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Clustered Networks Protect Cooperation

Against Catastrophic Collapse

Gwen Spencer∗

Smith College, Northampton, MA 01063, USA

Abstract

Assuming a society of conditional cooperators (or moody conditional cooperators), this computational
study proposes a new perspective on the structural advantage of social network clustering. Previous work
focused on how clustered structure might encourage initial outbreaks of cooperation or defend against
invasion by a few defectors. Instead, we explore the ability of a societal structure to retain cooperative
norms in the face of widespread disturbances. Such disturbances may abstractly describe hardships
like famine and economic recession, or the random spatial placement of a substantial numbers of pure
defectors (or round-1 defectors) among a spatially-structured population of players in a laboratory game,
etc.

As links in tightly-clustered societies are reallocated to distant contacts, we observe that a society
becomes increasingly susceptible to catastrophic cascades of defection: mutually-beneficial cooperative
norms can be destroyed completely by modest shocks of defection. In contrast, networks with higher
clustering coefficients can withstand larger shocks of defection before being forced to catastrophically-
low levels of cooperation. We observe a remarkably-linear protective effect of clustering coefficient that
becomes active above a critical level of clustering. Notably, both the critical level and the slope of this
dependence is higher for decision-rule parameterizations that correspond to higher costs of cooperation.
Our modeling framework provides a simple way to reinterpret the counter-intuitive and widely-cited
human experiments of Suri and Watts (2011) while also affirming the classical intuition that network
clustering and higher levels of cooperation should be positively associated.

Keywords: cooperation, clustering, threshold models, social influence, contagion, repeated game-play.

1 Introduction and Motivation

The ubiquity of short average path lengths in social networks is often explained as reflecting the advantage
of fast diffusion of information (starting from the foundational work of Granovetter (1973)). In graphs with
low density, “weak ties” that reach to otherwise-distant members of the network are key to obtaining short
average path lengths, giving rise to a “small world” property (Granovetter (1973); Watts & Strogatz (1998)).
A model in which all utility is gained through quick access to information would predict a strong preference
for these longer ties. At the same time, observations of significant network clustering (which requires many
short ties to neighbors of neighbors) are also ubiquitous in real data about social networks. In fact, cluster (or
community) detection is a very active area of contemporary research, For example, see (Fortunato (2010));
(Leskovec et al. (2010)), and many others. What advantages might contribute to the popularity of short
ties?

∗Corresponding author: Gwen Spencer. Address: Burton Hall, Smith College. Northampton, MA 01063. Phone: 413-585-
3830. Fax: (413) 585–3786. gspencer@smith.edu. This research did not receive any specific grant from funding agencies in the
public, commercial, or not-for-profit sectors.
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While some factors that encourage clustering are circumstantial (e.g. it is easier to meet friends of friends)
there is also a recent interest in ways that social network clustering may itself be utility-providing.1 Moving
away from well-mixed populations, extensive classical study in evolutionary biology and evolutionary game
theory has posited that a stable (or semi-stable) interaction networks could promote cooperation among
self-interested individuals. Nowak et al. (1994) conducted early computational work in lattices (see Nowak
(2006) and Roca et al. (2009) for more comprehensive surveys). Sociologists have studied “outbreaks of
cooperation” (Glance & Huberman (1993)): could more-clustered network structure foster sudden transi-
tions to widespread cooperation (Watts & Strogatz (1998))? Since, “many of the benefits sought by living
things are disproportionately available to cooperating groups” (Axelrod & Hamilton (1981)) clustered social
structure would then yield advantage, and might be interpretable as strategic.

We conduct a computational study to explore another source of utility that can stem from highly-clustered
social networks. Suppose that a society starts from a state of widespread cooperation: how robust is this
widely-cooperative equilibrium against a wide rash of defections? Consider acts of theft that are unlikely to
be discovered. In times of plenty, the cooperative norm of not stealing in such cases may be comfortably
maintained. In contrast, during times of pressing hardship (e.g., depression or famine), individuals may
be increasingly likely to weigh the financial benefits of stealing above the (often non-monetary) benefits of
adhering to a cooperative norm of not stealing. If thefts are no longer rare, and individuals are conditional
cooperators or moody conditional cooperators,2 how will behavior evolve in the wider society?

This unobserved-theft motivation references a common game-theoretic interpretation of the decision to
conditionally cooperate as the outcome of a cost-benefit calculation. In particular, each individual weighs a
(usually fixed) cost of cooperation against a benefit of cooperation that is non-decreasing in the fraction of
(nearby) cooperators. In economics, such a benefit function is said to exhibit a network effect. Our question
about robustness of cooperative norms supposes that for various external reasons, the cost-benefit calculations
of a sizable number of individuals is temporarily perturbed so that they choose to defect in circumstances
where they might have typically cooperated. In addition to this abstract economic argument about how
spontaneous temporary defections might emerge we mention several behavioral phenomena documented in
repeated networked game play that could threaten long-term levels of cooperation in similar ways. First,
in human experiments, the uncontrolled spatial placement of large percentages of round-1 defectors and
even the pure defectors from Grujić et al. (2010) functions as a randomly-distributed shock to cooperation:
can long-term cooperation thrive in the network despite these “bad actors” entering the game as defectors?
Secondly, networked human experiments have documented exploration behavior (players test to gauge what
rewards are available from temporarily switching to defection) (Traulsen et al. (2010)). Our question is
whether such perturbations (or shocks) are less damaging to societies that are structured in special ways.

Can the structure of a society or organization protect against a complete collapse of cooperative norms?
If so, what advantages might this afford? Societies that retain a stable cooperative core despite occasional
modest cascades of defection may regrow widespread cooperative norms more easily and quickly, effectively
making cooperative norms more resilient and leading to a higher stream of benefits over time. How does
reallocation of local short links to long weak ties impact the ability of a social network to retain at least
some cooperative foundation?

Relationship to Existing Literature. The “outbreaks of cooperation” or cooperation as a “social conta-
gion” modeling framework draws on ideas from epidemiology, assuming that the society initially exists in a
widely-uncooperative state before cooperative behavior arises (and begins to spread) (Fowler & Christakis
(2010); Centola & Macy (2007)). This emphasis extends classical (pre-network) exploration of the initial
viability of cooperative strategies (Axelrod & Hamilton (1981)). In this framework, the question is whether
cooperation (arising from a few acts of spontaneous altruism) can invade a society of defectors, and in

1Behaviors which are utility-providing may emerge as a result of conscious rational choice, or unconsciously as a result of
some kind of evolutionary selection at the individual, family, or group level.

2They cooperate or contribute when others they observe also cooperate or contribute, as described in modeling work (Gra-
novetter (1978); Glance & Huberman (1993)), and empirical studies (Fowler & Christakis (2010); Suri & Watts (2011)). The
moody variant also permits dependence on the player’s own past actions (see, for example, Grujić et al. (2010), Gracia-Lázaro
et al. (2012), Grujić et al. (2014)) and (Horita et al. (2017)).
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particular, how the social structure of the society might encourage or discourage such an invasion.
In contrast, behavioral studies seem to suggest that cooperation (arising locally) is a rather natural state

for groups of humans. For example, empirical studies in behavioral economics show that humans learn to
cooperate quite successfully when a game is played repeatedly in small groups (van Huyck et al. (1990);
Knez & Camerer (2000); Weber (2006)). In fact, even types of games that end divisively if played from
a cold start can be played cooperatively by a group that has previous experience playing cooperatively
together (Cason et al. (2012); Knez & Camerer (2000)). Remarkably, cooperative play can even spill over
into play with different groups of partners (Cason et al. (2012); Fowler & Christakis (2010)). Experiments
also indicate that, even for divisive weakest-link games (where payoffs are equal to the contribution of the
stingiest contributor), large cooperative groups can be created by slowly adding new members to groups that
have been observed successfully cooperating (Weber (2006)). Weber’s experiments in (Weber (2006)) were
motivated by the lack of prior lab-based evidence replicating the wide-scale cooperation plainly apparent
in real-world observations: large groups like “firms and communities-where coordination plays a crucial
role...have managed to coordinate successfully.” Inverting the “outbreaks” modeling framework, consider
that an extensive social network in a widely-cooperative state may emerge from long ties being formed
between many small communities where cooperation arose (and stabilized) spontaneously, or by adding new
members slowly to increase the size of successfully-cooperating groups. Once a large increasingly-connected
cooperative society is formed, can this widespread cooperation be maintained?

Mirroring the classical study of how spontaneous acts of personal altruism might seed outbreaks of co-
operation, both theoretical and empirical lines of reasoning highlight the plausibility of spatially-distributed
acts of defection in the midst of a highly cooperative society. Above we’ve mentioned an abstract economic
argument about how depression or famine might cause temporary shifts in the cost-benefit calculations of
some members of a society (increasing the relative cost of cooperation, and thus introducing defections).
We’ve also noted empirical observations of exploration strategies where a player occasionally chooses defec-
tion while surrounded by cooperating neighbors (an exploitation behavior observed in repeated Prisoner’s
Dilemma games), and the existence of substantial populations of players who enter controlled laboratory
games by defecting in round 1 or even applying pure defection strategies for the duration of a repeated
network game. Defections in the presence of widespread cooperation may even be unintentional. In the
behavioral literature, researchers consider the situation of cooperative intentions being interrupted by in-
advertent defections very plausible: extensive human experiments have explored how players respond when
both a neighbor’s intention (to cooperate) and a randomly-realized action are observed (Rand et al. (2015)).
The finding is that subjects behave as if defections which arise without the malicious intent of the opposing
player are less sanction-able. Given a broad range of mechanisms that might introduce many spatially-
distributed defections across a cooperative society, are some social structures better at avoiding catastrophic
collapse of cooperation in the face of these large disturbances?

Our Contribution. Our computational study considers a fully-cooperative network of conditional co-
operators that is hit by a randomly-spatially-distributed shock of defection. Under our basic Conditional
Cooperation (CC) Model individuals apply a widely-studied threshold decision rule to determine when to
cooperate (as in (Granovetter (1978); Glance & Huberman (1993); Watts & Strogatz (1998); Watts (1999))).
Simply, if an h-fraction of their neighbors cooperated in the previous time step, then the individual will co-
operate in the next time step. If an individual is shocked with defection then they defect for a short period
of time regardless of neighbor behavior. What is the long-term impact of such a defection shock on the
society-wide level of cooperation? We focus on what size of defection shock is sufficient to cause catastrophic
collapse of initially widespread norms of cooperation.

We repeat our analysis for a generalization of the basic CC model, the Heterogeneous Moody Conditional
Cooperation (MCC) Model. This extended model was developed and refined across a growing body of
compelling behavioral studies on repeated Prisoner’s Dilemma (e.g. see Grujić et al. (2010), Gracia-Lázaro
et al. (2012), Grujić et al. (2014)) and Public Goods Games (Horita et al. (2017)).

To avoid confusion, we comment explicitly on our purpose in the present study. Extensive behavioral
studies have sought to clarify what decision rules humans use to play a variety of repeated network games.
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For example, Grujić et al. (2010) demonstrated that a heterogeneous MCC Model predicts human play of
networked Prisoner’s Dilemma much more faithfully than an “imitate-the-best” decision model. We take
as given that different games (e.g. Prisoner’s Dilemma vs. Public Goods Games) and different specifics of
game presentation and reward structure can impact the form of player decision rules, and the parameter
values of observed decision rules. Further, an extremely interesting body of work has begun to expose
how reinforcement learning may be the driving mechanism behind the phenomena of Moody Conditional
Cooperation decision rules (e.g. Horita et al. (2017)). In contrast, our interest in the present study is to
understand what implications the widely-studied basic CC and heterogeneous MCC decision rules have for
possible advantages available to specially-structured societies. Our experimental framework could certainly
be applied to other decision rules of interest in the future (for example, the stochastic strategy updating
suggested by the human studies of Traulsen et al. (2010)).

In Sections 3 and 5, using the random-rewiring procedure of Watts & Strogatz (1998), we study Con-
ditional Cooperation (CC) and Moody Conditional Cooperation (MCC) across a “continuous” series of
networks. Community structure is gradually eroded as links are reallocated from dense local communities
to information-seeking long ties. We comment on key observations that appear remarkably consistent across
several synthetic networks and a sizable real-network example.

• A Protective Effect of Clustering. Highly-clustered networks can provide protection of cooperative
norms from catastrophic collapse caused by a randomly-distributed shock of defections in the network.
Nevertheless, some defection shocks are large enough to cause catastrophic collapse across topologies:
pushed into catastrophic collapse by severe defection shocks, the behavior of topologies will be very
difficult to distinguish.

As links are reallocated from local communities, we observe a surprisingly smooth decreases in the
size of shock the network can endure before catastrophic collapse of cooperation. A society with an
increasing prevalence of long ties appears to foster large-scale cascades of defection, even under milder
initial defection shocks.

• The Protective Effect Only Becomes Active Above a “Critical Level of Clustering.” For Conditional
Cooperation, the clustering coefficient at which a protective effect of clustering becomes active con-
sistently appears to increase with threshold h. When players apply high thresholds for cooperation,
the protective effect of clustering only becomes active at quite high levels of clustering. Experiments
for Moody Conditional Cooperation exhibit a similar “critical level” that increases as a heterogeneous
population of players is increasingly composed of Stingy players.

When many players behave as if the cost of cooperation is high, a protective effect of clustering is
predicted only at higher levels of clustering.

• Under Very “Low Cost of Cooperation” No Protective Effect of Clustering is Predicted. For Condi-
tional Cooperation, when players apply low thresholds h, and for Heterogeneous Moody Conditional
Cooperation, when many players behave very generously (cooperating despite high rates of neighbor
defections), we observe no protective effect of clustering.

That is, the parameter values of local decision rules applied by players (in response to game presentation
and reward structure) determine whether variation in topology has a predicted impact on long-term
rates of cooperation in the network.

Our study as community structure is “smoothly eroded” via random rewiring has some conceptual simi-
larities to how Garcia & Vega-Redondo (2015) model the evolution of altruism as a function of levels of local
cohesion of a population that is uniformly distributed on a one-dimensional space. Roughly speaking, local
cohesion describes the fraction of within-group connections. Our second finding (that a critical level of clus-
tering must be reached to activate a protective effect of clustering) may be interpretable as a message about
regime change in the local-cohesion parameter space: only above a certain level of local cohesion is a protec-
tive effect of clustering predicted. Like their study, our results highlight that the initial conditions that fall in
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the “basin of attraction” of catastrophic collapse of cooperation depends critically on the cost of cooperation.3

A Novel View of Several Human Experiments. Our model can be used to reinterpret an empirical
study that is often cited to argue against the importance of clustering towards higher levels of cooperative be-
havior. Suri & Watts (2011) cite theoretical predictions of a cooperation-promoting effect of clustering as the
motivation for their human experiments. The human experiments of Suri and Watts (Suri & Watts (2011))
failed to find significant variation in cooperation levels when a repeated public-goods games was played
across five network topologies of widely-varying clustering coefficient. Such an effect had been predicted on
a qualitative basis in classical papers, so this experimental evidence appeared quite counter-intuitive when
published.

In Section 4, we interpret the Suri and Watts experimental results in our modeling framework: because of
the large fraction of human defectors in the first round of their laboratory game whose spatial placement in the
network was not controlled, our model predicts that the experimenters should observe little-to-no significant
variation among the varying network topologies studied. We argue that the major observations from the Suri
and Watts experiments are not incompatible with either conditional cooperation or an important association
between high clustering and cooperation: their observations are anticipated (across the studied topologies)
by our simple threshold-for-cooperation model with threshold of 4/5, and initial defection shock of 45%.
The proportion of initial defectors for the Suri and Watts public-goods game (modeled now as a randomly-
spatially-distributed defection shock) appears to have simply been too large to be overcome by variation in
social-network structure.

That is, perhaps the experimental design of Suri and Watts simply tested the “wrong” part of the
parameter space where no impact of topology was predicted. In a systematic study on ring-topologies of
varying degree, Rand et al. (2014) make a similar point: for some relationships of costs of cooperation and
node degree, no effect of network variation is predicted, and an experiment with such cost/reward parameters
should be doomed to fail. Under other costs of cooperation, however, an impact of topology is predicted,
and conducting a human study with such parameters, Rand et al. (2014) actually do empirically detect an
impact of topology.

Some prominent human studies focused on Moody Conditional Cooperation (MCC) are also cited to
argue that network topology doesn’t impact rates of cooperation. However, in addition to documenting high
percentages of first round defectors (as we highlight for Suri & Watts (2011)), many of these studies focus on
a small number of networks where each has low clustering (well below 0.5). A comparative survey of human
MCC studies (Grujić et al. (2014)) acknowledges that clustering may play a role, but points out that this
network feature has not been systematically explored.

For example, Grujić et al. (2010) considered a degree-8 lattice (each ego node is surrounded by a “Moore
Neighborhood”) with clustering coefficient of only 0.43 (and nothing resembling dense community structure).
In fact, Gracia-Lázaro et al. (2012) announced emphatically that network topology is irrelevant for coopera-
tion after testing only two different networks, where both networks had low clustering coefficient. Due in part
to the complex logistics and cost of conducting large human experiments, Gracia-Lázaro et al. (2012) test
only two networks: the degree-4 lattice with periodic boundary conditions (clustering coefficient of 0), and a
single alternate network with scale-free degree distribution. Based on the degree distribution and scale-free
network visualization provided in Gracia-Lázaro et al. (2012) 4 we estimate that the clustering coefficient of
their scale-free network is at most 0.4. Gracia-Lázaro et al. (2012) observe cooperation collapse in both the
degree-4 lattice and their particular scale-free network, and boldly title their work, “Heterogeneous networks
do not promote cooperation when humans play a Prisoner’s Dilemma.”

Our computational exploration of Hetrogeneous Moody Conditional Cooperation in Section 5 provides
several insights about why the cooperation collapse Gracia-Lázaro et al. (2012) observe for both their low-
clustering networks may be a completely predictable outcome in the portion of the parameter space tested by

3In some sense, this cost can be qualitatively reverse-engineered from the decision rules applied by players.
4Precise construction information was not included either in the body or SI section of Gracia-Lázaro et al. (2012). The long

paths of degree 2 in their scale-free network visualization (their Figure 1) don’t appear consistent with the common preferential
attachment method. We note that, given a fixed degree distribution, many different networks with widely-varying hierarchical
and community structure can be constructed.
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their experimental design. In particular, they document a sizable 35-40% shock of round-1 defections (their
Figure 2), and large populations of very-stingy players (roughly 40% based on the right-hand intercepts of
panels A and B of their Figure 3). Our framework suggests that the experimental findings of Gracia-Lázaro
et al. (2012) (namely, cooperation collapse for both networks they study) are not incompatible with the
existence of a strong protective effect of clustering in other portions of the parameter space for networked
Heterogeneous MCC.

2 Methods

First we give precise statements of the conditional-cooperation spread models we that we will study.

2.1 Basic Conditional-Cooperation Model

Input: G = (V,E) is an undirected graph. Each node v ∈ V has a given fractional threshold for cooperation,
hv. At each timestep t ∈ {0, 1, 2, ...}, the function ct(v) describes whether node v is cooperating or defecting:

ct(v) =

{
1 if v cooperates at time t
0 otherwise

Update Dynamics: At each timestep t, each node v ∈ V updates its behavior depending on the behavior
of v’s neighbor set, δ(v), in the previous time step:

ct+1(v) =

{
1 if

∑
u∈δ(v) ct(u) ≥ hv ∗ |δ(v)|,

0 otherwise.

Shock Treatment: Let d denote the duration of the shock, and let s denote the fraction of nodes to be
shocked. A subset of nodes D, with |D| = ds ∗ |V |e, is selected uniformly at random from V . For u ∈ D,
and i ∈ {0, 1, ..., d}, the value of ci(u) is forced to 0.5 All non-shocked nodes, v ∈ V \D, have c0(v) = 1.

Measurement of Treatment Effect: We simulate update dynamics until the convergence6 of
∑
v∈V ct(v).

Letting C denote the “Catastrophic-Collapse Threshold” we say cooperation has catastrophically collapsed
if ∑

v∈V
ct(v) < C ∗ |V |.

2.2 Extended Model: Heterogeneous Moody Conditional Cooperation

While the basic conditional cooperation model described above has been studied for many years, a compelling
recent series of behavioral experiments on repeated Prisoner’s Dilemma (e.g. see Grujić et al. (2010), Gracia-
Lázaro et al. (2012), Grujić et al. (2014)) and additionally Public Goods Games (Horita et al. (2017)) on
networks has exposed that human behavior can be more complex. In particular, choices to cooperate or
defect (or to contribute generously vs. stingily to a public good) may depend both on the context faced
by a player (how many of his neighbors cooperated at time t) and on the player’s own actions at t. This
phenomena was termed Moody Conditional Cooperation in Grujić et al. (2010). In particular, given fixed
behavior of his neighbors, a player may be more inclined to cooperate at t+ 1 if he cooperated at t (his past
action putting him in a cooperative mood). Conversely, if the player defected at t (putting him in a defective
mood) then he may respond to the same fixed behavior of his neighbors at t with defection at t+ 1.

Furthermore, many such experiments document that populations of players can appear quite heteroge-
neous in their decision rules. For example, Grujić et al. (2010) identifies 5 different player types. At the

5After d, nodes u ∈ D resume normal updating.
6Under this model, there theoretically exist instances where convergence is to an oscillation between two values, but this is

highly rare in practice.
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extremes are sizable populations of players who are either pure defectors (they always defect regardless of
neighbor behavior) or pure cooperators (they always cooperate regardless of neighbor behavior). Remark-
ably, in a second experiment (after players have already played one full set of rounds), Grujić et al. (2010)
find that 19.5% of players act as pure defectors. We note that the spatial placement of these pure defectors
is not controlled and is highly similar to our shock treatment model feature where the shock has indefinite
duration.

We apply a shock treatment and measurement of treatment effect in the same way as described for the
basic conditional-cooperation model above. Using the notation introduced above, the input and update
dynamics are generalized to the heterogeneous moody conditional-cooperation setting as follows.

Moody Input: G = (V,E) is an undirected graph. Each node v ∈ V has two given fractional thresholds
for cooperation: hcv (a cooperative-mood threshold for cooperation) and hdv (a defective-mood threshold for
cooperation).

Moody Update Dynamics: Each node v updates its behavior depending both on the behavior of v’s
neighbors in the previous time step, and depending on v’s own behavior at the previous time step:

If ct(v) = 1, then ct+1(v) =

{
1 if

∑
u∈δ(v) ct(u) ≥ hcv ∗ |δ(v)|,

0 otherwise.

If ct(v) = 0, then ct+1(v) =

{
1 if

∑
u∈δ(v) ct(u) ≥ hdv ∗ |δ(v)|,

0 otherwise.

We note that, based on empirical evidence, we might generally assume that hcv ≤ hdv. That is, when v
has cooperated at t (and is in a cooperative mood), v may be satisfied by observing k neighbors cooperating
at t and then choose to cooperate at t + 1, so that ct+1(v) = 1, while for the same player v in a defective
mood (having defected at t), observing k neighbors cooperating at t may fail to persuade v to cooperate at
t+ 1, so that ct+1(v) = 0.

In our formalism, it is easy to capture the pure cooperators and pure defectors from Grujić et al. (2010):
pure cooperators simply have (hcv, h

d
v) = (0, 0) while pure defectors may have, for example (hcv, h

d
v) = (1.1, 1.1).
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Figure 1: Heterogeneous Distributions Over (hcv, h
d
v) Players Can Simulate a Range of Empirically-observed

Moody Conditional Cooperation Responses. Panels are each generated by a different distribution over
players, and quite-closely simulate the decision rules observed empirically in Figure 2 of Grujić et al. (2010)
(two leftmost panels above) and Figure 3 from Horita et al. (2017) (rightmost panel above). Arbitrary
combinations of intercepts and (non-negative) slopes for the cooperative mood response and the defective
mood response can be easily captured by our modeling framework.

To make visually clear the connection between our formalism and observations from empirical behavioral
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studies, Figure 1 demonstrates how varying distributions over vectors of type[
hcv
hdv

]
for the nodes of V gives rise to a range of decision rules highly similar to those observed in the human
experiments from Grujić et al. (2010), Gracia-Lázaro et al. (2012), Grujić et al. (2014)) and (Horita et al.
(2017)), etc. As noted in the insightful analysis of Grujić et al. (2014) that compares several studies that
document moody conditional cooperation, the variety of observed slopes and intercepts of similar plots from
other human experiments are likely a response to the particular presentation and reward structure of the
game, and even may depend on the players’ level of prior experience with the game (a compelling finding
from Grujić et al. (2010)). We do note that the slightly-negative slopes sometimes observed for players in
defective moods (indicating exploitative behavior) are not captured by our formalism.

To motivate our experimental design, described explicitly in Section 5, we highlight that some features
of the panels from Figure 1 are attributable to moodiness while others are driven by heterogeneity of the
population of players. The vertical separation between cooperative mood response (shown in blue) and
defective mood response (shown in red) is due to moodiness.

Next, consider the intercepts in Figure 1. In the leftmost panel, an intercept of roughly 0.2 for the
defective mood response indicates that, for 20% of the players, even if they defected at t and every one
of their neighbors defected at t, they will still choose to cooperate at t + 1. An intercept of 0.4 for the
cooperative mood response indicates that, for 40% of the players, if they cooperated at t, even though all
their neighbors defected at t, they will choose to continue cooperating at t+ 1. That is, a large percentage
of players observed by Grujić et al. (2010) are remarkably generous in their choice to cooperate at t + 1,
behaving as if they view the cost of cooperation to be very low.

On the other hand, for the same leftmost panel of Figure 1, the value of the the cooperative mood response
when all of a player’s neighbors cooperate at t is roughly 0.7. That is, fully 30% of players, despite being in
a cooperative mood, and observing every one of their neighbors cooperating at t, will change to a defection
strategy at t + 1. A large percentage of players observed by Grujić et al. (2010) are remarkably stingy,
behaving as if they view the cost of cooperation to be very high.

Within our exploration of heterogeneous moody conditional-cooperation, we hope to avoid presenting
an overwhelming number of population distributions. The 11 distributions we test are described explicitly
at the beginning of Section 5, and are designed to vary gradually. Our objective in this design is that
departures in catastrophic collapse behavior should be somewhat interpret-able. We hope that the tests we
present will motivate further theoretical and computational examination of the implications of this more
behaviorally-realistic space of decision rules.

2.3 Reallocating local links to long ties

Our first set of experiments considers a class of synthetic networks obtained by randomly-rewiring dense
local communities (small complete graphs). As in (Watts & Strogatz (1998)), we start from an initial
network, and “rewire” each edge of the network with probability p. In particular, for each edge e ∈ E,
with probability p we rewire it as follows. First, randomly choose one of e’s endpoints to be retained, then
choose an alternative second endpoint from V uniformly at random. Larger values for rewiring probability
lead to decreased clustering coefficient of the network.7 By increasing p gradually, we erode the community
structure of G in a somewhat “smooth” manner.

Our synthetic examples initialize this rewiring procedure with a set of small complete graphs.8 We
will report results both for cases where the small communities have uniform sizes, and where these small
community sizes are chosen from a normal distribution (included in the Appendix). We find consistent results

7We compute the clustering coefficient in the standard way. For each node v in G = (V,E), compute the ratio of the number
of edges between neighbors of v and the number of edges a complete graph on the neighbors of v would contain. Average this
ratio over all nodes in G to obtain the clustering coefficient for the whole graph G.

8This roughly replicates a sequence of stochastic block models in which average degree is maintained.
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Light rewiring → More rewiring →

Figure 2: Schematic of Random Rewiring of Dense Local Communities (Complete Graphs). Clustering
coefficient decreases gradually as the probability of rewiring, p, increases. This schematic depicts rewiring
of four initial communities of size 4. Clustering coefficients left to right are: 1, 0.7, and 0.31. An additional
impact of rewiring is visible here: G’s degree distribution changes, in this case becoming non-uniform.

for both cases. For a real network data set on Co-boardmembership in Norway involving 1,421 individuals,
we perform a similar gradual rewiring procedure, and also observe strikingly-similar behavior.

For each network, at each level of random rewiring, we consider the long-term cooperation at a range
of increasing random-shock sizes: we focus on the size of random shock sufficient to push the network into
catastrophic collapse of cooperation. Throughout our experiments, we regard cooperation to be in a state of
catastrophic collapse if (after the period of shock ends) cooperation converges to less than 15%.9 Notice that
the sufficient shock size to pass this boundary is a random variable that depends both on the realization of
the rewired network, and on the placement of the random shock in the network.

All simulations were implemented in MATLAB running on a standard desktop computer.

3 Results: Basic Conditional Cooperation

Throughout this section, nodes apply a uniform threshold for cooperation, h. We examine 5 possible thresh-
olds for cooperation: h is in {0.5, 0.6, 0.7, 0.8, 0.9}. In this section we consistently consider a shock of duration
d = 6.

After this six-step shock duration, for networks of 50 nodes we almost always observed convergence
within 5 additional time steps (at all thresholds tested). For networks of 200 nodes we noted somewhat
rare instances that required up to 10 additional time steps (the vast majority still converged within 5 time
steps post-shock). For our real-world network (1,421 nodes) convergence was almost always reached within
10 additional time steps (very rare instances required 20 time steps post-shock), and convergence appeared
to occur more rapidly when thresholds were higher. Convergence times appeared similar for our Moody
Conditional Cooperation tests in Section 5.

3.1 Rewiring Dense Communities of Uniform Size

Our first experiment considers an initial society composed of 5 complete graphs of 10 nodes each.
Figure 3 depicts how the size of a defection shock required to cause catastrophic collapse of cooperation

depends on the probability of rewiring p. The five lines plotted in Figure 3 correspond to 5 possible thresholds.
Confidence intervals depicted show two sample standard deviations on each side of the mean. All confidence
intervals in the paper are computed based on sample size of 100.

As local links are rewired with higher probability, the size of shock required to push cooperative behavior
to catastrophic levels (15% or less) decreases in a surprisingly smooth linear manner. The society becomes
progressively less able to retain cooperation in the face of randomly-distributed shocks of defection. This

9The choice of 15% is somewhat arbitrary: in the appendix we include versions of many figures for an alternative definition
of catastrophic collapse of 30%. The trends are very similar.
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Figure 3: Rewiring Reduces Ability to Withstand Defection Shocks. Five initial communities of ten individ-
uals each.

Figure 4: High Clustering Increases Ability to Withstand Defection Shocks. Five initial communities of ten
individuals each.

10



Figure 5: Ability to Withstand Defection Shocks vs. Rewiring (left panel) and Clustering Coefficient (right
panel). Twenty initial communities of ten individuals each (total society of 200 nodes).

appears to hold for each uniform threshold in {0.5, 0.6, 0.7, 0.8, 0.9}. As rewiring increases, particularly at
the higher thresholds (0.8 and 0.9), we observe that even modest levels of rewiring have caused such a steep
decrease in ability to withstand shocks that a kind of “bottoming out” is observed: there is a rewiring
probability above which the defection shock size required to cause catastrophic collapse stabilizes.

As rewiring probability increases, the clustering coefficient decreases. In Figure 4 we depict the same
data from Figure 3 as a function of the expected clustering coefficient for the rewired graph.

Consider Figure 4. After an initial period where the shock required to cause catastrophic collapse is
stable, we observe a remarkably-linear-looking increasing protective effect as clustering coefficient increases.
Notably, the clustering coefficient at which this protective effect becomes active increases with the threshold
for cooperation applied by nodes. For example, when nodes apply threshold for cooperation 0.6 a linear
protective effect appears to become active as clustering passes 0.35, whereas for threshold 0.8 this protective
effect isn’t active until clustering passes roughly 0.75. Interpreting this trend: when nodes apply high
thresholds-for-cooperation to the behavior of their neighbors, our model predicts that networks with a wide
range of clustering coefficients will be forced into catastrophic collapse by a modest shock of defection. In
such cases, the long-term behavior of such networks will be difficult to distinguish. This point will be central
in considering the human experiments from (Suri & Watts (2011)).

Running the same experiment in a larger initial society of 20 communities of 10 individuals each, we
obtain Figure 5. Qualitatively the behavior appears very similar to Figures 3 and 4 even though the relative
size of the small initial communities and the total society is very different (1/20th vs. 1/5th). Further, we
observe very similar behavior under alternate choices for the shock duration (rather than the d = 6 we use
as a standard in this section and Section 5). See the Appendix for these supplemental figures.

Our results in Figures 3, 4, and 5 are remarkably consistent. To verify that this consistency is not an
artifact of our choice that initial communities have uniform size of 10 individuals, we conducted the same
analysis when the initial community sizes were realized randomly from a normal distribution. We tested
several parameter combinations (described in Table 1 below). Our results were very similar. Figures from
these supplemental tests are included in the Appendix.
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Total society Mean Community Size St. Dev. of Community Size
50 10 5
200 10 5
200 20 5

Table 1: Non-uniform Initial Community Sizes Produce Highly Similar Findings. See Appendix for corre-
sponding figures.

3.2 Rewired Norwegian Co-boardmembership Network

Our results for synthetic networks suggest that in networks with high clustering (but low overall density),
reallocating local links to long random ties results in a decrease in the network’s ability to withstand large
random shocks of defection. Will such a trend occur in data sets describing real patterns of human interac-
tion?

To examine the trend across the range of clustering coefficients, we test in a real network data set with
very high clustering. We consider a network created in (Seierstad & Opsahl (2011)) based on boards of
public limited companies in Norway: each individual is represented by a node, and two nodes are connected
if the corresponding individuals serve on a common board. As a result of this construction method, the
network is composed of a number of small complete subgraphs (one corresponding to each board) that may
overlap in multiple members. As a result, the initial form is somewhat similar to the synthetic examples we
constructed, with a significant departure.

Figure 6 depicts the degree distribution for the Norwegian Co-boardmembership network. In contrast
with our synthetic examples that have binomial-like degree distribution (due to their construction), the
Norwegian Co-boardmembership degree distribution appears power-law-like (or scale-free-like). This scale-
free degree distribution shape is considered to be typical of many real social network data sets.

Figure 6: Degree Distribution for Norwegian Co-boardmembership Network (1,421 nodes).

Figure 7 shows our experimental results for the Norwegian Co-boardmembership network. As in the
synthetic networks generated earlier, we observe a linear-looking protective effect of clustering that becomes
active at (and above) a critical value of the clustering coefficient. This critical value appears to increase
as a function of the threshold for cooperation applied by each node. Findings are milder but qualitatively
similar for a definition of catastrophic collapse of 30%-cooperation-or-less (see the Appendix for this alternate
version of Figure 7).

3.3 Basic Conditional Cooperation When Thresholds are Very Low

Figures 3 - 7 focus on shock sizes that cause catastrophic collapse for thresholds h from {0.5, 0.6, 0.7, 0.8, 0.9}.
In the interval of clustering coefficients where a protective effect of clustering is observed, it appears that the
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Figure 7: Ability to Withstand Defection Shocks vs. Rewiring (left) and Clustering Coefficient (right).
Norwegian Co-board-membership Network (1,421 nodes).

slope of this effect is higher when h is higher. For example, consider the right-hand panel of Figure 5. When
h = 0.8 a protective effect of clustering is observed above a critical level of 0.65, in the range [0.65, 1]. The
slope of this protective effect is quite steep when compared to the slope of the protective effect of clustering
observed for threshold h = 0.5 over the longer range [0.15, 1].

Suppose that the uniform threshold is decreased from 0.5: Figure 8 shows that the protective effect of
clustering will continue to become more shallow as h decreases, vanishing completely for the lowest thresholds.
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Figure 8: At the Very-Lowest Thresholds, No Protective Effect of Clustering is Observed. Left Panel: Five
initial communities of ten individuals each. Right panel: Twenty initial communities of ten individuals each.

Qualitatively, when players respond as if the cost of cooperation is very low (that is, even a small number
of cooperating neighbors are sufficient to persuade the focal individual to cooperate), cooperation is so
resilient that clustered network structure can’t yield improvements over more randomly-structured networks.
We draw special attention to this behavior under “very generous” conditional cooperators: our analysis of
the heterogeneous Moody Conditional Cooperation Model in Section 5 will also show that diluting a more
demanding population with generous players can suppress the impact of network topology.
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4 Interpreting the Suri and Watts experiments in terms of defec-
tion shock and likelihood of catastrophic collapse

In 2011, Suri and Watts published a highly-cited empirical study that appeared to discredit the classically-
predicted advantage of network clustering to aid cooperation. We demonstrate how our simple model can
be parametrized to anticipate the catastrophic collapse they observe across topologies. We argue that the
observations in (Suri & Watts (2011)) can be understood as specific to a portion of the parameter space,
and not as a general evidence against the role of clustered topology in encouraging cooperation.

Background on (Suri & Watts (2011)). To explore the traditional reasoning that wide-scale human co-
operation is reinforced when humans interact with more stable groups of contacts, Suri and Watts conducted
a series of web-based human experiments.

Twenty-four players were arranged as nodes in different network topologies and player payoffs for each
round of a public-goods game depended on (observed) contributions of the player’s neighbors. Each experi-
ment lasted for 10 rounds. In each round, every player had 10 points to allocate. A player can either keep a
point, or put it into a local community pool. At the end of the round, a player’s total points are the points
they kept plus 40% of the points contributed by them and their neighbor set to the local community pool.
All network topologies tested had uniform degree 5. Thus, if all nodes contributed 10 points to the local
community pool, then each node would receive 24 points. At the other extreme, if all nodes contributed
0 to the pool, then each node would get only its 10 original points. Under this payoff structure there is a
significant benefit to being in a highly-cooperative society.

In observations that span from disconnected cliques (high clustering) to random regular graphs (low cluster-
ing) Suri and Watts observe a race to nearly-complete defection.10 Suri and Watts write,

“In contrast with previous theoretical work, we found that network topology had no significant
effect on average contributions. This result implies either that individuals are not conditional co-
operators, or else that cooperation does not benefit from positive reinforcement between connected
neighbors.”

In follow-up tests conditional cooperation was observed, but the authors noted a qualitative symmetry:
positive response to high-contributing neighbors did not outweigh negative response to low-contributing
neighbors. Suri and Watts concluded that no effect like cooperative contagion seemed to spread beyond
immediate contacts (regardless of network topology).

Our new view. Are the observations from (Suri & Watts (2011)) truly incompatible with the message
that clustered network topology benefits cooperation among conditional cooperators? Modeling the Suri
and Watts experiments in our simple Shocks-of-Defection/Catastrophic-Collapse framework suggests that
the lack of significant variation across topologies observed in (Suri & Watts (2011)) is not at odds with the
message that network clustering can positively impact cooperation.

In particular, we propose that the lack of significant variation observed across networks topologies tested
in (Suri & Watts (2011)) has another very plausible explanation not considered by Suri and Watts: their
public-goods game induces a high percentage of initial defectors whose spatial placement (and total number)
is not controlled under their experimental design, and the rules/user-interfaces of their game induce a high
threshold for cooperation. Under our modeling framework, these factors force high liklihood of catastrophic
collapse across all five topologies they test. Because cooperation has almost-completely collapsed in every
topology, point contributions are practically indistinguishable. Additionally, our model predicts that random
variation for a fixed network topology is also substantial (undermining the possibility of well-separated
distributions).

We consider how to model the complicated public-goods game of Suri and Watts as a simple threshold-
for-cooperation game in a network. Our simple framework involves 4 inputs: a network, a fraction describing

10Almost all nodes contribute 0-2 points out of 10, with 80%+ contributing 0.

14



the number of players who initially defect, a threshold for cooperation, and a sample size (how many different
instances are measured for each topology).

• Networks: We use the five 24-node networks described explicitly in Figure 2 of (Suri & Watts (2011)).
Each node has degree 5.

• Fraction of players who initially defect: Figure 6 of (Suri & Watts (2011)) shows the observed
distribution of first round point contributions. We will assume that an initial contribution half or less of
the possible points (0-5 out of 10) will be viewed as defection by neighbors. This classifies roughly 45%
of players round-1 contributions as defections. As in our computational experiments, Suri and Watts
don’t control the spatial placement of these human defectors. Unlike in our computational experiment
(where a defection shock had a fixed size), 45% now represents the probability of selecting a human
player who, confronted by the public-goods game of Suri and Watts, decides to start round 1 with a
play that will be interpreted as a defection. Thus, we model each player (node) as binomial random
variable with mean 45%. We assume a shock duration of 1 time step.11

• Threshold for cooperation: Suri and Watts use a point-contribution system and aggregate player
contributions: it is not immediately clear how to choose a simple threshold-for-cooperation to model
their observations. We note, however, that all experiments of Suri and Watts end in what we consider
catastrophic collapse of cooperation after 10 rounds. Is there a uniform threshold-for-cooperation12

that would cause this behavior given initial defection rate of 45% in the five tested networks from (Suri
& Watts (2011))?

Figure 9: Fitting a Threshold-for-cooperation for catastrophic collapse across Suri and Watts topologies.
The left and right panels are based on definitions of catastrophic collapse of 15% and 30% respectively.
First-round defection of 45% is shown as a horizontal line.

Figure 9 depicts the size of shock required to cause catastrophic collapse as a function of the threshold
for cooperation. Since each node has degree 5 in (Suri & Watts (2011)), the thresholds that yield
distinct spread behaviors will be {0.2, 0.4, 0.6, 0.8, 1}. All five topologies from (Suri & Watts (2011))
are tested. The left and right panels are based on definitions of catastrophic collapse of 15% and 30%
respectively.

11Immediately after round-1 play, we assume that individuals proceed as conditional cooperators.
12It is entirely plausible that thresholds are heterogeneous over the population of players, however we are curious whether

even a very-simple uniform-threshold model can capture the all-networks-collapse outcome observed by Suri & Watts (2011).
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We interpret our catastrophic collapse definitions from the previous section in terms of the small 24-
node networks of Suri and Watts. When catastrophic collapse is defined as at most 15% cooperation
(corresponding to the left panel of Figure 9), at most 3 nodes of 24 will be contributing more than 6
points each at the end of 10 rounds. In the 24-node networks from (Suri & Watts (2011)) nodes are
arranged roughly in communities of 6. Thus, at a high threshold for cooperation, a 15% definition of
collapse does not register collapse in practice until 0 nodes of 24 are cooperating. When catastrophic
collapse is defined as 30% (corresponding to the right panel of Figure 9), at most 7 nodes (roughly one
6-node community) will contribute more than 6 points each at the end of the game. In Figure 9, while
some separation of topologies is observed when “catastrophic collapse” is defined as effectively-zero
cooperation, there is almost no separation of topologies (regardless of threshold) when “catastrophic
collapse” allows for at least one 6-node cluster to cooperate. Under the 30% definition, a first-round
defection level of 45% is more than sufficient to consistently cause catastrophic collapse for all topologies
when the threshold for cooperation is 0.8 or above. Thus, we choose to model the experiments of Suri
and Watts using a threshold for cooperation of 0.8 (4 of 5 neighbors must collaborate for a node to
choose cooperation).

• Sample Size: Suri and Watts give explicitly the number of realizations tested for each network
topology (Cliques: 4, Paired Cliques: 3, Cycle Cliques: 8, Small World: 4, Random Regular: 4).

Given this simple model (threshold-for-cooperation of 4/5, initial defection rate with mean 45%), we
estimate the probability of catastrophic collapse to cooperation of 30% or less for each of the networks tested
in (Suri & Watts (2011)). Running our model 200 times, we also compute 2-sample-standard-deviation con-
fidence intervals (approximately 95%-confidence intervals) on the number of cooperating players predicted
at the end of the game:

Network Topology Estimated Probability of 2 Std. Dev.- confidence interval for
Initial Defection Rate of 45% Final Cooperation ≤ 0.30 number of final cooperators (of 24)
Cliques 89.5% 4.3 (+/− 9.2)
Paired Cliques 91.5% 4.1 (+/− 8.7)
Cycle Cliques 94.0% 1.7 (+/− 7.1)
Small World 99.5% 0.2 (+/− 3.6)
Random Regular 99.5% 0.1 (+/− 3.4)

As noted in the table above, our model predicts that at a 45% rate of initial defections, catastrophic
collapse of cooperation is, by far, the most likely outcome for every network topology tested by Suri and
Watts. This behavior is driven by two key features:

• Conditional cooperators who apply a high threshold for cooperation (4/5 in our simulation).

• A high fraction of round-1 defectors (mean 45% in our simulation) whose spatial placement is not
controlled.

Further, our model produces confidence intervals for the final number of cooperators that overlap extensively.
Because all topologies are pushed to states of catastrophic collapse of cooperation, levels of cooperation are
naturally almost impossible to distinguish.

Thus, referring to the experiment replication Suri and Watts conduct for each topology,13 our simple
model estimates the probability that Suri and Watts observe catastrophic collapse in every replication for
every topology they test (assuming these are independent) to be roughly 28.8%.

13Cliques: 4, Paired Cliques: 3, Cycle Cliques: 8, Small World: 4, Random Regular: 4. Notably, (Suri & Watts (2011))
describes increasing the number of replications for Cycle Cliques topology due to an early sample deemed to be non-representative
(the initial number of defectors was low, leading to much higher contributions throughout the 10-round game). Dynamically
adjusting sample replication to damp rare events is statistically problematic.
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Both the high threshold for cooperation applied by players and the 45% fraction of round-1 defectors can
be understood as resulting from the specific reward structure and player-facing presentation of the public-
goods game in (Suri & Watts (2011)). If a similar networked experiment were conducted for a public-goods
game that naturally induced a lower percentage of initial defectors, or a lower threshold for cooperation,
significant variation between topologies might very well be observed.

For example, our model predicts that even under the high threshold for cooperation of 4/5 that players
appear to apply in response to the game in (Suri & Watts (2011)), if the initial fraction of plays viewed as
defections could be reduced to 20%, then a substantial difference could emerge between the tested topologies
in terms of the likelihood of catastrophic collapse: Cliques: 11%, Paired Cliques: 11.5%, Cycle Cliques:
21.0%, Small World: 64.5%, Random Regular: 72.0%. In human experiments, this might be explored
by masking or inflating the true round-1 behavior of neighboring human players (as in the non-networked
human experiments in (Rand et al. (2015))), or by redesigning the reward structure or presentation of the
public-goods game.

5 Results: Heterogeneous Moody Conditional Cooperation

Our computational experiments in the previous sections investigate societies of uniform conditional coop-
erators (that is, we have assumed that the threshold applied by players, h, is uniform across the popula-
tion14). Thus, to explore the space of decision rules, in Figures 3 - 7 we considered all possibilities for h in
{0.5, 0.6, 0.7, 0.8, 0.9}, and we noted a strong contrast with lowest values of h (Figure 8).

Since the Moody Conditional Cooperation (MCC) Model has a more complex input (two thresholds per
individual), and heterogeneity of player decision rules is a key finding of Grujić et al. (2010), it is now less
obvious how we might systematically explore the parameter space of decision rules. In particular, even if a
small number of player types are specified (fixing a hcv and a hdv for each such type), a very large number
of distributions over player types of could be investigated. Thus, as in many computational studies, our
investigation must necessarily be limited. We hope our work here will motivate subsequent studies.

We conduct experiments for two suites of distributions over moody conditional cooperator player types:

Player Type hcv hdv
Base Type 0.6 0.9
Generous Type 0.1 0.4
Stingy Type 0.8 1.1

As a foundation, we consider a society in which 100% of individuals are moody conditional cooperators
of the Base Type. Then we apply two treatments

• Distribution Suite 1: Adding Generous Moody Conditional Cooperators. For each k ∈
{0, 20, 40, 60, 80, 100}, k% of individuals of the Base Type are replaced with Generous Type individuals.

• Distribution Suite 2: Adding Stingy Moody Conditional Cooperators. For each k ∈
{0, 20, 40, 60, 80, 100}, k% of individuals of the Base Type are replaced with Stingy Type individu-
als.

In this way we obtain a total of 11 distributions, each over two types of conditional cooperators. The k = 0
case gives a reference distribution common to both distribution suites. Within each suite, the distribution
is adjusted gradually so that the behavior under different distributions will hopefully yield an interpret-able
result. In all cases, the spatial placement of the types of players is randomized, e.g. for the k = 20 case in
Distribution Suite 1, exactly 0.2 ∗ |V | individuals of the Generous Type are distributed uniformly at random
among the |V | nodes of G, and the remaining nodes are designated as Base Type.

14Of course, basic conditional cooperation could also be investigated when player thresholds are non-uniform.
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5.1 Results: Adding Generous Moody Conditional Cooperators (MCCs)

First we describe the experimental results for Distribution Suite 1. As in Section 3 for basic Conditional
Cooperation, we perform tests starting from an initial society of 5 communities of 10 individuals each (Figure
10), an initial society of 20 communities of 10 individuals each (Figure 11), and a real network data set of
1,421 nodes based on co-membership in Norwegian public-limited boards from (Seierstad & Opsahl (2011))
(Figure 12).
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Figure 10: Adding Generous-Type Players Suppresses the Protective Effect of Clustering. Five initial com-
munities of ten individuals each.
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Figure 11: Adding Generous-Type Players Suppresses the Protective Effect of Clustering. Twenty initial
communities of ten individuals each.

In the right panel of Figure 10, a strong protective effect of clustering is visible when the distribution of
players is primarily Base-type MCCs (with hcv = 0.6 and a hdv = 0.9). This protective effect is still strongly
apparent at 20% Generous-type MCCs, but appears to dissipate as an increasing number of Generous-type
MCCs are added to the distribution. When the number of initial communities is increased to 20 (Figure 11)
the results are remarkably consistent (though with notably lower variance).

Strikingly similar to our observations for basic conditional cooperation, the protective effect of clustering
in Figures 10 and 11 appears to become active at a critical level that depends on the thresholds applied
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Figure 12: Adding Generous-Type Players Suppresses the Protective Effect of Clustering. Norwegian Co-
board-membership Network (1,421 nodes).

by individuals. Namely, when more individuals apply higher cooperative and defective thresholds (aka,
more MCCs are of the Base-type, rather than the Generous-type) this critical level appears to increase.
Qualitatively, when more players respond as if the cost of cooperation is high, the protective effect of clustering
becomes active at a higher critical level of clustering coefficient.

In the large real-network data set (Figure 12) again we observe a strong protective effect of clustering when
the distribution of MCCs is entirely composed of Base-type MCCs, but in contrast with our small synthetic
networks (in Figures 10 and 11), this effect has already become quite shallow by the time 20% Generous-type
MCCs are added. In the Appendix we include an additional figure which shows that when Generous-type
MCCs are added more gradually (5% at a time, rather than 20% at a time), many heterogeneous distributions
over Base- and Generous-type MCCs do exhibit a protective effect of clustering.

5.2 Results: Adding Stingy Moody Conditional Cooperators (MCCs)

Next, we consider our experimental results for Distribution Suite 2. Note that the 0%-Generous distribution
from Suite 1 and the 0%-Stingy distribution from Suite 2 are identical (all Base-type MCCs), so Figures 10
and 13 have a common reference distribution, Figures 11 and 14 have a common reference distribution, etc.

As Stingy-type MCCs are added to the distribution we obtain a series of heterogeneous player distributions
that exhibit a very strong protective effect of clustering. As the player distribution becomes increasingly
dominated by Stingy-type MCCs, in line with our previous observations, the critical level at which the
protective effect of clustering becomes active shifts to the right (increases). For example, in the right-hand
panel of Figure 14, at 40%-Stingy-type MCCs the protective effect of clustering is first apparent around
clustering coefficient 0.5.

Across Figures 13 - 15 we also note that the magnitude of shock required to cause catastrophic collapse
of cooperation is quite low. For example, in the right-hand panel of Figure 14, when even 20% of individuals
are Stingy-type MCCs, if 30% of players initially defect, catastrophic collapse is predicted except at the very
highest clustering coefficients (above 0.7).

Finally, we note that Figures 13 - 15 seem to indicate that the impact of adding Stingy-type MCCs is
quite nonlinear: adding 60% Stingy-type MCCs gives cooperation-collapse behavior that approaches the case
when every single Base-type MCC is replaced by a Stingy-type MCC. At higher percentages of Stingy-type
MCCs, the critical level of clustering required to activate a protective effect of clustering appears to be nearly
0.5 for our smaller synthetic networks (Figures 13 and 14).

In our computational experiments, we parameterized our Base-, Generous- and Stingy-type MCCs to make
an initial exploration of behavior over the hetrogenous MCC parameter space. As in our interpretation of the
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Figure 13: Adding Stingy Players Exposes the Protective Effect of Clustering, and Modest Shocks Cause
Catastrophic Collapse of Cooperation. The 0%-Stingy experiment in this figure coincides with the 0%-
Generous experiment in Figure 10. Five initial communities of ten individuals each.
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Figure 14: Adding Stingy Players Exposes the Protective Effect of Clustering, and Modest Shocks Cause
Catastrophic Collapse of Cooperation. The 0%-Stingy experiment in this figure coincides with the 0%-
Generous experiment in Figure 11. Twenty initial communities of ten individuals each.

collapse of cooperation observed by Suri and Watts, we believe that the parameter values of decision rules
applied by a population of players are a function of the presentation and reward structure of a networked
game (this is also explicitly suggested for MCC by Grujić et al. (2014)). For Heterogeneous MCCs these
parameters are the slopes and intercepts of plots like those depicted in Figure 1.

In particular, our framework suggests that human experiments in which

• Many players respond very generously despite the defection behavior of their neighbors

• Many players are very stingy and the clustering coefficients of networks explored are low15

• The percentage of round-1 defectors is large (relative to thresholds applied by players)

15We suspect that in more-complex shock scenarios, e.g. a series of on-going randomly distributed shocks that might describe
persistent exploratory exploitation behavior, initial community size should also be modest, as in our computational experiments
and the human experiments of Horita et al. (2017) in complete 4-node graphs.
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Figure 15: Adding Stingy Players Exposes the Protective Effect of Clustering, and Modest Shocks Cause
Catastrophic Collapse of Cooperation. The 0%-Stingy experiment in this figure coincides with the 0%-
Generous experiment in Figure 12. Norwegian Co-board-membership Network (1,421 nodes).

cannot hope to detect a cooperation-promoting impact of network topology. Simply, such tests are being
conducted in the wrong portion of the parameter space.

A Framework to Interpret Human Experiments for MCC. Some prominent human studies focused
on Moody Conditional Cooperation (MCC) are cited to argue that network topology doesn’t impact rates of
cooperation. We mention several such studies that are completely consistent with our framework.

Our observations may be useful in understanding the collapse of cooperation observed in studies like
Grujić et al. (2010) where a full 24-40% of players were classified as either pure defectors or mostly defectors
(their Table 2). Such players behave similarly to our Stingy-type MCCs (if not even more stingily). Further,
Grujić et al. (2010) document round-1 defection rates as high as 44-68% (their Figure 1) and investigate
only a degree-8 lattice (ego nodes with “Moore Neighborhoods”) with clustering coefficient 0.43. That is,
Grujić et al. (2010) test in a portion of the Hetrogeneous MCC parameter space with a sizable population of
stingy players, a large initial shock size, and low clustering coefficient (not obviously above the critical level of
clustering we observe is required). Based on our Hetrogeneous MCC results, we would be extremely surprised
if their experimental design resulted in something different than catastrophic collapse of cooperation. Indeed,
they document cooperation collapse to roughly 22% (experiment 2), similar to an unstructured control
treatment.

Gracia-Lázaro et al. (2012) announced emphatically that network topology is irrelevant for cooperation,
titling their paper, “Heterogeneous networks do not promote cooperation when humans play a Prisoner’s
Dilemma.” They drew this conclusion after testing only two different networks: one network with clustering
coefficient 0 (a degree-4 lattice with periodic boundary conditions) and one network with clustering coefficient
we estimate is at most at most 0.4 (a scale-free network with many long degree-2 paths). Gracia-Lázaro
et al. (2012) observe similar collapse of cooperation in both networks.16

On the contrary, our results suggest that the observations from Gracia-Lázaro et al. (2012) are compu-
tationally predictable based on the parameters they observe for player response to their Prisoner’s Dilemma

16Gracia-Lázaro et al. (2012) claim that the scale-free collapse should be particularly striking: they cite prior predictions that
scale-free network topologies should promote cooperation. However, those prior predictions appear to be based on replicator
dynamics (e.g. Santos & Pacheco (2005)), a decision rule often studied in the physics literature that was already strongly
discredited for repeated PD by Grujić et al. (2010). As our experimental results show, even adjusting the parameter values of a
decision rule may impact whether a particular style of network is predicted to be cooperation promoting, e.g. our Figure 8. That
is, we don’t believe that the scale-free network chosen in Grujić et al. (2010) constituted testing in a particularly-promising part
of the space of networks given that players choose Moody Conditional Cooperation (and not replicator dynamics) in response
to their PD game.
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Game. Of course, our evidence is from networks constructed by randomly rewiring dense local communities
and not the precise networks tested in Grujić et al. (2010). Still, we must point out that Gracia-Lázaro et al.
(2012) document a sizable 35-40% shock of round-1 defections (their Figure 2), and large populations of very-
stingy players (roughly 40% based on the right-hand intercepts of panels A and B of their Figure 3). Based
on the right-hand panels of our Figures 14 and 15, we would be strongly surprised if, with this combination
of parameters for shock size, stingy fraction of the population, and clustering coefficient, Gracia-Lázaro et al.
(2012) had observed something different than cooperation collapse in both networks they tested. Simply, our
framework suggests that the empirical findings of Gracia-Lázaro et al. (2012) are very-plausibly compatible
with the existence of a strong protective effect of clustering in other portions of the parameter space for
networked Heterogeneous MCC.

In contrast, the Moody Conditional Cooperation human study of Horita et al. (2017) conducted all tests
in groups of 4 (like the leftmost panel of our Figure 2 where the clustering coefficient is 1). Importantly,
while levels of cooperation decreased over time, Horita et al. (2017) observed statistically higher rates of
cooperation (for Prisoner’s Dilemma) and more generous contributions (for a Public Goods Game) than
under a mixed control condition for almost 20 consecutive rounds. Our computational framework suggests
that there is no mystery here: Horita et al. (2017) conducted their tests in a portion of the Hetrogeneous
MCC parameter space (highly-clustered networks) where our framework leads to a reasonable expectation
that topology could positively impact cooperation.

Thus, we again suggest that experimenters interested in testing whether variation in network topology
can impact levels of cooperation in human networked game play should engage in an advance stage of
experimental design that measures and adjusts the game presentation and reward structure. Otherwise, lack
of detection of an effect of network topology may be the computationally-predictable outcome of a particular
experimental design, but nevertheless such an observation may be misinterpreted as a general message about
the impotence of network structure to benefit levels of cooperation under a wider class of related games.

We close this section with a high-level comment. As in Subsection 3.3, our results for MCC Distribution
Suite 1 appear to suggest that a search for a network-topology impact will be fruitless when many players
behave as if the cost of cooperation is very low (or, symmetrically, as if the personal benefits they realize
from acting as a cooperator, regardless of neighbor behavior, are very high). A subtle point here is that
the monetary payoffs in many human game-play studies are usually quite modest: players may have quite
variable perceptions of the value of these small financial rewards. Further, it seems plausible that some
egoistic benefits a player accrues from feeling that they have behaved cooperatively (and thus are a “nice
person,” etc) can vary considerably. That is, suppose that highly-heterogeneous decision rules are truly
unavoidable in existing-style laboratory experiments. If the uniformly-random spatial distribution of a
sizable number of Generous-type players is truly unavoidable despite more strategic experimental design
(and the effect of this is that network topology is irrelevant in all laboratory studies of existing styles), it
seems essential to clarify whether the breadth of the distribution of decision rules observed in laboratory
settings, including the “significant fraction of stubborn defectors and cooperators” (Grujić et al. (2010)), is
truly indicative of breadth of human responses to higher-stakes cooperation vs. defection dilemmas outside
of the laboratory. Namely, is the volume of the “tails” of pure cooperators and pure defectors that are
spatially placed at random throughout a structured society really as large as it appears in relatively low-
stakes laboratory games? Our study suggests that the “fatness” of such tails may reflect critically on whether
the clustering ubiquitously observed in real social networks can be interpreted as utility-providing to societies
that exhibit such clustered structure.

6 Conclusion

We propose a new view on how clustered social-network structure can benefit a society. While previous
models focused on outbreaks of cooperation in an initially uncooperative network, both the prevalence of many
large cooperatively-functioning human organizations and the frequent empirical observation that cooperation
may spontaneously arise and stabilize in small dense communities lead us to consider an initial state where
cooperation is widespread. Societies are at an advantage when they are able to maintain a basic level of
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cooperation despite occasional occurrences of pure defectors, transient experimentation with exploitation
strategies, or large-scale hardships that may cause normally-cooperative players to defect for some period.
We formalize this notion as avoiding catastrophic collapse of cooperation.

When individuals are conditional cooperators or moody conditional cooperators, a societal structure
that retains a substantial “stable cooperative core” may accelerate regrowth of widespread cooperation after
a cascade of defections. From a modeling perspective, if a stable cooperative core survives, the recovery
of widespread mutually-beneficial cooperative norms need not rely as closely on rare coincidental acts of
personal altruism. From a behavioral perspective, cooperation within a stable core may spill over to new
groups of contacts (Cason et al. (2012); Fowler & Christakis (2010)), or cooperative groups may slowly grow
by including new members (Rand et al. (2015)). This “surviving foundation of cooperation” would appear
even more advantageous under dynamic-network models where individuals can sever ties with defectors (on
some time-scale). In contrast, a societal structure in which cooperation is driven to zero by milder shocks
may be slower to regrow widespread cooperative norms, and thus experience a lower stream of benefits over
time.

We observe computationally that as clustering decreases (as local links are randomly rewired), progres-
sively smaller shocks of defection are sufficient to force the network into catastrophic collapse. The shock
size required to force catastrophic collapse appears to depend in a surprisingly-smooth almost-linear manner
on the clustering coefficient, and this was observed even in a sizable real-data example. We also observe that
when players apply higher thresholds for cooperation (under basic Conditional Cooperation), or a sizable
percentage of players are Stingy (under Moody Conditional Cooperation) this protective effect of clustering
does not become active until an increasing critical value of clustering coefficient is reached. Additionally, the
protective effect of clustering is suppressed when players behave as if the cost of cooperation is very low (un-
der basic Conditional Cooperation, when players apply very low thresholds, and under Moody Conditional
Cooperation when a sizable population of players are Generous).

Though our model gives a very coarse description of the networked public-goods game of Suri and Watts,17

we show that their apparently-counter-intuitive observations are compatible with our model. Lack of sig-
nificant variation due to topology in their experiments can be understood as a function of the particular
parameters of the public-goods game they designed. Because players respond to the public-goods game in
(Suri & Watts (2011)) with such a high level of defection in the first round, and demand such a high per-
centage of their neighbors to cooperate, our model predicts that catastrophic collapse is close-to-unavoidable
regardless of topology. Thus, final levels of cooperative play are predicted to be very difficult to distinguish
among topologies (as Suri and Watts found empirically).

Our computational observation that a critical level of clustering must be reached before a protective
effect of clustering becomes active may also lend insight about why human experiments like Grujić et al.
(2010) and Gracia-Lázaro et al. (2012) that search for contrast in long-term cooperation rates between a few
low-clustering networks detect no impact of network topology.

We note that models like ours suggest how experimenters in the social sciences might refine networked
public-goods games prior to running wide-scale experiments. The round-1 behavior of human players, and
how various point contributions are interpreted by neighbors, could be probed with artificial opponents in
an experimental-design phase, avoiding large experiments that are unlikely to yield significant variation.

Last we comment on some limitations of the present study that we hope may motivate future work.
While our choice of a uniformly-distributed defection shock in a static network is useful in interpreting the
outcome of laboratory experiments in which the spatial placement of players is random and spatial structure
is constant and forced by the experimenter, a richer attempt to describe the evolution of cooperation in
clustered society could consider

• Network structures that can evolve on some time-scale: players might be allowed to periodically make
or break links in response to defections of current neighbors, and possibly in response to information
about cooperative behavior of near contacts.

17For example, we completely ignore the fine-scale distribution of points, and have no expectation that time steps in our
model correspond meaningfully to the 10 rounds played by the human subjects.
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• Spatially-concentrated shocks of defection: our argument about temporary perturbations in cost-benefit
calculations due to a large economic event (depression or famine) seem likely to exhibit some spatial
structure. For example, an economic downturn may disproportionately impact low-income people, who
may disproportionately be linked to other low-income people.

• An on-going “rain” of spontaneous random defection behaviors in the midst of a widely-cooperative
society to model exploration/reward-probing behavior. Such a model seems strongly motivated by
empirical observations of strategy exploration Traulsen et al. (2010).

These possible additional model features each suggest some interesting directions, though particularly
in the first two cases, we expect that observations may be subtly influenced by interactions between the
particular choice of how to capture the new model feature and the initial network structure. For example,
a spatially-concentrated shock that is a star (an ego node and each of his neighbors) may lead to a different
set of observations about the role of clustering than a spatially-concentrated shock that is a short random
walk. Our caution here is informed by the network seeding literature: in some forms of networks quite
naive strategies can seed large cascades while in other forms of networks the same strategy may have little
effect. A responsible study of spatially-concentrated shocks would need to investigate a variety of methods
for producing spatial concentration, and as such we leave this intriguing direction to future work.

Also, to focus on the effects of varying network structure, in this work we have ignored another key
finding in the behavioral literature: the strong role of reputation and longer-term history of play in shaping
decision rules applied by individuals (Weber (2006)), and how this may aid robustness of cooperative play
in the presence of short-term defections that are perceived as non-malicious (Rand et al. (2015)). This
combination of features may also lead to a strong model-based case that societies interested in retaining
cooperation are well-served by maintaining short ties (for various models of reputation formation among
neighbors).
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7 Appendix

7.1 Adjusting Shock Duration:
Basic Conditional-Cooperation Model
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Figure 16: Catastrophic Collapse Behavior is Similar for Alternate Shock Duration. From left to right:
duration d = 2, duration d = 4, duration d = 6. Five initial communities of 10 individuals each (total society
of 50 nodes).
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Figure 17: Catastrophic Collapse Behavior is Similar for Alternate Shock Duration. From left to right:
duration d = 2, duration d = 4, duration d = 6. Twenty initial communities of 10 individuals each (total
society of 50 nodes).

7.2 Rewired Dense Communities of Stochastic Size:
Basic Conditional-Cooperation Model

Figures 3, 4, and 5 are remarkably consistent despite a large difference in the relative size of a small community
and the total society. In both previous cases, however, small community size is uniform. To verify that our
results are not simply an artifact of our choice that each small initial community has the same size, we make
several measurements when the sizes of the small communities in the initial society are chosen at random
from a normal distribution.

Figures 18 - 20 depict the same computational experiment when the the initial small community sizes
are chosen from a normal distribution, as noted in the caption of each figure. These figures are all based on
a definition of catastrophic collapse of 15%. The figures shown are quite typical of realizations we obtained
when repeatedly realizing initial societies from the distributions described. We find these results to be
remarkably consistent with those for uniform community sizes given in the main body of the paper.
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Figure 18: Ability to Withstand Defection Shocks vs. Rewiring (left) and Clustering Coefficient (right).
Initial communities of mean size 10, standard deviation 5 (total society of 50 nodes).

Figure 19: Ability to Withstand Defection Shocks vs. Rewiring (left) and Clustering Coefficient (right).
Initial communities of mean size 10, standard deviation 5 (total society of 200 nodes).

Figure 20: Ability to Withstand Defection Shocks vs. Rewiring (left) and Clustering Coefficient (right).
Initial communities of mean size 20, standard deviation 5 (total society of 200 nodes).
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7.3 Analogous Figures for “Catastrophic Collapse” at 30%:
Basic Conditional Cooperation

Figures 21 and 22 are alternative versions of Figures 3 and 4, where the definition of catastrophic collapse
is convergence to cooperation rate of 30% or less. Preserving the vertical axes from the earlier figures
shows that the magnitude of the shock required to reach catastrophic collapse to 30% is somewhat lower for
highly-clustered graphs (compared with collapse to 15%), though almost the same for graphs that have been
substantially rewired.

Figure 21: High Clustering Increases Ability to Withstand Defection Shocks. Five initial communities of ten
individuals each.

Figure 23 below is an alternative versions of Figure 5 where the definition of catastrophic collapse is
convergence to cooperation rate of 30% or less.

Figures 24 - 26 are alternative versions of Figures 18 - 20 where the definition of catastrophic collapse is
convergence to cooperation rate of 30% or less.

28



Figure 22: High Clustering Increases Ability to Withstand Defection Shock. Five initial communities of ten
individuals each.

Figure 23: Ability to Withstand Defection Shocks vs. Rewiring (left) and Clustering Coefficient (right).
Twenty initial communities of ten individuals each (total society of 200 nodes).

7.4 Adding Generous MCCs more gradually:
Heterogeneous Moody Conditional Cooperation
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Figure 24: Ability to Withstand Defection Shocks vs. Rewiring (left) and Clustering Coefficient (right).
Initial communities of mean size 10, standard deviation 5 (total society of 50 nodes).

Figure 25: Ability to Withstand Defection Shocks vs. Rewiring (left) and Clustering Coefficient (right).
Initial communities of mean size 10, standard deviation 5 (total society of 200 nodes).
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Figure 26: Ability to Withstand Defection Shocks vs. Rewiring (left) and Clustering Coefficient (right).
Initial communities of mean size 20, standard deviation 5 (total society of 200 nodes).

Figure 27: Ability to Withstand Defection Shocks vs. Rewiring (left) and Clustering Coefficient (right).
Norwegian Co-board-membership Network (1,421 nodes).
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Figure 28: Adding Generous-Type Players Supresses the Protective Effect of Clustering. This figure examines
the same experiment as Figure 11 but at increased resolution as generous players are added at 5% per
distribution shown. For comparison, the 0%-Generous case and 20%-Generous case here are identical to
those from Figure 11. Norwegian Co-board-membership Network (1,421 nodes).
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