Computational Geometry Column 43

Joseph O'Rourke
Smith College, jorourke@smith.edu

Follow this and additional works at: https://scholarworks.smith.edu/csc_facpubs
Part of the Computer Sciences Commons, and the Geometry and Topology Commons

Recommended Citation

O'Rourke, Joseph, "Computational Geometry Column 43" (2002). Computer Science: Faculty Publications, Smith College, Northampton, MA.
https://scholarworks.smith.edu/csc_facpubs/62

Computational Geometry Column 43

Joseph O'Rourke*

Abstract

The concept of pointed pseudo-triangulations is defined and a few of its applications described.

A pseudo-triangle is a planar polygon with exactly three convex vertices. Each pair of convex vertices is connected by a reflex chain, which may be just one segment. Thus, a triangle is a pseudo-triangle. A pseudo-triangulation of a set S of n points in the plane is a partition of the convex hull of S into pseudotriangles using S as a vertex set. Under the name of "geodesic triangulations," these found use in ray shooting CEG^{+94}, and then for visibility algorithms by Pocchiola and Vegter PV95, who named them (after a dual relationship to pseudoline arrangements) and studied many of their properties PV96. Recently the identification of minimum pseudo-triangulations by Streinu Str00. has generated a flurry of new applications that we selectively sample here.

Minimum pseudo-triangulations have the fewest possible number of edges for a given set S of points. The term pointed pseudo-triangulation is gaining prominence because of the following theorem \square (see Fig. 1]):

Theorem 1 A pseudo-triangulation of S is minimum iff every point $p \in S$ is pointed in the sense that its incident edges span less than π (i.e., they fall within a cone apexed at p with aperture angle $<\pi$).

Figure 1: Two pointed pseudo-triangulations of the same set of $n=10$ points.
Pointed pseudo-triangulations have remarkable regularity in that each contains exactly $n-2$ pseudo-triangles. In this they parallel triangulations of simple

[^0]polygons and are unlike triangulations of point sets, which may have from $n-2$ to $3(n-2)$ triangles. Another indication of their well-behavedness is the recent result $\mathrm{KKM}^{+} 01$ that every set of n points in general position has a pointed pseudo-triangulation with maximum vertex degree of 5 , a property not enjoyed by triangulations (of either polygons or point sets). This bounded degree may prove useful for designing data structures employing pseudo-triangulations, such as those used for collision detection KSS02.

We mention two disparate applications of pointed pseudo-triangulations. Two years ago a long-standing open problem was settled by Connelly, Demaine, and Rote when they proved that polygonal linkages cannot lock in the plane: open polygonal chains can be straightened, and closed polygonal chains can be convexified CDR00 O'R00. Their unlocking motions are expansive: no distance between any pair of vertices decreases. Their proof relies on proving the existence of a solution to differential equations describing this motion. Although not difficult to solve numerically in practice ${ }^{2}$ theirs does not constitute an algebraic proof. This was provided by Streinu [Str00]. She proved that a pointed pseudo-triangulation is rigid when viewed as a bar and joint framework, and that removal of a convex hull edge yields a mechanism with one degree of freedom (1-dof) that executes an expansive motion. Adding bars to a given collection of polygonal chains to produce a pointed pseudo-triangulation, and using a useful "flipping" property of pseudo-triangulations, leads ultimately to a piecewise-algebraic straightening/convexifying motion. These 1-dof expansive motions have a rich structure that is just now being elucidated RSS01.

Second, pointed pseudo-triangulations were used to make an advance on an open problem posed by Urrutia Urr00: Can a simple polygon of n vertices be illuminated by $c n$ interior π-floodlights placed at vertices, with $c<1$ (for sufficiently large n)? For several years the lower bound on c was $3 / 5$, but no one could prove that c was smaller than 1. Starting from a pointed pseudo-triangulation of the polygon, Speckmann and Tóth have recently established ST01 that $(2 / 3) n$ lights suffice, finally breaking the $c=1$ barrier. 3

We close with an open problem, posed in RRSS01. For a given set S of points, let $\# T$ be the number of triangulations of S, and $\# P P T$ be the number of pointed pseudo-triangulations of S. They conjecture that $\# T \leq \# P P T$ for all S, with equality only when the points of S are in convex position. This has been established for all sets of at most 9 points BKPS01.

References

[BKPS01] H. Brönnimann, L. Kettner, M. Pocchiola, and J. Snoeyink. Counting and enumerating pseudo-triangulations with the greedy flip algorithm. September 2001. http://www.cs.unc.edu/Research/compgeom/pseudoT/.

[^1][CDR00] R. Connelly, E. D. Demaine, and G. Rote. Straightening polygonal arcs and convexifying polygonal cycles. In Proc. 41st Annu. IEEE Sympos. Found. Comput. Sci., pages 432-442. IEEE, November 2000.
$\left[\mathrm{CEG}^{+} 94\right]$ B. Chazelle, H. Edelsbrunner, M. Grigni, Leonidas J. Guibas, J. Hershberger, M. Sharir, and J. Snoeyink. Ray shooting in polygons using geodesic triangulations. Algorithmica, 12:54-68, 1994.
$\left[K_{K M}{ }^{+} 01\right]$ L. Kettner, D. Kirkpatrick, A. Mantler, J. Snoeyink, B. Speckmann, and F. Takeuchi. Tight degree bounds for pseudo-triangulations of points. Comput. Geom. Th. Appl., 2001. To appear. Revision of abstract by L. Kettner, D. Kirkpatrick, and B. Speckmann, in Proc. 13th Canad. Conf. Comput. Geom., pp. 117-120, 2001.
[KSS02] D. Kirkpatrick, J. Snoeyink, and B. Speckmann. Kinetic collision detection for simple polygons. Internat. J. Comput. Geom. Appl., 2002. To appear. Revised version of Proc. 16th Annu. ACM Sympos. Comput. Geom., pp. 322-330, 2000.
[O'R00] J. O'Rourke. Computational geometry column 39. Internat. J. Comput. Geom. Appl., 10(4):441-444, 2000. Also in SIGACT News, 31(3):47-49 (2000), Issue 116.
[PV95] M. Pocchiola and G. Vegter. Computing the visibility graph via pseudotriangulations. In Proc. 11th Annu. ACM Sympos. Comput. Geom., pages 248-257, 1995.
[PV96] M. Pocchiola and G. Vegter. Pseudo-triangulations: Theory and applications. In Proc. 12th Annu. ACM Sympos. Comput. Geom., pages 291-300, 1996.
[RRSS01] D. Randall, G. Rote, F. Santos, and J. Snoeyink. Counting triangulations and pseudotriangulations of wheels. In Proc. 13th Canad. Conf. Comp. Geom., pages 149-152, 2001.
[RSS01] G. Rote, F. Santos, and I. Streinu. Expansive motions and the polytope of pointed pseudo-triangulations. http://cs.smith.edu/~streinu/Papers/ polytope.ps, September 2001.
[ST01] B. Speckmann and C. D. Tóth. Vertex π-guards in simple polygons. December 2001.
[Str00] I. Streinu. A combinatorial approach to planar non-colliding robot arm motion planning. In Proc. 41 st Annu. IEEE Sympos. Found. Comput. Sci. IEEE, November 2000. 443-453.
[Urr00] J. Urrutia. Art gallery and illumination problems. In J.-R. Sack and J. Urrutia, editors, Handbook of Computational Geometry, pages 973-1027. North-Holland, 2000.

[^0]: *Dept. of Computer Science, Smith College, Northampton, MA 01063, USA. orourke@cs. smith.edu. Supported by NSF Distinguished Teaching Scholar Grant DUE-0123154.
 ${ }^{1} \mathrm{Thm} .3 .1(2)$ of Str00 (where the property is called "acyclicity"); Lem. 1 in $\mathrm{KKM}^{+} 01$.

[^1]: ${ }^{2}$ http://db.uwaterloo.ca/~eddemain/linkage/animations/.
 ${ }^{3}$ See http://cs.smith.edu/ ${ }^{\circ}$ orourke/TOPP/, Problem 23, for further developments.

