Can We Find Pharmaceutical Calculations Low Performers Before Class Starts?: Identifying Problem Solving Deficiencies

Benjamin D. Aronson
Ohio Northern University, b-aronson.1@onu.edu
Emily T. Eddy
Ohio Northern University
Jennifer K. Grundey
Ohio Northern University, j-kline.3@onu.edu
Brittany L. Long
Ohio Northern University, b-brock@onu.edu
Jessica L. Hinson
Ohio Northern University, j-hinson@onu.edu

See next page for additional authors

Follow this and additional works at: https://digitalcommons.onu.edu/phar_faculty
Part of the Medical Education Commons, Other Pharmacy and Pharmaceutical Sciences Commons, and the Scholarship of Teaching and Learning Commons

Recommended Citation

Aronson BD, Eddy ET, Grundy J, Long BL, Hinson JL, Sobota KN. Can We Find Pharmaceutical Calculations Low Performers Before Class Starts?: Identifying Problem Solving Deficiencies. Accepted poster for the 2019 American Association of Colleges of Pharmacy Annual Meeting, Chicago, Illinois.

This Poster is brought to you for free and open access by the Pharmacy at DigitalCommons@ONU. It has been accepted for inclusion in Pharmacy Faculty Scholarship by an authorized administrator of DigitalCommons@ONU. For more information, please contact digitalcommons@onu.edu.

Authors

Benjamin D. Aronson, Emily T. Eddy, Jennifer K. Grundey, Brittany L. Long, Jessica L. Hinson, and Kristen F. Sobota

Can We Find Pharmaceutical Calculations Low Performers Before Class Starts?: Identifying Problem Solving Deficiencies

Benjamin D. Aronson, Emily T. Eddy, Jennifer Grundey, Brittany L. Long, Jessica L. Hinson, Kristen F. Sobota

BACKGROUND

- Recent increases in deficient pharmaceutical calculations grades have prompted internal reflection
- Our experiences suggest some current students have difficulty applying problem solving skills to simple algebra-based word problems
- Previous research suggests success in calculation courses is related to undergraduate GPA and PCAT scores, ${ }^{1,2}$ as well as time since and level of previous math exposure ${ }^{2}$
- Research is lacking as to what factors are related to calculations success for direct-entry students
- One older study was located that linked a basic math test to success in a calculations course ${ }^{1}$, but the assessment used was not published

OBJECTIVES

- To determine the relationship between an algebra-based word problem pretest and pharmaceutical calculations performance to identify those at risk of low performance

METHODS

Sample

- Student pharmacists from the College of Pharmacy at Ohio Northern University, a 0-6 direct-entry program

Procedure

- First year students were given an 18 item pretest during spring semester
- The pretest contained algebraic word problems assessing percent, proportional reasoning, and unit analysis
- Prior to the pretest, students were asked to provide informed consen
- During the fall semester of their second year, those students completed a course containing pharmaceutical calculations content, containing three 50-point summative assessments
- Preadmission demographic characteristics were collected from student records
- This study was deemed exempt from full IRB review

Analysis

- Pretest scores were compared with the calculations assessments
- Linear regression was used to understand the relationship between pretest and calculation assessment scores after controlling for demographic and pre-admission factors

| RESULTS | | | | | | | | | \|MPL|CAT|ONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Preadmission Demographics
 - Out of 123 students completing both courses, 118 provided consent for this study
 - The mean age of participants was 19.69
 - Female was listed as gender for 62.7%
 - The mean ACT score was 26.53
 - The mean high school GPA was 3.99 | Calculations Assessments
 - Figure 2 shows the distribution of letter grades obtained from all calculations assessments, of which the mean was 115.7 / 150 (77.1%)
 Figure 2. Letter grade obtained from sum $40 \% \quad$ of calculation assessments | Table 1. Correlations between select study variables | | | Table 2. Linear regression for calculations sum score | | | | - After controlling for age, gender, earlier academic performance, and standardized test scores, an algebra-based word problem pretest was associated with performance on later pharmaceutical calculations assessments |
| | | | | | | | | | |
| | | 1. Calculations sum score | 1 | | Constant | | | . 582 | |
| | | 2. Pretest score | . 413 * | 1 | Pretest score | | . 241 | . 008 | |
| | | 3. Age | . 009 | -. 009 | Age | | . 038 | . 650 | - Although the pretest is associated with calculations performance, there is no perfect cutoff using the pretest alone (i.e., sacrificing sensitivity for specificity or vice versa depending on criteria) |
| Pretest Performance
 - Figure 1 shows the distribution of pretest scores
 - The mean score was $15 / 18$ (83.3\%), ranging from $5(27.8 \%)$ to 18 (100\%) | 30\% | 4. Gender (1 = female) | -. 025 | -. 008 | Gender (1 = female) | | -. 011 | . 901 | |
| | 25\% | 5. High school GPA | .214* | . 134 | High school GPA | | . 016 | . 864 | |
| | | 6. ACT math sub-score | .517* | . 387^{*} | ACT math sub-score | | | . 013 | |
| | 20\% 15\% | 7. ACT science sub-score | .421* | .278* | ACT science sub-score | | | . 559 | - The next step in this line of inquiry is to determine how to reduce this deficit through deliberate supplementary content and structured problem solving activities for those in need |
| 25\% Figure 1. Points obtained on pretest | 10\% | 8. ACT English sub-score | . $392 *$ | .246* | ACT English sub | -score | . 135 | . 218 | |
| | | * p < 0.05 , listwise $\mathrm{n}=105$ | | | * $\mathrm{p}<.05 ;$ listwise $\mathrm{n}=105 ;$ model adjusted $\mathrm{r}^{2}=.295$ | | | | |
| 20\% | 0\% | Table 3. Possible cutoff criteria and respective parameters | | | | | | | |
| 15\% | Correlations and Linear Regression
 - Table 1 shows correlations between select study variables, and Table 2 shows a linear regression model for calculations sum scores | Sensitivity Specificity Accuracy | | | | | | | |
| 10\% | | Less than 100\% on pretest | | | 1.00 | . 170 | . 381 | | REFERENCES |
| | | Less than 90% on pretest | | | . 833 | . 420 | . 525 | | |
| 5\% | Cutoff Scores
 - Table 3 explores parameters of various pretest cutoff to predict passing pharmaceutical calculations assessments (i.e., >70\%) | Less than 80% on pretest Less than 70\% on pretest | | | . 633 | . 727 | . 703 | | 1. Latif DA. 2002 . The relationship among pharmacy students' basic math scores, traditional preadmission indicators, and pertormance |
| | | | | | . 333 | . 898 | . 754 | | in a pharmaceutical calculations course, J Pharm Teach, 10(1):17-29. |
| \%\% $\begin{array}{llllllllllllllll}5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18\end{array}$ | | Either \#3 or \#7 incorrect | | | . 733 | . 750 | . 746 | | 1. Conn KM, Birnie C, McCaffrey D, \& Brown J. 2018. The relationship between prior experiences in mathematic and pharmacy school success, Am J Pharm Educ, 82(4): Article 6257. |

