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Never the Twain Shall Meet?

Machine Learning
Improved performance 
through boosting & 
other large-margin 
techniques.

Image Comparison
Improved performance 
through better, more 
comprehensive image 
representations.

Location

TextureColor



21 August 2007 Nicholas R. Howe -- Machine Learning and Computer Vision 3

Previous Work

• Tieu and Viola (2000)
– A good start, but limited
– Looks at just one candidate image 

representation
– Simple, feature-based boosting 

(i.e., decision stumps)

• Need for more comprehensive investigation
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Image Classification is Hard

• Classes are diffuse.
• Features correlate weakly with class.
• High dimension (10K+)
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Two Goals of This Work

• Try different ways to apply boosting     
(i.e., different base classifiers)

• Test boosting with different image 
representations
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Review of Boosting

• Base classifier must 
score >50% on 
arbitrarily weighted 
training set.

• Train base classifier 
using multiple weightings 
of training data.

• Combined predictions 
better than single 
classifier alone.
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Options for a Base Classifier

• Many standard classifiers are “feature-based”.
(Decision boundaries orthogonal to feature axes.)

• “Vector-based” classifier may suit images better.
(Decision boundaries are neighborhood around a vector.)
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Vector-Based Classifier

Vp = Σ positive instances
Vn = Σ negative instances
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Bisecting Bisecting 
HyperplaneHyperplane

V⊥ Instances within some 
angular radius of V⊥ are
classified as positive.

pos.
neg.
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Image Representations

• Correlogram 
(Huang et. al.)

• Stairs (Howe & 
Huttenlocher)

• Tieu-Viola • Histogram     
(Swain & Ballard)
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Evaluation Mechanism

• 20K images (Corel)
• 5 categories
• 5x2 cross validation
• Unboosted control:

k-Nearest Neighbor (kNN)

⇒ ROC curves
Comparison based on area under curve.
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Comparison: Image Reps

• Correlograms do best, T-V worst.
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Comparison:  Base Classifier

• Best method varies with 
size of feature space.

* Note differing y axes

**
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More on Base Classifier

• Mid-sized feature spaces 
show fewer trends.
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Conclusion

• Boosting works with a range of image 
representations.  (No surprise!)

• Boosted correlogram is most 
successful representation. 

• Best base classifier varies with 
size/complexity of feature space.


	Boosted Image Classification:�An Empirical Study
	Never the Twain Shall Meet?
	Previous Work
	Image Classification is Hard
	Two Goals of This Work
	Review of Boosting
	Options for a Base Classifier
	Vector-Based Classifier
	Image Representations
	Evaluation Mechanism
	Comparison: Image Reps
	Comparison:  Base Classifier
	More on Base Classifier
	Conclusion

