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Abstract. An antiferromagnetic system on a 2-D triangular lattice leads to geometric
topological frustration. This ideal system has been the subject of theoretical investigations.
One experimental realization of this system is the compound Cs2CuCl4. Various magnetization,
heat capacity, neutron scattering and NMR studies have identified several magnetic transitions
when the magnetic field is applied along one of the three principal axes. The current work
investigates the evolution of these phases at intermediate angles as the crystal is rotated relative
to the magnetic field. These phases were investigated using a novel rotating calorimeter allowing
complete coverage of the experimental parameter space. New magnetic phases only existing at
intermediate angles have been found.

1. Introduction
Geometric frustration for an antiferromagnetic system has long been studied on a 2-D triangular
lattice as the simplest realization of the phenomenon. Geometric frustration even with a simple
basic interaction leads to a highly degenerate ground state. Application of a magnetic field
reveals the highly complex phase structure Gekht1996. If a Dzyaloshinskii-Moriya interaction
is present, different phases dominate when the magnetic field is applied along different crystal
lattice directions. The 2-D S = 1

2 Heisenberg antiferromagnet on a triangular lattice with nearest
neighbor interactions is an excellent system to investigate this phenomenon.

The ideal triangular lattice would require that J = J ′ where J is the antiferromagnetic spin
coupling along the base of the triangular lattice and J ′ is the coupling along the diagonal bonds.
In compound Cs2CuCl4 the coupling constants are unequal (J ′/J ' 0.33), and the adjacent
layers are very weakly coupled (≈ 0.045J) [2]. The weak exchange energies J ' 4 K allow the
phase diagram to be accessed at moderate magnetic field. It has been shown that in different
orientations the phase diagram is sensitive to very small interactions introducing entirely new
phases [3].

The alternating layers of Cs ensure weak coupling between adjacent layers as shown in
Figure 1. The most natural start of investigation is to apply a magnetic field along the a
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Figure 1. Cs2CuCl4 lattice
showing inequivalent layered
planes (red and blue). Cs
atoms dark green and Cu
atoms dark blue.

Figure 2. Cs2CuCl4 lattice viewed along the a axis
showing triangular coordination of Cu atoms (dark blue).

axis perpendicular to the triangular lattice planes. This leads to a very simple phase diagram
as derived by Coldea et al [4] and shown in Figure 3. The present work re-examines this phase
diagram at the temperature profile marked by the red line.

Figure 3. Phase diagram for
Cs2CuCl4 with the magnetic
field applied along the a axis.
The cone phase persists and
evolves at higher field to the
saturated paramagnetic state.

Figure 4. Phase diagram for
Cs2CuCl4 with the magnetic
field applied along the b axis
showing more complex behav-
ior with the spiral state and
other regions of stability.

Figure 5. Phase diagram for
Cs2CuCl4 with the magnetic
field applied along the c axis.
A complex phase diagram
where the spiral state ends at
even lower field.

Further work by Tokiwa et al [5] extended the phase diagram to fields applied along the
b axis (along the triangle bases) and c axis. This reveals a much richer phase diagram with
several additional phases identified by NMR measurements [6]. The b axis and c axis are similar
– aside from additional phases when the magnetic field is applied along the c axis – but on
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their own provide no indication how the cone state of the a axis evolves to the spiral states of
the b and c axes. The current work utilizes a unique low temperature rotatable calorimeter [7]
using magnetocaloric effects to map the evolution of these phases as the magnetic field is rotated
between the principal axes of the lattice.

2. Results
As the magnetic field is swept while holding the sample at constant temperature in the
calorimeter, the transitions between phases will involve either a peak in heat capacity or a
latent heat depending on the nature of the transition. Our very sensitive determination of
phase boundaries can detect small (< 1 mK) changes in temperature as the field is swept. The
Cs2CuCl4 sample of approximately 1 mg mass was thermally linked to a silver platform in a
vacuum cell. The platform was regulated at a constant temperature above the base temperature
of the dilution refrigerator. This temperature was regulated independent of field by correcting
the magnetic field dependence of the resistance using a previously developed algorithm [8].
Small variations in the sample temperature as the field was swept give the magnitude of the
magnetocaloric effect.

The phase diagram was determined at 175 mK for all angles as the calorimeter was rotated
from the field along the c axis (most complex) to the a axis (simplest phase diagram). The
data are shown in Figure 6, along with the phase identifications as used by Coldea et al [2] and
Yoshida et al [6] as determined by NMR.
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Figure 6. Phase diagram of Cs2CuCl4 as the sample angle to the magnetic field is changed.
The black x symbols show the saturation field. The black x symbols and the open light blue
triangles were measured by torque magnetometry at a temperature of 21 mK [9].

The dome between 3.8 and 7 tesla up to 20◦ becomes very difficult to resolve in the region
where the phase boundary becomes parallel to the abscissa in the figure. In this region the
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ordinary magnetocaloric effect becomes very weak. In this case we make use of the gyro-
magnetocaloric effect [10], where holding the temperature and magnetic field constant the
sample is rotated with respect to the field while recording small changes in temperature. Clearly
defined transitions are resolved using this technique. The blue square symbols show transitions
determined in this manner.

It is known that Cs2CuCl4 has a spiral ground state due to the Dzyaloshinskii-Moriya
interactions [2]. We find that the high and low field cone phases merge as the magnetic field
vector approaches the a axis above 80◦ and that these phases must be identical. At angles above
20◦ where the two-sublattice dome closes a new phase appears that is stable from 20◦ to 80◦

and disappears just before the field becomes parallel with the a axis. The narrow ellipsoidal
region separating the spiral and cone phases collapses at high angle and disappears resulting in
the simple phase diagram along the a axis. Finally note that the phase boundary separating
the spiral phase from the cone phase extends continuously to the a axis as an addition to the
previous phase diagram shown in Figure 3.

If the sample is rotated from the many transitions of the c axis into the b axis there are
similar regions identified but with a different angular dependence. This angular dependence of
the phase diagram is shown in Figure 7.

86420

Field [tesla]

80

60

40

20

0

An
gl

e 
(0

° =
 c

 a
xi

s)

H//c

H//b

Saturation Field

Two Sublattice

Co
ne

Ellipsoidal

Sp
ira

l

Co
ne

New?

Figure 7. Phase diagram of Cs2CuCl4 as the sample angle to the magnetic field is changed.
The black x symbols show the saturation field. The black x symbols and the open light blue
symbols were measured by torque magnetometry at a temperature of 21 mK [9].

In this case the ellipsoidal region extends to the b axis; however, the transitions between this
phase and the spiral phase becomes very weak as the phases merge. The two-sublattice phase
extends further from the c axis but eventually closes and disappears at angles higher than 60◦.
In this phase diagram, the lower-field cone phase also disappears at high angles and does not
merge with the higher-field phase which survives at angles up to 90◦. The exact nature of the
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new high field phase has not been determined by these bulk thermodynamic measurements.

3. Conclusions
We have determined the phase diagram of Cs2CuCl4 at low temperature as a function of magnetic
field and angle. The phases identified by magnetocaloric and gyro-magnetocaloric effects largely
confirm previous work along the three principal crystallographic axes. However, the previous
identification of phases along these axes must be modified to account for the tracking of these
phase boundaries as a function of angle. The extension of the spiral-cone boundary to the
a axis and the appearance of a new intermediate angle phase in this material show that the
rich and complex behaviors of this spin 1

2 triangular-lattice Heisenberg antiferromagnet need
further investigation and modeling. Extension of this work to higher temperatures would confirm
and map the intermediate angle behavior on the previously determined field-temperature phase
diagrams.
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