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Cascade of Magnetic-Field-Induced Quantum Phase Transitions
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We report magnetocaloric and magnetic-torque evidence that in Cs2CuBr4—a geometrically frustrated

Heisenberg S ¼ 1
2 triangular-lattice antiferromagnet—quantum fluctuations stabilize a series of spin states

at simple increasing fractions of the saturation magnetization Ms. Only the first of these states—at

M ¼ 1
3Ms—has been theoretically predicted. We discuss how the higher fraction quantum states might

arise and propose model spin arrangements. We argue that the first-order nature of the transitions into

those states is due to strong lowering of the energies by quantum fluctuations, with implications for the

general character of quantum phase transitions in geometrically frustrated systems.

DOI: 10.1103/PhysRevLett.102.257201 PACS numbers: 75.30.Kz, 75.40.Cx, 75.50.Ee

Geometric frustration appears in a wide variety of physi-
cal systems [1–3]. In a classical system, this frustration
leads to a large number of states of identical energy.
Quantum fluctuations can lift this degeneracy, creating
classically unexpected ground states and excitations.

For one of the simplest possible frustrated systems—a
Heisenberg antiferromagnet with spins of quantum number
S ¼ 1

2 arranged on a triangular lattice—theory predicts that

quantum fluctuations should stabilize a novel up-up-down
(uud) ground state [4–6]. Because this collinear state pre-
serves the continuous rotation symmetry of the spin
Hamiltonian, low-energy excitations are separated from
the ground state by energy gaps, resulting in the ground
state of constant magnetization equal to 1

3 of the saturation

magnetizationMs over a finite field range. Experimentally,
however, Cs2CuBr4 is the only known S ¼ 1

2 triangular-

lattice antiferromagnet in which this up-up-down state
occurs [7–9]. The suppression of this quantum stabilized
state with increasing in-plane anisotropy prevents its for-
mation in the isomorphic compound Cs2CuCl4 [5,6].

The spin Hamiltonian for Cs2CuBr4 is given by

H ¼ J1
X

hi;ji
~Si � ~Sj þ J2

X

hi;ki
~Si � ~Sk; (1)

where J1 ¼ 11:3 K for nearest-neighbor coupling along
the b axis and J2 ¼ 8:3 K for weaker nearest-neighbor
coupling within the bc plane [10]. Not included in the
Hamiltonian are two small perturbations expected to be
present: an antiferromagnetic interlayer coupling that
causes the spins to order at 1.4 K in zero field, and an
anisotropic superexchange interaction (Dzyaloshinskii-
Moriya) that causes the spins to lie along the plane of the
triangular lattice at zero field. The Dzyaloshinskii-Moriya
interaction is also likely responsible for the suppression of
the up-up-down transition in fields applied along the a axis

(perpendicular to the triangular lattice) in Cs2CuBr4. In
Cs2CuCl4, each of these is about 5% of J1 [11].
Here we report the complete high-field phase diagram of

Cs2CuBr4 up to the saturation magnetic fieldHs ¼ 28:5 T.
The phase diagram was established through a combination
of magnetocaloric and magnetic-torque measurements. In
addition to the expected ordered antiferromagnetic phase at
M
Ms

¼ 1
3 , we find a theoretically unexpected cascade of

additional ordered antiferromagnetic phases at higher frac-
tions of Ms.
The magnetocaloric experiment employed a miniature

sample-in-vacuum calorimeter [12] inserted into the mix-
ing chamber of a dilution refrigerator. Inside the calorime-
ter, the 5.35 mg sample was directly mounted on a
0:5 mm� 1 mm� 50 �m ruthenium-oxide resistance
thermometer with a minimum amount of nail polish. The
sample and thermometer were weakly thermally linked via
25 �m diameter phosphor-bronze wires to a sapphire ring
embedded in a 7.0 mm diameter silver platform serving as
the thermal reservoir. These wires also served as the elec-
trical leads to the sample thermometer and mechanical
support for the sample and thermometer.
When the magnetic field—produced by a 33 T resistive

magnet and applied along the crystallographic c axis [13]
of the sample—is slowly swept up or down, the magneto-
caloric effect produces a temperature difference �T be-
tween the sample and the thermal reservoir that depends on
the heat capacity CH, the temperature dependence of the
magnetization ð@M=@TÞH, the field-sweep rate _H, and the
weak link’s thermal conductance � [14]:

�T ¼ �T

�

��
@M

@T

�

H
þ CH

T

dð�TÞ
dH

�
_H: (2)

Reversing the field-sweep direction reverses the sign of the
temperature difference, thereby revealing the sign and
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magnitude of ð@M=@TÞH. Transitions between phases ap-
pear as deviations from a smoothly varying�T. First-order
phase transitions will also reveal the release (absorption) of
latent heat as the sample enters (leaves) a lower entropy
state. At sufficiently low temperatures, there will also be an
additional heat release as a metastable state gives way to
the lower energy stable state for both field-sweep direc-
tions through a first-order transition.

Magnetocaloric-effect measurements can be made using
swept fields [14], stepped fields [15], or modulated fields
[16]. The resolution and reproducibility of dc field mag-
netocaloric measurements have traditionally been limited
by temperature fluctuations, drift, and slow thermal re-
sponse, all requiring high sweep rates producing additional
heating. In this experiment, we have overcome these chal-
lenges to swept-field measurements through actively sta-
bilizing the temperature of the thermal reservoir (sapphire
and silver platform), minimizing the heat capacity of the
addenda, and reducing the thermal relaxation time to less
than 1 s. The reservoir temperature was maintained at a
constant true temperature using the algorithm outlined in
Ref. [17] to correct for the magnetoresistance of the sensor.

Magnetic phase transitions appear as anomalies in the
sample temperature as shown in Fig. 1(a). The phase
diagram deduced from our magnetocaloric-effect data is
shown in Fig. 1(c), along with phase boundaries for fields
H � 18 T from Ref. [10]. Additional evidence for this
diagram is provided by the magnetic-torque data shown
in Fig. 1(b). Even for S ¼ 1

2 spins, theory has long assumed

that the field region above the uud phase contains only one
coplanar phase [4], at least for the isotropic Heisenberg
Hamiltonian. We find instead a remarkable cascade of
phases in this field region. The boundaries between these
ordered phases are nearly vertical, indicating that the phase
diagram is primarily determined by the zero-temperature
energies, not the entropies, of different states. We are
witnessing a cascade of quantum phase transitions.

The uud ‘‘plateau’’ phase appears in the field range
12.9–14.3 T [7–10]. Below it is phase I, which is known
to be incommensurate [8,9,18]. Above it lies phase IIa,
which is also incommensurate but distinct from phase I
[18]. The transitions between the uud phase and phases I
and IIa are first order [8–10,19] and the low-lying excita-
tions in this phase are gapped [10,19].

In the field range 18.8–20.4 T, a new phase appears, the
A phase. As seen in Figs. 1(a) and 1(b), the transitions to it
from phases IIa and IIb are second order. Phase IIb, in the
field range 20.4–22.1 T, may in fact be the same as
phase IIa.

The magnetization of the A phase corresponds to
roughly 1

2 of the saturation magnetization but forms no

plateau [8], suggesting that this phase is close to being
collinear but is gapless. One likely arrangement for the
nearby collinear state consists of alternating rows of up-
down spins and only up spins, as depicted in Fig. 2(b),

an arrangement predicted to be the M=Ms ¼ 1
2 ground

state of a triangular-lattice ring-exchange model for two-
dimensional solid 3He [20].
The most peculiar of all the new phases is the B phase,

appearing at 22.1 T and only 70 mT wide. As seen in
Fig. 1(a), the transitions between the B phase and
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FIG. 1 (color online). (a) Evolution of the temperature differ-
ence between the sample and thermal reservoir due to the
magnetocaloric effect at 180 mK, with arrows indicating the
field-sweep directions. (b) Derivative of magnetic torque with
respect to H at temperatures near 400 mK. To produce a torque,
the magnetic field was slightly tilted away from the c axis toward
the b axis, by the angle indicated for each curve. (c) Magnetic
phase diagram deduced from the magnetocaloric-effect data
taken at various temperatures. Circles indicate second-order
phase boundaries, whereas other symbols except the open dia-
monds indicate first-order boundaries. Open diamonds are the
positions of the large features near Hs and do not indicate a
phase boundary. Lines are guides to the eye. Data for H � 18 T
are from Ref. [10], where open circles are from specific heat.
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phases IIb and III are first order. Like the A phase, the
B phase can be recognized in retrospect as a small feature
in the magnetic induction measured in pulsed magnetic
fields [8]. Unlike the A phase feature, however, the feature
of the B phase is pointed, suggesting a magnetization
plateau and thus a collinear state with gapped low-lying
excitations, at approximately 5

9 of Ms.

Generalization of Lieb-Schultz-Mattis theorem [21] pre-
dicts that any gapped, ordered state must be commensurate
[22–24]. Indeed, NMR of 133Cs shows that the B phase is
commensurate [25]. The collinearity and commensurate-
ness suggest that the B phase may be the 5

9 state depicted in

Fig. 2(c), a repetition of two rows of uud spins and one row
of all up spins. Quantum calculations of the energy of this 5

9

state have not yet been performed, but classically, this state
is higher in energy than the coplanar and canted-spiral,
three-sublattice states. Therefore, it is most likely that this
new collinear, commensurate phase at 5

9 of Ms—like the

previously known collinear, commensurate phase at 1
3 of

Ms—owes its existence to strong quantum fluctuations.
Phase III, in the field region 22.1–23.1 T, is similar to

phases IIa and IIb according to the magnetocaloric effect,
implying that it is also incommensurate. The shapes of the
boundaries between the B phase and phases IIb and III
indicate that phase IIb is higher, whereas phase III is lower,
in entropy than the B phase.

Phase IV directly borders on phase III at a second-order
transition line. The boundary between this phase and the
high-temperature, paramagnetic phase extrapolates to at
most 26 T at zero temperature, well short of Hs ¼
28:5 T. This surprising behavior indicates that the ground

state of phase IV is higher in energy than a highly polar-
ized, quantum-mechanically disordered state in the region
starting from at least 26 T and extending to Hs.
The 2

3-magnetization-plateau phase [8] is observed here

in the field region 24.5–25.0 T. The boundaries between
this phase and phases IVand Vare first order. The require-
ment of collinearity and commensurateness for ordered
magnetization-plateau states implies that the ground state
of this phase should be an arrangement such as shown in
Fig. 2(d). Exact diagonalization for small systems shows
that the ground state at M=Ms ¼ 2

3 is indeed collinear, for

0:5 & J2=J1 & 0:8 [26]. Classically, this 2
3 state is, like the

lower fractional states, higher in energy than the coplanar
and canted-spiral, three-sublattice states. Stabilization of
the commensurate, collinear 2

3 state observed here appears

to imply the existence of large quantum fluctuations ca-
pable of significantly lowering the energy of this state
below its classical expectation.
Phase V covers the highest field region up to Hs. In this

phase, the magnetization increases steeply with increasing
field [8], suggesting very rapid suppression of quantum
fluctuations by the increasing field. The shape of the tran-
sition line between phase V and the paramagnetic phase is
unlike all others in Fig. 1(c), exhibiting slightly reentrant
behavior at about 25 T. These two features suggest that the
phase is quite different from phases I–IV. One possibility is
that this is a canted-spiral phase.
Near Hs, the sample temperature exhibits a large peak

during an upward field sweep and a deep dip during a
downward sweep [Fig. 1(a)]. They indicate a rapid change
of entropy with magnetic field, signifying the emergence of
a magnon energy gap at Hs.
The unexpected cascade of ordered phases within the

antiferromagnetic phase boundary of Cs2CuBr4 is quite
unlike the simple phase diagram of the semiclassical,
spin- 52 , triangular-lattice antiferromagnet RbFeðMoO4Þ2
[27]. The strong contrast demonstrates that even the sim-
plest model of geometrically frustrated antiferromagnetic
interactions is much richer than previously imagined, when
it is governed by quantum mechanics, with important
implications for many current theoretical models of super-
conductivity and magnetism.
One important implication is, of course, the prospect of

new, as yet undiscovered quantum states in such models,
but a second is that the transitions to these states are
commonly first order. The transitions to all three gapped
phases observed here—the uud phase at 1

3 Ms, the very

narrow B phase at 59Ms, and the additional plateau phase at
2
3Ms—are first order. In contrast, theory usually predicts

second-order transitions to a magnetization-plateau-
forming state with gapped low-lying excitations [4,28].
As has been pointed out by Alicea et al. [6], however,
one possible explanation of their first-order character could
be due to the Dzyaloshinskii-Moriya interaction, which
introduces a cubic term in the free-energy functional.

M/M  =1/ 3

a b

dc

s M/M  =1/ 2s

M/M  =5/ 9s M/M  =2/ 3s

FIG. 2 (color online). Collinear states on the triangular lattice
at M=Ms ¼ 1

3 ,
1
2 ,

5
9 , and

2
3 . Arrows indicate down spins antipar-

allel to the magnetic field. Vertices with no arrows indicate up
spins pointing in the direction of the field, with broken lines
marking rows containing both spins and solid lines marking rows
of only up spins. The A phase may resemble the M=Ms ¼ 1

2

state, albeit not collinear.
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Here we suggest a new, alternative scenario for consid-
eration. In general, as illustrated in Fig. 3(a), when quan-
tum fluctuations select state P as a ground state with energy
gaps to the lowest-energy excitations, a cusp must appear
in the ground-state energy E as a function of magnetization
M [29]. These excitations are in fact the two ground states
adjacent to P, as shown in Fig. 3(b). For second-order
transitions, the critical fields Hc1 and Hc2 are the two
derivatives @E=@M at P. Over the field range between
Hc1 and Hc2 [Fig. 3(b)], P remains the lowest state in the
‘‘total’’ energy E �MH [30], manifesting itself as a mag-
netization plateau. When H is either at Hc1 or Hc2, one of
the excitations becomes gapless. We speculate, however,
that preferential lowering of P by quantum fluctuations
might produce inflection points in the vicinity of P, as
shown in Fig. 3(c). In that case, the lowest total-energy
state will change discontinuously at Hc1 andHc2 from P to
Q1 and Q2 [defined in Fig. 3(c)]. The transitions are now
first order, and are accompanied by nonvanishing energy
gaps, as depicted in Fig. 3(d). Because this scenario, if
verified, relies only on the presence of quantum fluctua-
tions and not the particulars of the spin-orbit interactions in
Cs2CuBr4, it would be applicable to a broad range of
quantum phase transitions in geometrically frustrated
systems.
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FIG. 3 (color online). Ground-state energy E of a frustrated
quantum-mechanical Heisenberg antiferromagnet as a function
of magnetization M. (a) Macroscopic behavior of EðMÞ, ex-
hibiting a cusp at a gapped ground state P. (b) Microscopic,
extremely expanded view of the region near P, revealing
quantum-mechanically discrete ground states (dots). (c) Macros-
copic behavior, when the transitions to state P are first order.
(d) Corresponding microscopic view. In (a) and (c), the magnetic
fields are in dimensionless units.
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