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Deformations of crystal frameworks

Ciprian S. Borcea and Ileana Streinu

Abstract

We apply our deformation theory of periodic bar-and-joint frameworks
to tetrahedral crystal structures. The deformation space is investigated
in detail for frameworks modelled on quartz, cristobalite and tridymite.

Keywords: periodic frameworks, deformations, flexibility, silica polymorphs.

Introduction

In this paper we present specific applications of our general deformation theory
of periodic frameworks [BS].

Considerations related to framework flexibility appear already in the early
structural investigations based on X-ray crystallography [G1, G2, P1, P2]. For
framework materials, envisaged as corner sharing polyhedra, an intuitive notion
of a ‘coordinated tilting’ of the polyhedra is used in classifying similar struc-
tures [Gla, M] or in studies of thermal and pressure effects. A most important
area of theoretical and experimental studies where geometric models of deform-
ing frameworks have been implicated is that concerned with displacive phase
transitions [GD, Dol, D].

Regarding the use of geometrical facts, it should be observed that, for most
framework structures, only a confined sample of geometrical possibilities has
been explored in the literature, typically one-parameter families which are intu-
itively ‘accessible’. The deformation theory developed in our paper [BS] shows
that one may expect, in general, a rich and diverse geometry. The present un-
dertaking describes the deformation spaces for tetrahedral periodic frameworks
modeled on quartz, cristobalite and tridymite.

1 The quartz framework

The ideal structure considered here is made of congruent regular tetrahedra.
The oxygen atoms would correspond with the vertices, each oxygen being shared
by two tetrahedra. The silicon atoms should be imagined at the centers of the
tetrahedra. We shall examine all the geometric deformations of the periodic
framework described in Figure 1, without concern for self-collision or any pro-
hibition of a physical nature.
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Figure 1: A fragment of the tetrahedral framework of quartz. The periodicity
lattice is generated by the four marked vectors, which must maintain a zero sum
under deformation. The full framework is obtained by translating the depicted
tetrahedra with all periods.

Equivalence under Euclidean motions is eliminated by assuming the tetrahe-
dron marked A0A1A2A3 as fixed. Since all edges maintain their length, the po-
sitions of the two tetrahedra which share the vertices A0 and A1 are completely
described by two orthogonal transformations R0, respectively R1 as follows: R0

fixes A0 and takes Ai to Bi, i 6= 0, while R1 fixes A1 and takes Aj to Cj , j 6= 1.
The figure, by depicting only the ‘visible’ edges, implies that both R0 and R1

are orientation reversing, that is, as orthogonal matrices −R0,−R1 ∈ SO(3).

If we denote the edge vectors Ai −A0 by ei, i = 1, 2, 3, we have:

B3 − C2 = R0e3 − (e1 +R1(e2 − e1))

A3 − C3 = e3 − (e1 +R1(e3 − e1))

B2 −A2 = R0e2 − e2

C0 −B1 = e1 −R1e1 −R0e1

It follows that the dependency condition of a zero sum for these four generators
of the periodicity lattice takes the form
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R1(e1 − e2 − e3)−R0(e1 − e2 − e3) = e1 + e2 − e3 (1)

Under our regularity assumptions, the three vectors R1(e1 − e2 − e3), R0(e1 −
e2−e3) and (e1+e2−e3) have the same length and form an equilateral triangle.
This restricts R0(e1−e2−e3) to the circle on the sphere of radius ||e1−e2−e3||
(which corresponde with an angle of 2π/3 with e1+e2−e3). Thus, −R0 ∈ SO(3)
is constrained to a surface, which is differentiably a two-torus (S1)2.

For each choice of −R0 on this torus, R1(e1 − e2 − e3) is determined by (1),
hence −R1 is restricted to a circle S1 in SO(3). It follows that

Theorem 1 The deformation space of the ideal quartz framework is given by a
three dimensional torus (S1)3 minus the degenerate cases when the span of the
four vectors is less than three dimensional.

2 The cristobalite framework

The case of the ‘ideal β cristobalite’ structure illustrated in Figure 3 is already
covered in [BS]. The periodicity group of the framework is give by all the
translational symmetries of the ideal crystal framework. As a result, there are
n = 4 orbits of vertices and m = 12 orbits of edges.

Figure 2: The ideal cristobalite framework (aristotype). The framework is
made of vertex sharing regular tetrahedra. Cubes are traced only for suggestive
purposes regarding symmetry and periodicity. See also Figure 3.

Adopting the notations of Figure 2, we may assume the tetrahedron Os1s2s3
as fixed and parametrize the possible positions of the other tetrahedon by a
rotation around the origin O.

3



O

s1

s2

s3

t1

t2

t3

T1

T2
T3

Figure 3: Deforming the ideal cristobalite framework. The periodicity lattice is
generated by the three vectors γi = ti−si which vary as the framework deforms.

Theorem 2 The deformation space of the ideal high cristobalite framework is
naturally parametrized by the open set in SO(3) where the depicted generators
remain linearly independent.

3 The tridymite framework

The tetrahedral framework (G,Γ) of tridymite is depicted in Figure 4. We
consider the ideal case made of regular tetrahedra. The quotient graph has
|V/Γ| = 8 and |E/Γ| = 24. All deformations can be described by three orthog-
onal transformations (matrices) R0, R1, R2 acting with centers at O,O1 and
respectively O2. With O as the origin and the tetrahedron OD1E1O1 assumed
fixed, we put:

O1 = f0, D1 = f1 and f1 = f2

Then, our orthogonal transformations are determined by the following relations:

O2 = R0f0, D2 = R0f1 and f2 = R0f2

A1 = f0 +R1(f1 − f0), B1 = f0 +R1(f2 − f0), C1 = f0 −R1f0

A2 = R0f0 +R2R0(f1− f0), B2 = R0f0 +R2R0(f2− f0), C2 = R0f0−R2R0f0

As a result, the two linear dependence relations between the six depicted periods
take the form:

(I −R0 −R1 +R2R0)fi = 0, i = 1, 2 (2)

where I denotes the identity. We note that the ideal high tridymite structure
(the aristotype) corresponds to R0 = −I and R1 = R2 the reflection in the plane
span(f1, f2)).
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Figure 4: The tetrahedral framework of tridymite. The periodicity lattice is
generated by the marked vectors, subject to the relations (C2−C1)+(D2−D1) =
(A2 −A1) and (C2 − C1) + (E2 − E1) = (B2 −B1).

We shall describe the deformation space in a neighbourhood of this high
tridymite structure. We put −R0 = Q, R1 = Q1 and −R2R0 = Q2, so that (2)
becomes

I +Q = Q1 +Q2 on span(f1, f2) (3)

with Q,−Q1,−Q2 ∈ SO(3). Since the orthogonal transformations Q,Q1, Q2

are completely determined by their values on two vectors e1, e2 of a Cartesian
frame with span(e1, e2) = span(f1, f2), we have to solve the system

ei +Qei = Q1ei +Q2ei i = 1, 2 (4)

where we assume Q ∈ SO(3) given in a neighbourhood of the identity, and look
for solutions Q1, Q2.

We may interpret this system as a problem about a spherical four-bar mech-
anism in the following way. All the vectors implicated in (4) are unit vectors
and can be depicted as points on the unit sphere S2. For a given Q, we mark by
Mi the midpoint of the spherical geodesic segment [ei, Qei] and trace the circle
with center Mi and diameter [ei, Qei]. This is illustrated in Figure 5.

It is an elementary observation that any solution Q1ei and Q2ei determines
diameters of the corresponding circles for i = 1, 2, with the two geodesic arcs
[Qke1, Qke2], like [e1, e2] and [Qe1, Qe2], of length π/2. Thus, the two spheri-
cal quadrilaterals with vertices at e1, Qe1, Qe2, e2 and respectively Q1e1, Q2e1,
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Figure 5: The spherical four-bar mechanism associated to the system (4).

Q2e2, Q1e2 are two configurations of the same four-bar mechanism and more-
over, the distance between the midpoints of the opposite edges represented by
diameters is the same.

It follows from the theory of the spherical four-bar mechanism that, for a generic
Q near the identity of SO(3), the abstract configuration space is made of two
loops which correspond by reflecting the corresponding realizations. Each loop
component has two configurations with the prescibed distance [M1M2]. Thus,
there are four configurations with the prescribed distance.

We observe that if we replace Q1 by Q2 and Q2 by Q1 in the labeling of the
vertices of a realization, the orientation is reversed, hence the configuration
belongs to the other component. Thus, the two obvious solutions of (4), namely

Q1ei = ei, Q2ei = Qei and Q1ei = Qei, Q2ei = ei, i = 1, 2

correspond with configurations on the two different loop components, as do
the remaining two, which are also paired by relabeling. This discussion shows
that all four solutions are obtained from the quadrilateral e1, Qe1, Qe2, e2 and
its reflection in the geodesic [M1,M2], by the two relabelings with Q1 and Q2

possible in each case.

In Figure 6 we have depicted the quadrilateral e1, Qe1, Qe2, e2 as A1B1B2A2,
with reflection in [M1M2] marked as rA1, rB1, rB2, rA2. Then,, the solutions
(Q1e1, Q1e2, Q2e1, Q2e2) of the system (4) are the following four solutions:
(A1, A2, B1, B2), (B1, B2, A1, A2), (rA1, rA2, rB1, rB2) and (rB1, rB2, rA1, rA2).

We may summarize our result as follows.
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Figure 6: Spherical four-bar mechanism and reflection in [M1,M2].

Theorem 3 The deformation space of the tridymite framework is singular in
a neighbourhood of the aristotype and can be represented as a ramified covering
with four sheets of a three-dimensional domain. There is a natural Z2 × Z2

action on this covering which fixes the aristotype framework.

Indeed, the two involutions, inverting the labeling and reflecting in [M1,M2],
commute ang give a Z2 × Z2. action on the covering. The dimension of the
tangent space at the aristotype framework is computed from the linear version
of (4) and is six.
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