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Improving the Boosted Correlogram

Nicholas R. Howe and Amanda Ricketson

Smith College, Northampton, MA, USA,
nhowe@cs.smith.edu

Abstract. Introduced seven years ago, the correlogram is a simple sta-
tistical image descriptor that nevertheless performs strongly on image
retrieval tasks. As a result it has found wide use as a component inside
larger systems for content-based image and video retrieval. Yet few stud-
ies have examined potential variants of the correlogram or compared their
performance to the original. This paper presents systematic experiments
on the correlogram and several variants under different conditions, show-
ing that the results may vary significantly depending on both the variant
chosen and its mode of application. As expected, the experimental setup
combining correlogram variants with boosting shows the best results of
those tested. Under these prime conditions, a novel variant of the correl-
ogram shows a higher average precision for many image categories than
the form commonly used.

1 Introduction

An image rarely reveals anything of interest in its raw pixel color data. For most
tasks, pertinent information must be extracted computationally from the raw
pixel intensities, yielding new forms of data that describe the image more effec-
tively for the task at hand. Both image retrieval and the related task of image
classification depend on effective image descriptors for success. Yet the devel-
opment of effective descriptors for image and video indexing remains an area
of basic research. Although not suitable for all tasks, simple descriptors that
represent an image holistically (rather than by parts or regions) have proven
remarkably effective in many areas, and are widely used, both outright for in-
dexing and as components in larger systems. Six or seven years ago, the holistic
descriptor of choice was the color histogram; today, as judged by recent citations,
it is the color correlogram [2, 11].

Given the success of the color correlogram as an image descriptor for indexing
and classification, it is somewhat surprising how little research explores the de-
tails of its implementation and possible variants. In part this may be attributed
to a sentiment among researchers that holistic representations lack the sophisti-
cation required for “real” image retrieval. Some denigrate the correlogram as too
simple to capture the nuances of real semantic categories. Yet in experiments
it handily beats other supposedly more nuanced representations [6, 8]. More to
the point, the fact of its widespread use merits a second look. While the correl-
ogram’s holistic approach may not be in tune with current thinking about how



image retrieval should work, it offers great strengths as a component of a larger
system. This observation motivates the work in this paper, which seeks ways to
improve upon the correlogram in certain applications.

The next section of the paper considers the origins and definition of the
standard correlogram, and proposes several variants for investigation. A short
summary of recent work in boosting for classification and retrieval follows. Sec-
tion 3 describes a set of experiments comparing the correlogram variants on a
selection of image classification/retrieval tasks. Finally, Section 4 concludes with
an analysis of the lessons learned and potential further steps.

2 Correlogram Variants and Boosting

The color correlogram has proven its worth as an image descriptor for both com-
parison and retrieval. Relatively compact and simple to implement, yet more sub-
tle and powerful than the color histogram, it has become perhaps the most widely
used image descriptor today. Previous work has shown that applying boosting
techniques to the correlogram representation yields a high quality image clas-
sifier, better than many other published boosted image classification/retrieval
algorithms [7], and that boosting can function as a feature selector [1, 14].

The descriptor that has become known as the correlogram comprises a feature
vector computed on an image discretized into n color bins. (n = 128 in this
paper.) Each component has a succinct probabilistic interpretation: given a pixel
p of color ci, what is the chance that a pixel chosen at random from a specified
neighborhood around p also has color ci? The standard treatment uses concentric
ring neighborhoods with square radii of 1, 3, 5, and 7 pixels, allowing for fast
computation via dynamic programming. In the equations below, Φ(p) represents
the color of pixel p, and d(p1, p2) represents the chessboard distance between
pixels p1 and p2.

Cci,r1,r2 = P (Φ(p2) = ci |Φ(p1) = ci ∧ p2 ∈ Br1,r2(p1)) (1)

Br1,r2(p1) = {p2 | r1 < d(p1, p2) ≤ r2} (2)

The correlogram as described above first appeared in 1997 [10] and was de-
veloped further as part of a family of related descriptors in the Ph.D. dissertation
of Jing Huang [9]. Huang referred the commonly used descriptor given above as
the banded autocorrelogram. In this terminology, banded refers to the square ring
neighborhoods used to compute the correlogram, and the auto- prefix indicates
that all the measurements involve frequencies of pixels of the same color. Huang
describes but does not further explore a more general set of statistics defined
over a set of distance bands and all possible pairs of colors (ci, cj). A single
component of this descriptor considers all pixels of some color ci, and measures
the fraction of pixels within a particular distance band that are a second color
cj .

C∗
ci,cj ,r1,r2

= P (Φ(p2) = cj |Φ(p1) = ci ∧ p2 ∈ Br1,r2(p1)) (3)



Although the general correlogram requires significantly greater storage than
the autocorrelogram, two considerations argue against writing it off immediately.
First, recent research on other large image descriptors has shown that they can
be effective if applied in combination with effective feature selection algorithms
[14]. Second, study of the general correlogram may motivate more compact rep-
resentations that nevertheless capture the additional information contained in
the general correlogram.

This paper introduces a novel image descriptor that represents a compromise
in both size and descriptiveness between the autocorrelogram and the general
correlogram. Called the color band correlogram, it groups colors into color dis-
tance bands analogous to the spatial distance bands of the standard correlogram.
Each component of the color band correlogram corresponds to a specified initial
color ci, a distance band specified by the bounds r1 and r2, and a color band
specified by perceptual difference in color space from ci lying between ρ1 and
ρ2. The value of the component equals the mean fraction of pixels falling within
the specified spatial neighborhood that have colors in the specified color band.

CCB
ci,r1,r2,ρ1,ρ2

= P (Φ(p2) ∈ βρ1,ρ2(ci) |Φ(p1) = ci ∧ p2 ∈ Br1,r2(p1)) (4)

βρ1,ρ2(ci) = {cj | ρ1 < δ(ci, cj) ≤ ρ2} (5)

In the equation above, δ represents a perceptual distance function in color
space, and ρ1 and ρ2 are similarity bounds demarking a set of colors around
the central color ci. In practice correlograms may be computed for two or three
color bands, corresponding respectively to an exact color match ci, a close color
match (a handful of colors directly surrounding ci), and perhaps a more relaxed
color match (colors similar to ci but not in the closely matching category).
With three color bands, the color band correlogram requires three times the
storage of the autocorrelogram. This reprises the difference in storage between
the histogram and the autocorrelogram, which differs by a factor equal to the
number of distance bands.

The extra information in the correlogram variants described above may allow
higher accuracy in some cases, but may also prove a liability if the inclusion of
less relevant features drowns out the more important ones. In other words, the
compactness and simplicity of the autocorrelogram may be an advantage under
some circumstances. Interestingly, others have studied image descriptors that
include large numbers of mostly irrelevant features. Although these descriptors
yield poor results when used directly for retrieval, they can become competitive
when applied in conjunction with a feature selection algorithm [14]. Boosting
has served successfully in this capacity, although it was not originally designed
as a feature selector.

The experiments in Section 3 compare the performance of the three correl-
ogram variants in both their original form and using AdaBoost [4] as a feature
selector. We hypothesize that the correlogram variants that contain more infor-
mation will benefit most from boosting, since the boosting process can act as
a feature selector. With images where the extra information is relevant to the



query task, the more complex variants should outperform the autocorrelogram;
where it is not relevant they should do about the same. The unboosted variants,
on the other hand, should suffer somewhat when they include extra features
not relevant to the image category being retrieved. One caveat applies: if the
amount of training data is not sufficient, boosting may not be able to prop-
erly extract features that generalize to unseen images. The experimental results
should indicate whether this is a common problem in practice.

This paper breaks no new ground with regard to boosting algorithms them-
selves; the reader should refer elsewhere for details [5]. Boosting works by re-
peatedly learning to classify a labeled training set under different weightings of
the training instances. The reweighting serves to focus effort on boundaries and
special cases, sharpening the definition of the target class. Both theory and prac-
tice indicate that the weighted vote of all the classifiers created during training
will be more accurate than the original unboosted classifier [12, 13].

Note that boosting is typically used not for retrieval but for classification,
and it requires a training set of both positive and negative instances of the
class to be retrieved. Yet it also can perform retrieval. Once trained, a boosted
classifier assigns a score to any image that can be used for ranking of unknown
images with respect to the trained category. Although some have developed ways
to apply boosting within the canonical single-image query model [14], using it
most naturally motivates a shift in methodology away from query-by-example
toward query-by-category. For example, boosting could be used to train a library
of classification models for keyword-based queries, or as input to some larger
system. This paper adopts a methodology based upon trained image classifiers
throughout, even for the unboosted experiments.

3 Experiments

The experiments divide naturally into two parts: those involving unboosted tech-
niques, and those that involve boosted techniques. The methodologies are sim-
ilar. All experiments share a 5x2-fold cross validation setup, a common classi-
fication testing framework [3]. They differ in the amount of training data used:
the unboosted techniques can use all the available data, while the boosted ex-
periments must hold some out (as described below).

For the unboosted descriptors, there are two further divisions into sets of
experiments, depending upon the style in which the training data are used. The
first style mimics query-by-example: each positive image in the training set forms
a single-image query against the which images from the test set are ranked. The
average of all these single-image queries gives the overall recall-precision figures
for the test fold.

The second style of unboosted experiment builds an unboosted nearest-
neighbor classifier. It selects the best exemplars of the class using a greedy ad-
ditive approach: single images are added from the target class to the exemplar
set one by one. The classification rate on the training set forms the criterion for
selecting the next exemplar to add; when no new images can improve the train-



ing error, selection stops. The exemplar set then forms the positive examples
for the nearest-neighbor classifier. Previous work has shown that this approach
works better than simply using all the positive training instance for classifica-
tion, since some of these may be particularly poor exemplars that can lead the
classifier astray [8].

For the boosted experiments, the training data are further split into two equal
subsets, one of which is used to train the boosted classifier, while the other (called
the holdout set) is used to prevent overtraining. (Overtraining refers to situations
where a classifier becomes too attuned to the particular set of examples used in
training, and cannot generalize to the differences present in new data.) When
performance on the holdout set ceases to improve, training stops. Although this
method avoids overtraining, overall performance can be lower than if all the
data were used for training. Nevertheless, the holdout set method maximizes
fairness to the different methods, since they all receive optimal training on the
data available.

The image library consists of 20100 images from the Corel photo CD collec-
tion, and is described in detail elsewhere [8]. Fifteen image categories chosen to
represent a range of difficulty and subject matter make up the target classes.
The names of the fifteen categories appear in the tables of results.

Tables 1 and 2 summarize the results of testing on the retrieval performance
of the unboosted image descriptors. All numbers given in the tables are aver-
age precision. Table 1 shows the results for single-image queries, while Table 2
shows the results for the greedy-exemplar approach. Each row contains results
for one image class, while the columns represent the autocorrelogram, two forms
of color band correlogram, and general correlogram respectively. (The color band
correlograms differ in that the first uses two bands, while the second uses three.)
Since the random fold choice over five replications of the experiment leads to
substantial variance, the standard deviation of each number shown in the table
does not reliably indicate the significance of differences when comparing results
between columns. A paired sample t-test accounts for the variance due to the
random fold choice and reliably indicates which differences achieve statistical
significance. The table uses bold type for performances of the correlogram vari-
ants that differ significantly from that of the autocorrelogram, and underlines
the cases that represent improvements.

The two tables show that increasing the number of features without boosting
tends to decrease the average precision. Although the color band correlograms
do better on a few categories, the general correlogram (with the largest number
of features by far) does uniformly worse than the autocorrelogram. These re-
sults suggest that irrelevant information in the additional features added to the
correlogram variants contain is misguiding the retrieval process.

By contrast, boosting changes the results entirely. Table 3 summarizes the
the retrieval performance of the boosted image descriptors, in the same format as
the tables above. With boosting, the virtues of the correlogram variants become
evident: the descriptors with the most features do the best. Although the large
variances on some categories limit the number of statistically significant results



Table 1. Average precision for correlogram descriptors on 15 image classes, using
unboosted single-image queries. From left to right, columns show the autocorrelogram,
color band correlogram with two bands, color band correlogram with three bands, and
general correlogram. Numbers that differ significantly from the autocorrelogram are
bold, and improvements are underlined. Units are percentages; i.e., perfect retrieval =
100.

Class Auto. CB2 CB3 GC

Race Cars 3.4 ± 0.3 2.6 ± 0.3 2.7 ± 0.3 1.0 ± 0.2
Wolves 2.7 ± 0.2 2.1 ± 0.2 2.2 ± 0.3 2.1 ± 0.3
Churches 1.2 ± 0.1 0.93 ± 0.08 0.94 ± 0.07 0.87 ± 0.15
Tigers 10 ± 1 8.3 ± 1.0 10 ± 2 8.4 ± 1.9
Caves 1.9 ± 0.1 1.4 ± 0.1 1.6 ± 0.1 1.3 ± 0.1
Doors 1.4 ± 0.2 1.4 ± 0.2 1.5 ± 0.3 0.96 ± 0.23
Stained Glass 29 ± 4 27 ± 3 32 ± 3 11 ± 2
Candy 2.6 ± 0.4 2.2 ± 0.3 2.1 ± 0.4 1.6 ± 0.3
MVs 1.3 ± 0.2 1.3 ± 0.2 1.2 ± 0.2 1.0 ± 0.2
Bridges 1.2 ± 0.1 0.99 ± 0.06 0.98 ± 0.05 1.0 ± 0.1
Swimmers 4.2 ± 0.4 5.3 ± 0.4 4.7 ± 0.3 1.4 ± 0.2
Divers 12 ± 1 4.7 ± 0.6 4.8 ± 0.7 2.9 ± 0.7
Suns 5.5 ± 0.3 9.3 ± 0.7 7.5 ± 0.4 2.5 ± 0.2
Brown Bears 1.2 ± 0.2 0.97 ± 0.09 0.96 ± 0.15 0.82 ± 0.18
Cheetahs 4.5 ± 0.3 3.7 ± 0.3 3.8 ± 0.3 3.7 ± 0.5

Table 2. Average precision for correlogram descriptors on 15 image classes, using
greedily chosen exemplars in a nearest-neighbor classifier. From left to right, columns
show the autocorrelogram, color band correlogram with two bands, color band correlo-
gram with three bands. Numbers that differ significantly from the autocorrelogram are
bold, and improvements are underlined. Units are percentages; i.e., perfect retrieval =
100.

Class Auto. CB2 CB3 GC

Race Cars 6.5 ± 6.2 0.79 ± 0.25 0.73 ± 0.17 0.36 ± 0.03
Wolves 6.5 ± 1.4 6.1 ± 1.9 5.2 ± 1.9 3.0 ± 1.4
Churches 1.5 ± 0.3 1.1 ± 0.8 1.4 ± 1.1 1.5 ± 1.4
Tigers 26 ± 7 17 ± 6 20 ± 6 15 ± 6
Caves 1.3 ± 0.2 1.1 ± 0.2 1.0 ± 0.1 0.59 ± 0.05
Doors 1.5 ± 0.7 2.2 ± 1.1 2.7 ± 1.5 0.95 ± 1.00
Stained Glass 9.5 ± 7.6 10.0 ± 5.0 15 ± 5 0.32 ± 0.09
Candy 1.5 ± 0.8 0.72 ± 0.11 1.1 ± 0.8 0.58 ± 0.19
MVs 2.4 ± 1.1 2.6 ± 1.0 2.5 ± 1.0 1.4 ± 1.0
Bridges 1.7 ± 0.8 1.1 ± 0.2 1.1 ± 0.2 1.1 ± 0.2
Swimmers 5.6 ± 5.2 8.7 ± 4.6 8.7 ± 4.7 1.3 ± 1.4
Divers 21 ± 5 11 ± 4 11 ± 4 5.2 ± 3.1
Suns 4.8 ± 1.5 7.4 ± 2.5 6.1 ± 2.6 1.7 ± 0.5
Brown Bears 2.1 ± 1.7 0.94 ± 0.47 1.2 ± 1.3 1.7 ± 1.6
Cheetahs 6.9 ± 4.4 7.6 ± 3.3 7.6 ± 4.6 2.8 ± 2.5



(p < .05), all the comparisons that achieve significance favor the more complex
correlogram versions. This suggests that the boosting process can effectively
select the features relevant to the query class, and that giving it more features
to work with can enhance this action.

As a practical matter, the fact that CB3 can achieve performance near the
levels of the general correlogram is encouraging, since it requires only 2% of
the storage space. Building a retrieval system based on the general correlogram
would be daunting due to its large storage and memory requirements. Thus the
future may belong to representations like CB3 that combine expressiveness with
relative compactness.

Table 3. Average precision for correlogram descriptors on 15 image classes, using
boosted classifiers. From left to right, columns show the autocorrelogram, color band
correlogram with two bands, color band correlogram with three bands. Numbers that
differ significantly from the autocorrelogram are bold, and improvements are under-
lined. Units are percentages; i.e., perfect retrieval = 100.

Class Auto. CB2 CB3 GC

Race Cars 9.4 ± 8.6 19 ± 11 22 ± 12 20 ± 14
Wolves 2.3 ± 4.2 2.4 ± 3.5 2.6 ± 2.5 1.6 ± 1.4
Churches 0.66 ± 1.25 0.76 ± 1.74 0.57 ± 0.67 0.48 ± 0.84
Tigers 16 ± 10 16 ± 5 15 ± 8 18 ± 8
Caves 0.91 ± 1.18 0.82 ± 1.18 1.7 ± 2.4 5.5 ± 15.9
Doors 2.0 ± 2.9 3.0 ± 4.3 1.5 ± 2.1 1.3 ± 2.1
Stained Glass 44 ± 14 50 ± 12 55 ± 16 64 ± 9
Candy 12 ± 7 11 ± 9 12 ± 9 8.3 ± 10.5
MVs 1.1 ± 2.0 0.28 ± 0.41 0.23 ± 0.22 0.56 ± 0.52
Bridges 0.084 ± 0.098 1.2 ± 2.7 0.16 ± 0.14 1.9 ± 5.2
Swimmers 13 ± 10 21 ± 5 20 ± 10 22 ± 8
Divers 49 ± 13 54 ± 12 50 ± 12 52 ± 12
Suns 29 ± 11 32 ± 8 31 ± 6 30 ± 8
Brown Bears 1.3 ± 3.6 5.7 ± 15.9 0.82 ± 1.23 0.89 ± 1.92
Cheetahs 4.4 ± 4.0 7.2 ± 6.9 11 ± 10 9.7 ± 7.1

4 Conclusion

This paper has systematically examined several variants of the correlogram un-
der a variety of experimental conditions. Boosted classification gives the best
average precision over all the experimental frameworks. This result is not un-
expected; previous work has shown that boosting improves the retrieval perfor-
mance of the correlogram [7]. Other work has also shown that boosting can act
as a feature selector, choosing features that are correlated with the target class
and weeding out those that are not (which might otherwise mislead a classifier
by drowning out the significant features) [14]. This paper combines these two



insights by augmenting the standard autocorrelogram with additional features
based upon correlations with bands of similar colors. While the new features may
not be as relevant for image classification and retrieval as those in the standard
autocorrelogram, they can still improve retrieval performance when applied with
boosting. This observation, and its experimental confirmation, shows that more
remains to be discovered about the humble correlogram.
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