or reconfig-
uration. Future research may also explore this area.
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