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ABSTRACT
The Visualization for Cyber Security research community
(VizSec) addresses longstanding challenges in cyber security
by adapting and evaluating information visualization tech-
niques with application to the cyber security domain. This
research e↵ort has created many tools and techniques that
could be applied to improve cyber security, yet the commu-
nity has not yet established unified standards for evaluating
these approaches to predict their operational validity. In
this paper, we survey and categorize the evaluation metrics,
components and techniques that have been utilized in the
past decade of VizSec research literature. We also discuss
existing methodological gaps in evaluating visualization in
cyber security, and suggest potential avenues for future re-
search in order to help establish an agenda for advancing the
state-of-the-art in evaluating cyber security visualization.
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1. INTRODUCTION
In cyber security, organizations rely on skilled analysts

to make critical decisions regarding threats, vulnerabilities,
and overall network health and performance. The fields of
information visualization and visual analytics strive to lever-
age the unique perceptual capabilities of humans in concert
with algorithmic support in order to better understand com-
plex data. In recent years, visualization has emerged as a
promising technique to better equip analysts to operate ef-
fectively in an evolving digital threat landscape.

Towards this goal, a research community that focuses on
visualization for cyber security, called VizSec, was founded
in 2004. The past 10 years of research in the VizSec com-
munity have led to numerous systems and techniques for
analyzing security data in novel ways. However, novel cyber
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visualizations we have observed to date are either too com-
plex or too basic for the intended users, or too rigid to adapt
to di↵erent workflows and missions. There is little research
on what makes a cyber visualization “good”.

User evaluation provides a means to obtain actionable ev-
idence of the measurable benefits of cyber visualization sys-
tems and gauge the impact of visualization tools on mission
e↵ectiveness. Iterative evaluation spirals help researchers
to understand what visual support is needed, elicit user re-
quirements, determine the e�ciency, e↵ectiveness, and util-
ity of a visualization tool, predict end user adoption, and
provide recommendations for improvement. To date, little
attention has been given to comprehensive, human-in-the-
loop evaluation for cyber visualization.

Evaluation not only provides measures of e↵ectiveness and
performance, but also an improved understanding of domain
specific concerns (network operations, forensics, threat mon-
itoring), tasking (data analysis, decision making, communi-
cation), work style (individual or collaborative, peer-to-peer
or hierarchical), user cognition (experience, mental mod-
els, biases) and the work environment (24/7 Ops centers,
contested terrains). Specific quantitative and qualitative
evaluable dimensions include user experience and preference,
usability and learnability, feature set utility, e↵ect on col-
laboration, cognitive workload, task performance, physical
demand, algorithmic e�ciency, component interoperability,
and insight generation.

Following previously-established methodologies from re-
cent research in information visualization, we conducted a
survey of evaluation approaches used in VizSec papers, iden-
tify gaps in the current state of the practice in evaluation,
and make recommendations for future research directions.

2. PREVIOUS WORK
A number of established publication venues, such as the

annual ACM Conference on Human Factors in Computing
Systems (CHI), heavily emphasize the evaluation of a pro-
posed system or visualization as part of a successful submis-
sion. Although some in the community argue that the use
of usability evaluation may be ine↵ective in some cases [16],
the importance of validating submitted work is explicitly
stated in a recent year’s guideline for reviewing publication
submissions [8]. The guideline asks submitters to “assess
the validity of the results you are presenting” through ap-
propriate means, such as analyses, data, or evaluations, and
furthermore explain why a particular method used for val-



idation is appropriate for the kind of contribution the sub-
mission claims to make. It is generally accepted by the CHI
community that evaluation is a requirement for papers on
system design and the absence of proving validity is often a
reason for rejection [16].

The emphasis on evaluation grew over time as the CHI
conference matured. In an analysis of the evaluation trend in
representative papers spaning 24 years [4], the authors found
that “evaluations” in the 1980s was mostly “describing the
system or conceptual model in detail” that would be similar
to use cases often described in VizSec papers. The authors
noted that in the 1990s, usability evaluation started to gain
emphasis, and more diverse evaluation techniques were used
as the field expanded to include other related research fields.
The use of qualitative and quantitative empirical evaluations
gradually increased over the years, and by 2006 nearly all
papers included some form of formal evaluation [4]. Interest-
ingly, the authors found that evaluation techniques that are
widely adopted in industry, such as Heuristic Evaluation and
Cognitive Walkthrough, were not being used in the research
community. They speculate that the techniques “evolve to
accommodate demands of business”and may not be as read-
ily used in academia. However, many of the visualizations
and systems described in VizSec papers are designed for real
users in operational settings, in which case the techniques
may be appropriate and provide valuable information.

2.1 Evaluation for Visualization Research
Evaluation plays a key role in both visualization design

and research. Many visualization designers, practitioners,
and researchers have studied the role of evaluation for visu-
alization, ranging from in-depth studies to formal theories
and models for the design and evaluation of visualization
techniques and systems. With respect to visualization for
cyber security, there are many potentially useful and inter-
esting components of these studies and models to consider
for the evaluation of visualization in this field. The research
on visualization evaluation can be broken down into: paper
types, evaluation methodologies, models and theories, and
in-depth studies on evaluation.

An important aspect to visualization research and evalu-
ation is the review process, where reviewers must assess the
merits and qualities of visualization work before it can be
published. This step is vital to ensure that the methods,
techniques, and evaluation included in a publication match
its respective contributions. For the field of visualization, it
is commonly accepted that there are five main categories of
papers: technique, system, application/design study, eval-
uation, and theory/model [9]. These categories were origi-
nally introduced by Munzner in 2008, where she describes
these di↵erent paper types in detail to identify common pit-
falls among rejected submissions and provide useful tips for
the expectation of evaluation within each type [24]. For ex-
ample, in a technique paper, a user study is by no means
required, but a well-done study could strengthen the contri-
butions of the paper. This paper categorization scheme has
since been adopted at several major visualization venues:
IEEE VIS [9] and EuroVis.

Researchers have also explored, analyzed, and developed
di↵erent evaluation methodologies for visualization. Tory
and Muller conducted an in-depth analysis of human fac-
tors research and how visualization can support human cog-
nition, accompanied by specific evaluation techniques that

can be employed such as usability inspection and user stud-
ies [13]. In discussing the challenges of visualization evalua-
tion, Plaisant promotes the exploration of evaluation method-
ologies beyond just usability studies or controlled experi-
ments, instead emphasizing the role of data/task reposito-
ries, toolkits, and formalized case studies [33]. The evalua-
tion methodology of Multi-Dimensional In-depth Long-term
Case studies (MILCs) stresses ethnographic observation for
visualization evaluation, working with domain experts for
several years on larger research projects [40]. Further em-
phasizing the need for varied evaluation, Perer and Shnei-
derman refined the MILCs evaluation methodology through
a series of four detailed case studies [30]. In the nine-stage
framework for a methodology of design studies, Sedlmair et
al. highlight that evaluation plays a critical role across all
stages of visualization design, both internally for a project
and externally within a community [39].

In addition to di↵erent methodologies for evaluation, visu-
alization research has also identified new models and theories
with respect to the evaluation of visualization techniques
and tools. For visual analytics, Scholtz identifies and de-
fines five key areas of visual analytic environments which she
claims should be the target of varied evaluation methods and
techniques: situation awareness, collaboration, interaction,
creativity, and utility [37]. North creates a visualization
model for measuring and capturing insight within a visual-
ization tool, where insight has the following defining charac-
teristics: complex, deep, qualitative, unexpected, and rele-
vant; insight would be the step towards creating more com-
plex benchmark tests that can be used for evaluation [27].
Carpendale distinguishes between two main kinds of evalua-
tion in her model: quantitative versus qualitative, discussing
key methods within both types and further characterizing
these methodologies with respect to precision, generalizabil-
ity, and realism [7]. Munzner’s Nested Model highlights four
di↵erent levels of visualization design in order to determine
appropriate validation or evaluation methods for a visual-
ization system [25]. To apply the approach of patterns to
visualization evaluation, Elmqvist and Yi propose a naming
scheme and definition for commonly-used evaluation tech-
niques for visualization, and they categorize these patterns
into five main types: exploration, control, generalization,
validation, and presentation [11]. Gates and Engle recently
identified potential future directions for evaluation in cyber
security visualization; wherein, they promote evaluation of
the data analysis process particularly through the use of case
studies [13].

Lastly, two empirical studies have been conducted a sys-
tematic review of evaluation in visualization literature, which
is close to our work. The original approach by Lam et al.
consists of both an extensive literature review and open cod-
ing exercise on over 800 visualization publications from Info-
Vis, EuroVis, IVS, and VAST; the result of this review was
the identification of seven main classes of evaluation sce-
narios [21]. They further characterize these scenarios with
concise descriptions and example techniques. Overall, their
work highlights a rise in the number of reported evaluations
in visualization papers across the years. Isenberg et al. built
upon this work by further coding all papers from the IEEE
VIS conference, both information and scientific visualiza-
tion. They adapted the original model for a total of eight
evaluation scenarios and grouped the scenarios into those
that target data analysis and those that target visualization



systems and algorithms [18]. While these reviews are thor-
ough, neither of them addressed visualization specifically for
cyber security.

2.2 Evaluation for System Design
Motivation for conducting evaluation can vary, but is gen-

erally accepted as falling into one of two categories:

• “Informative [or formative] motivations for assess-
ment are to improve the quality of the system (or
inform future designs) and, therefore are part of the
design process.

• Summative motivations for assessment are to under-
stand the qualities of the system” [14].

Formative evaluations are used by system designers and
developers to test out various features and aspects of the vi-
sualization, compare alternatives, gauge user reactions, and
generally shape the final direction of a product. Summative
evaluation implies a level of finality and assumes a certain
level of product maturity at the time a product is evaluated.
As Gleicher points out, this distinction between formative
and summative is not clean; a summative evaluation may
still provide the basis for future design revisions. As such,
summative evaluation serves as a snapshot or benchmark of
the state of a visualization tool at a particular stage of devel-
opment, and establishes a baseline measurement for future
iterations [36].

As a formative research activity, evaluation helps us to
understand what visual support is needed in the cyber do-
main. By evaluating cyber visualizations in the formative
stages, we have the opportunity to ask questions that shed
light on how visualization can best support user tasks, how
data analysis is conducted, how individual work styles and
experiences can impact visualization consumption, and pre-
dict how a tool will be used in a particular environment.

As a summative activity, evaluation provides the evidence
for measurable operational utility of a visualization tool in a
real-world environment, and gives decision-makers objective
justification for investing in the development and producti-
zation of a particular artifact. Evaluation can also help us
to understand the process by which research visualization
transitions into operational tools [33]– it is still a long road
from the lab to the watch floor. Summative evaluation of re-
search visualization help us to understand which aspects of
novel visualizations are useful to users, and how such aspects
should be iterated upon until they are operations-ready.

3. WHAT CONSTITUTES EVALUATION?
While there is little disagreement in the security visualiza-

tion community about the importance of evaluation, there is
no general consensus on what constitutes an evaluation. For
an evaluation to be useful, one must consider its purpose and
scope, select the appropriate metrics and correctly apply as-
sessment techniques. As previously noted, much work has
been done on evaluation in other visualization fields. This
section collects and systematizes ideas and taxonomies from
prior research. Section 3.1 discusses the di↵erent dimensions
one might consider evaluating. Section 3.2 covers the di↵er-
ent components in a visualization system one might consider
instrumenting and evaluating. Note that we treats a visual-
ization system broadly to include the computer, the human
and any environmental factors that impact the interaction

between a visualization and its intended user. Section 3.3
enumerates a range of techniques. It is our goal to provide a
“lay of the land” for evaluation. While evaluations need not
to be complete or even always necessary, we hope this helps
security visualization practitioners to construct evaluations
that get at the aspects most important for their situations.

3.1 Dimensions Evaluated
The following section identifies dimensions of a visualiza-

tion system that may be useful to evaluate, ranging from hu-
man performance to system performance. These dimensions
were compiled from a variety of existing work in evaluating
human-machine collaborative systems [7, 16, 18, 25].

• User experience / preference: The overall experi-
ence of using an interface, especially in terms of how
easy or pleasing it is to use

• Usability / learnability: The ease of use and learn-
ing curve of an interface

• E↵ect on collaboration: Does an interface encour-
age more collaboration (measured in terms of increased
communication, shared control of resources, etc.)?

• Insight generation: Does using this system enable
more “aha!” moments? Note: this is notoriously dif-
ficult to measure; usually we ask the person to self-
report their insights and count / otherwise aggregate
them

• Cognitive workload: From a cogsci perspective: how
e↵ectively does the system utilize a person’s working
memory? More heuristically: how hard does the per-
son have to think to accomplish their tasks while using
the system?

• Task performance: How well does a person / team
perform on a predefined task using this system?

• Physical demand: Physiological measures: how hard
does a person’s body have to work to use the system
e↵ectively?

• Feature set utility: How useful or advantageous are
the set of features available? Are there features that
get used more heavily, others than never get used at
all?

• Algorithmic e�ciency: Traditional algorithmic /
empirical system performance measures

• Component interoperability: How well do the pieces
of the system fit together? Are they independent, do
they interact with one another? Can they be rear-
ranged?

3.2 Components
Adapting a systems approach, a visualization system en-

compasses the machine, the human and the interaction of
the two. Pike et al. [32] introduce a model that maps a
taxonomy of the user’s goals and tasks to a taxonomy of
the visualization application’s representation and interac-
tive controls. This is an excellent basis for constructing
summative evaluations to answer the question of how ef-
fective a visualization is in helping the user accomplish her
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Figure 1: Components of a visualization system that

can be evaluated. This model extends existing work

by Pike et al. [32] and Sedig et al. [38] to include

components of human internal processes and exter-

nal factors that influence human behavior.

tasks. Sedig et al. [38] further broaden the definition of in-
teractivity in terms of a linear transfer of information from
information space, computing space, representation space,
interaction space, to mental space. We prefer to define a vi-
sualization system as a system where a user interacts with a
visualization application that encodes information, within
the context of the user’s tasks and goals as well as her
internal and external states. The information can be col-
lected data, knowledge base or transformed data resulted
from computational processes. The transformation may or
may not be directly dictated by the application. We observe
that the most e↵ective users are cognizant of the nuances of
the data’s provenance as well as the data as presented by the
application, so that they understand the limitations and bi-
ases and form their judgements accordingly. There are other
background forces that influence how a user perceives and in-
teracts with a visualization. These may be internal, such as
cognition and mental models, or external, such as physical or
organizational environment and workflows. When conduct-
ing summative evaluations, one ought to keep these contexts
in mind, whether to assess their e↵ects or leverage them to
interpret results. Finally, there are great opportunities to
conduct formative evaluations on these context elements, as
they help inform the needs that potential visualization ap-
plications could meet and constraints such applications must
respect to be e↵ective.

3.3 Techniques
In this section, we outline some commonly-used techniques

for evaluating visualization. As we survey the VizSec liter-
ature, we will use these definitions to categorize the evalua-
tions performed.

• Critique: Holistic assessment of a human reading
and interpretation of the visualization via ”meticulous
group discussion centered on how well particular as-
pects or details of a visualization support the intended
goal” [19].

• Co-Creation: Participatory design methodology where
users are actively involved in the process of creating a
system, and support iterative evaluation throughout

the project lifecycle [23], thus being positioned as sys-
tem co-creators. The Living Laboratory framework
is a variation in which users are co-located with re-
searchers for the purpose of ethnographic study, itera-
tive experimentation and evaluation [22].

• Inspection: Set of informal methods in which ex-
perts review an interface to determine adherence to
a set of best practices or user interface guidelines for
a given domain. Example methods include heuristic
evaluation, cognitive walkthrough, formal usability in-
spection, pluralistic walkthrough, feature inspection,
consistency inspection, and standards inspection [26].

• Interview: User is asked a series of structured or
semi-structured questions to elicit knowledge regard-
ing a particular topic, domain, or workplace [6, 43].

• Usability Testing: Measurement of “the extent to
which the product can be used with e↵ectiveness, ef-
ficiency and satisfaction in a particular context” [2].
Data collected can include completion rates, errors,
tasks times, usability problems and qualitative feed-
back [36].

• Surveys: Compilations of questions, consisting of quan-
titative or qualitative rating or open-ended free re-
sponse questions, aimed at extracting information from
a representative sample of a target population, usually
for the purpose of user evaluations, opinions, or demo-
graphics [28].

• Longitudinal Studies: Research conducted over a
period of time to measure user performance, e�ciency,
and utility of a particular tool from initial user training
through proficiency. This method also captures pro-
cess or behavioral changes as a result of introducing a
new product into an environment. Multiple method-
ologies may be used [40].

• Simulation: Controlled experiments performed with
representative users in a laboratory environment that
incorporate multiple variables and realistic scenarios
and conditions.

• Interface Instrumentation: “Application instrumen-
tation, collection of usage data, and data analysis”
to extract user interaction information from software
tools [5]. Examples include log file analysis or click-
tracking.

• Psychophysiological Measurement: Physiological
measurements taken during a user’s interaction with a
product that are indicative of a cognitive state, such as
attention, cognition, or emotional response. Examples
include eye tracking, pupil dilation, heart rate, respi-
ration, skin conductance, muscle activity, and brain
measurements [35].

• Automated Image Analysis: Computer-generated
analysis of a digital image for visual characteristics
such as consistency of rendering, visual density, com-
plexity, element alignment, ratio of text-to-background
or graphics-to-text, balance, and symmetry, as a proxy
for human evaluation [42, 44].



• Application Performance Testing: Automated or
computer-generated analysis of system load or response
times under particular use conditions, based on pre-
defined scenarios.

4. SURVEY METHODOLOGY
We surveyed 130 papers from the past 10 years of VizSec

proceedings, and from this corpus, we have identified 49 pa-
pers that included some form of evaluation according to the
criteria and definitions outlined in Section 3. In addition to
this categorization, we also surveyed whether or not users
were involved in the evaluation process, whether or not they
were expert users, and at what point during the develop-
ment process they were involved. The raw results of this
analysis (by year) is outlined in Figure 2. Our analysis has
uncovered key patterns of evaluation within the VizSec com-
munity, as well as several interesting methodological gaps,
which will be discussed in detail in Section 5. The results
of this analysis provide a common framework for describing
and understanding the current state of the practice in eval-
uation in cyber security, which we hope will motivate future
work in the field.

5. SURVEY FINDINGS
Evaluation involves several multi-faceted choices, each with

significant tradeo↵s made by the evaluators. Yet throughout
our analysis we encountered cases where key details of eval-
uations were missing. The purpose of this section, therefore,
is to support future evaluation by outlining several common
choices and tradeo↵s.

5.1 Users: Experts or Everyone Else?
Our analyis indicates that the choice of users in security

visualization evaluation is often all-or-nothing: either expert
users are recruited (32% of evaluations), or no users are
recruited at all (46%). Only rarely are non-expert users
involved (10%), and in some cases, user details were omitted
entirely (12%).

As the target users of a system, expert users provide valu-
able feedback for many of the metrics listed in Section 3.1,
such as insight generation and usability. However, our anal-
ysis indicates that previous studies involving expert users fo-
cus overwhelmingly on feature set utility (73%) and usability
(42%), whereas other metrics are rarely visited, such as in-
sight generation (23%), component interoperability (11%),
and cognitive workload (3%). Future studies can make valu-
able contributions by examining these under-explored met-
rics with expert users.

The under-utilized category of non-expert users (10% of
evaluations), may yield many benefits for the future of VizSec.
For example, Ball et al. recruited non-expert users for a
thorough usability- and performance-focused evaluation of
their system, which used a set of network administration
tasks informed by their previous collaborations with expert
users [3]. Similarly, future research in security visualization
might focus on distilling common analytical tasks into more
their more basic perceptual, cognitive, and motor substrates,
which will make it possible to conduct empirical compara-
tive evaluations of visualization and interaction techniques
with non-expert users.

5.2 Data: Real or Repeatable?

Figure 2: Annual trends in the evaluation of vari-

ous dimensions of visualization systems over the past

decade of VizSec.

Datasets used in system and technique evaluations should
reflect real-world scenarios as much as possible, while simul-
taneously lending themselves to reproducibility and com-



parison in future research. Balancing these goals is di�cult
and sometimes impossible, making it necessary to under-
stand the tradeo↵s between using di↵erent types of datasets
for evaluation.

Datasets that are obtained through collaborations with
real-world users often make compelling case studies, since
they can reveal previously undiscovered insights within an
organization. Yet real-world datasets are rarely published,
even in anonymized form, making meta-analysis in follow-up
research di�cult. The size and complexity of these datasets
are also uncontrolled, and cannot be assumed to be equiv-
alent to datasets in other organizations. The use of real-
world datasets in evaluation, therefore, should include an ad-
equate description of its characteristics to support followup
research.

As an alternative to real-world datasets, several organiza-
tions have crafted open datasets in order to facilitate com-
parative evaluations between security visualization tools. The
VAST Challenge program, for instance, has provided sys-
tem logs, NetFlow data, packet-capture data, vulnerability
scans, along with complex scenarios and ground truth data.
For some visualizations, however, even these datasets may
be limited in terms of data complexity and size. One way
to directly control the size and complexity of data is to use
simulation tools and environments. By controlling the size
and complexity of data, it is possible to directly test the
limits of the chosen visualization techniques, encodings, and
interactions.

5.3 Evaluation using Case Studies
Case studies ground the evaluation of visualization tools

into realistic settings [33]; however, many VizSec papers uti-
lize the term “case studies” when actually a more apt term
would be a “usage scenario”. As characterized in a system-
atic study of evaluation by Isenberg et al., case studies can
be classified into four main types [18]:

1. how a domain expert or analyst used a tool

2. how a tool is developed based on collaboration between
the visualization researcher and domain expert

3. how a visualization researcher used a tool to solve a
real problem

4. documentation or demonstration of how a tool may be
utilized

In their systematic study, the authors argue that this fourth
type is not a formal case study. To classify as a more formal
case study, the study must involve both real data and real
users [39], otherwise it is a usage scenario. While the first
three categories clearly involve evaluation of a tool, the last
category is not as strong and merely a demonstration of the
tool. In our analysis of VizSec papers from 2004 through
2013, we found all of these cases present, with a clear dom-
inance of usage scenarios over case studies.

In our review of VizSec papers, the majority contained
usage scenarios over case studies. For example, since 2006,
there have been a total of 44 papers containing any one of
these four types of studies, but only six of these evaluated
using a more formal case study (see Fig. 3). In fact, for each
year since 2006, there has not been more than one formal
case study presented at the conference. Many authors of
the many VizSec papers are not consistent in their use of

Figure 3: Annual trends in the utilization of four

types of Case Studies. Note that Type 4 (docu-

mentation or demonstration of how a tool may be

utilized) is the most heavily utilized.

these terms. Most usage scenarios are reported in a section
called “case study,” and others have reported their formal
case studies as other names, such as an “example analysis
session” [17]. Usage scenarios can serve a purpose, but it is
important to note that the lack of connection back to real
users or real data (or both) may question the validity and
utility of the evaluated tool. The preponderance of usage
scenarios as a type of evaluation method in these papers
seems to favor new techniques and tools even if there are not
enough user-based studies that suggest the tool or technique
will be useful in the field.

5.4 Technique: Tying it Together
The choice of evaluation technique depends on the overall

goal of evaluation, as well as the available users and datasets.
Although our survey found that most VizSec evaluations
make use of only the usage scenario technique (48%), there
are several notable exceptions that employ less common tech-
niques and metrics, or combinations of techniques. For ex-
ample, Fink et al, involved target users throughout the sys-
tem design and evaluation through interviews and co-creation,
before evaluating the performance of their system using more
controlled task-based experiment techniques [12]. Similarly,
Rasmussen et al use a combination of structured feedback
protocols and surveys to assess how their system met an-
alyst’s needs for defensible insights and recommendations
[34]. These examples underscore the need for future secu-
rity visualization research to explore the utility of currently
unexplored evaluation techniques.

6. FUTURE DIRECTIONS
The results of our survey uncovered several gaps and trends

in the evaluation of security visualizations. We discuss these
gaps in this section, along with several possible directions for
future research.

6.1 Common Framework



In many cases, identifying evaluation methodologies used
was di�cult for the purposes of categorization, as limited
detail was provided by the authors. This limitation im-
pacted our ability to generate meaningful findings beyond
discussion of the techniques utilized. We can speculate as
to reasons why this may be the case. Evaluation is not re-
quired of a VizSec paper and therefore may be deprioritized
by the authors. Cyber visualization is a niche practice; an
individual researcher may have a highly specialized skill set
that may not include standard HCI experimentation prac-
tices or vocabulary. While the scientific method for visu-
alization does not necessarily require exact reproducibility
of results, exposing further detail on techniques and metrics
used would benefit the visualization community by setting
expectations for similar results using similar techniques. To
help facilitate continued dialogue on visualization evaluation
in the VizSec community, we recommend the adoption of a
common framework for discussion of evaluation such as (but
not limited to) the one outlined in Section 3.

6.2 Psychophysiological Methods
Our analysis found that no papers used physiological meth-

ods for evaluating security visualizations (see Fig. 4). Yet
given the sustained focus in the security community on top-
ics such as situational awareness and information overload,
existing research in physiological techniques from visualiza-
tion and human-computer interaction present valuable new
dimensions for security visualization evaluation. For exam-
ple, recent research in brain-sensing from Peck et al. [29]
measured changes in cognitive workload to evaluate basic
visualization tasks. These changes in workload were reli-
ably measured in real-time, even when traditional metrics
like participant accuracy and user preference showed little
change. Similarly Afergan et al. have used brain-sensing not
only for detecting cognitive overload in a visual interface,
but also for adapting to the user by decreasing or increas-
ing the amount of information operators must analyze [1].
Physiological metrics include more than just brain-sensing,
however. Examples of other well-researched physiological
methods in visualization and human-computer interaction
include eye-tracking [41], as well as galvanic skin-response,
heart-rate, and posture/orientation [31].

Figure 4: Annual trends in the utilization of various

evaluation techniques.

6.3 Interface Instrumentation

While several papers in our analysis used observational
protocols to analyze how participants interact with a visual-
ization system, only one paper used interface instrumenta-
tion, where system interactions are logged and analyzed as
part of the evaluation [20]. Logging and analyzing interac-
tions presents several new directions for the evaluation and
design of security visualization systems. Research in visual
analytics has demonstrated that low-level interaction logs
can be mined to infer information about a user’s strategies,
methods, and findings [10]. Similarly, Gotz et al. showed
that low-level interactions can be mapped into existing visu-
alization task taxonomies to evaluate and compare how well
tools supported common data analysis tasks [15]. Adapting
methods like these will lead to more quantitative, scalable,
and repeatable approaches for security visualization evalua-
tion.

6.4 Longitudinal Studies
No papers in our study utilized longitudinal study as an

evaluation method. The method, as defined by Shneider-
man and Plaisant [40], combines ethnographic observation
in the normal user environment, automated activity logging,
and intense engagement with researchers over a long period
of time. This gap in utilization in VizSec is not surpris-
ing considering the challenges inherent in the cyber security
user research. Firstly, access to environments where cyber
security analysis activities are taking place is often tightly
controlled to protect the security and privacy of the organi-
zation; it is di�cult for researchers to gain access to analysts
or watch floors for direct observation for even short periods
of time. Audio or video recording, activity logging, or shar-
ing of meaningful findings with the research community is
often restricted, if not completely prohibited as a matter
of policy. Finally, it is di�cult for management to justify
analyst time spent working with closely researchers as op-
posed to their daily job responsibilities, as there has been
little evidence of return on investment for an organization’s
participation in this type of study. However, the “living lab-
oratory” concept [22] – pairing researchers with analysts in a
hybrid operations-research environment – is starting to gain
traction with research universities and national laboratories;
we look forward to future results and lessons learned from
these collaborations.

7. CONCLUSION
In this work, we have outlined the “lay of the land” for

visualization evaluation, as well as surveyed and catego-
rized the evaluation metrics, components and techniques
that have been utilized in the past decade of VizSec research
literature. We have identified existing methodological gaps
in evaluating visualization in cyber security, and suggested
potential avenues for future research. It is our hope that this
study will help establish an agenda for advancing the state-
of-the-art in evaluating cyber security visualization, as well
as encourage future dialogue on evaluation for operational
utility.
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