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ABSTRACT
For a set of points in the plane and a fixed integer k > 0,
the Yao graph Yk partitions the space around each point
into k equiangular cones of angle θ = 2π/k, and connects
each point to a nearest neighbor in each cone. It is known
for all Yao graphs, with the sole exception of Y5, whether
or not they are geometric spanners. In this paper we close
this gap by showing that for odd k ≥ 5, the spanning ratio
of Yk is at most 1/(1 − 2 sin(3θ/8)), which gives the first
constant upper bound for Y5, and is an improvement over
the previous bound of 1/(1− 2 sin(θ/2)) for odd k ≥ 7. We
further reduce the upper bound on the spanning ratio for
Y5 from 10.9 to 2 +

√
3 ≈ 3.74, which falls slightly below

the lower bound of 3.79 established for the spanning ratio of
Θ5 (Θ-graphs differ from Yao graphs only in the way they
select the closest neighbor in each cone). This is the first
such separation between a Yao and Θ-graph with the same

∗Research supported in part by NSERC.
†Research supported by NSF grant CCF-1218814.

number of cones. We also give a lower bound of 2.87 on
the spanning ratio of Y5. Finally, we revisit the Y6 graph,
which plays a particularly important role as the transition
between the graphs (k > 6) for which simple inductive proofs
are known, and the graphs (k ≤ 6) whose best spanning
ratios have been established by complex arguments. Here
we reduce the known spanning ratio of Y6 from 17.6 to 5.8,
getting closer to the spanning ratio of 2 established for Θ6.

1. INTRODUCTION
The complete Euclidean graph defined on a point set S

in the plane is the graph with vertex set S and edges con-
necting each pair of points in S, where each edge xy has
as weight the Euclidean distance |xy| between its endpoints
x and y. Although this graph is useful in many different
contexts, its main disadvantage is that it has a quadratic
number of edges. As such, much effort has gone into the de-
velopment of various methods for constructing graphs that
approximate the complete Euclidean graph. What does it
mean to approximate this graph? One standard approach
is to construct a spanning subgraph with fewer edges (typi-
cally linear) with the additional property that every edge e
of the complete Euclidean graph is approximated by a path
in the subgraph whose weight is not much more than the
weight of e. This gives rise to the notion of a t-spanner.
A t-spanner of the complete Euclidean graph is a spanning
subgraph with the property that for each pair of vertices x
and y, the weight of a shortest path in the subgraph between
x and y is at most t ≥ 1 times |xy|. The spanning ratio is
the smallest t for which the subgraph is a t-spanner. Span-
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ners find many applications, such as approximating short-
est paths or minimum spanning trees. For a comprehensive
overview of geometric spanners and their applications, we
refer the reader to the book by Narasimhan and Smid [11].

One of the simplest ways of constructing a t-spanner is
to first partition the plane around each vertex x into a fixed
number of cones1 and then add edges connecting x to a clos-
est vertex in each cone. Intuition suggests that this would
yield a graph whose spanning ratio depends on the num-
ber of cones. Indeed, this is one of the first approximations
of the complete Euclidean graph, referred to as Yao graphs
in the literature, introduced independently by Flinchbaugh
and Jones [10] and Yao [12]. We denote the Yao graph
by Yk where k is the number of cones, each having angle
θ = 2π/k. Yao used these graphs to simplify computation
of the Euclidean minimum spanning tree. Flinchbaugh and
Jones studied their graph theoretic properties. Neither of
them actually proved that they are t-spanners.

To the best of our knowledge, the first proof that Yao
graphs are spanners was given by Althöfer et al. [1]. They
showed that for every t > 1, there exists a k such that Yk
is a t-spanner. It appears that some form of this result was
known earlier, as Clarkson [7] already remarked in 1987 that
Y12 is a 1 +

√
3-spanner, albeit without providing a proof or

a reference. Bose et al. [5] provided a more specific bound
on the spanning ratio, by showing that for k > 8, Yk is
a geometric spanner with spanning ratio at most 1/(cos θ−
sin θ). This was later strengthened to show that for k > 6, Yk
is a 1/(1−2 sin(θ/2))-spanner [3]. Damian and Raudonis [8]
showed that Y6 is a 17.64-spanner, and Bose et al. [4] showed
that Y4 is a 663-spanner. For k < 4, El Molla [9] showed
that there is no constant t such that Yk is a t-spanner. This
leaves open only the question of whether Y5 is a constant
spanner.

In this paper we close this gap by showing that for odd
k ≥ 5, the spanning ratio of Yk is at most 1/(1−2 sin(3θ/8)).
This gives the first constant upper bound for Y5 and implies
that Yk is a constant spanner for all k ≥ 4. For odd k ≥ 7,
our result also improves on the previous bound of 1/(1 −
2 sin(θ/2)). A more careful analysis allows us to reduce the
upper bound on the spanning ratio of Y5 from 10.9 to 2 +√

3 ≈ 3.74. We also give a lower bound of 2.87 on the
spanning ratio of Y5. This complements a recent result on
the spanning ratio of Θ5, which differs from Y5 only in the
distance measure it uses to select the closest neighbor in
each cone: instead of Euclidean distance, it projects each
vertex on the bisector of the cone and selects the vertex
with the closest projection. Bose et al. [6] showed that Θ5

has a spanning ratio in the interval [3.79, 9.96]. Because our
upper bound of 3.74 on the spanning ratio of Y5 is slightly
lower than the lower bound of 3.79 on the spanning ratio of
Θ5, this result establishes the first separation between the
spanning ratio of Yao and Θ-graphs. For all other k ≥ 4, it
is unclear which of Θk or Yk has a better spanning ratio.

Finally, we revisit the Y6 graph, which plays a particularly
important role as the transition between the graphs (k > 6)
for which simple inductive proofs are known, and the graphs
(k ≤ 6) whose best spanning ratios are established by com-
plex arguments. Here we reduce the known spanning ratio of
Y6 from 17.64 to 5.8, thus moving toward the spanning ratio
of 2 established for Θ6 [2]. In contrast to Y5, we also present

1The orientation of the cones is the same for all vertices.

a lower bound of 2 on the spanning ratio of Y6, showing that
it can never improve upon Θ6 in this regard.

2. SPANNING RATIO OF Yk, FOR ODD k
In this section we study the spanning properties of the

Yao graphs Yk defined on a plane point set S by an odd
number of cones k ≥ 5, each of angle θ = 2π/k. For k = 5
in particular, this is the first result showing that Y5 is a
constant spanner. For odd values k > 5, we improve the
currently known bound on the spanning ratio of Yk.

We start with a few definitions. For a fixed k, let Qi(a) be
the half-open cone of angle 2π/k with apex a, including the
angle range [i, i+1) ·2π/k, for i = 0, . . . , k−1, where angles
are measured counterclockwise from the positive x-axis. The

directed graph
−→
Yk includes exactly one directed edge from a

to a closest point in Qi(a), for each i = 0, . . . , k−1. If there
are several equally-closest points within Qi(a), then ties are
broken arbitrarily. The graph Yk is the undirected version

of
−→
Yk. For any two points a, b ∈ S, let p(a, b) denote the

length of a shortest path in Yk from a to b.

a b

c

c′
≤ α

Figure 1: If α is small, there is a close relation between |ac|
and |bc|.

Lemma 1. Given three points a, b, and c, such that |ac| ≤
|ab| and ∠bac ≤ α < π, then

|bc| ≤ |ab| − (1− 2 sin(α/2)) |ac|.

Proof. Let c′ be the point on ab such that |ac| = |ac′|
(see Fig. 1). Since acc′ forms an isosceles triangle,

|cc′| = 2 sin(∠bac/2)|ac| ≤ 2 sin(α/2)|ac|.

Now, by the triangle inequality,

|bc| ≤ |cc′|+ |c′b|
≤ 2 sin(α/2)|ac|+ |ab| − |ac′|
= |ab| − (1− 2 sin(α/2))|ac|.

Theorem 2. For any odd integer k ≥ 5, Yk has spanning
ratio at most t = 1/(1− 2 sin(3θ/8)).

Proof. Let a, b ∈ S be an arbitrary pair of points. We
show that there is a path in Yk from a to b no longer than
t|ab|. For simplicity, let Q(a) denote the cone with apex
a that contains b, and let Q(b) denote the cone with apex
b that contains a. Rotate the point set S such that the
bisector of Q(a) is in the direction of the positive y-axis, as
depicted in Fig. 2. Assume without loss of generality that b
lies to the right of this bisector; the case when b lies to the
left of this bisector is symmetric.

Let α be the angle formed by the segment ab with the
bisector of Q(a), and let β be the angle formed by ab with
the bisector of Q(b). Since k is odd, the bisector of Q(a) is



a

b

α

β

Figure 2: Since opposite cones are not symmetric, either α
or β is small.

parallel to the right boundary of Q(b). Hence, we have that
α = θ/2−β. Assume without loss of generality that α is the
smaller of these two angles (if not, we exchange the roles of
a and b). It follows that α ≤ θ/4.

Our proof is by induction on the distance |ab|. In the
base case |ab| is minimal among all distances between pairs
of points, which means that there is no point c ∈ Q(a) that
is strictly closer to a than b. Therefore either ab ∈ Yk, in
which case our proof for the base case is finished, or there is
a point c ∈ Q(a) such that |ab| = |ac| and ac ∈ Yk. In this
latter case, since α ≤ θ/4 and k ≥ 5, the angle between ab
and ac is at most θ/2 + α ≤ 3θ/4 ≤ 3/4 · (2π/5) = 3π/10.
This is less than π/3, which implies that |bc| < |ab|. This
contradicts our assumption that |ab| is minimal. It follows

that
−→
ab ∈

−→
Yk and the base case holds.

For the inductive step, let c ∈ Q(a) be such that −→ac ∈
−→
Yk.

If c coincides with b, then p(a, b) = |ab| and the proof is fin-
ished. So assume that c 6= b. Because c is the closest vertex
to a in this cone, and because ∠cab ≤ θ/2+α ≤ 3θ/4, we can
apply Lem. 1 to derive |cb| ≤ |ab| − (1 − 2 sin(3θ/8))|ac| =
|ab|−|ac|/t, which is strictly less than |ab|. Thus we can use
the inductive hypothesis on cb to determine a path between
a and b of length

p(a, b) ≤ |ac|+ t|cb| ≤ |ac|+ t

(
|ab| − |ac|

t

)
= t|ab|.

Applying this result to Y5 yields a spanning ratio of 1/(1−
2 sin(3π/20)) ≈ 10.868. This is the first known upper bound
on the spanning ratio of Y5 and fully settles the question of
which Yao graphs are spanners.

Corollary 3. The graph Yk is a spanner if and only if
k ≥ 4.

Next we lower the upper bound on the spanning ratio of
Y5 by taking a closer look at all feasible configurations.

Theorem 4. The graph Y5 has spanning ratio at most
2 +
√

3 ≈ 3.74.

Here we also use induction on the pairwise distances be-
tween pair of points in S. Consider the same configuration
used in the proof of Thm. 2: a ∈ Q(b) and b ∈ Q(a) are
points in S, and we seek a short path from a and b; the
bisector of Q(a) is aligned with the positive y-axis, and b

lies to the right of this bisector; α and β are angles as in
Fig. 2, with α ≤ β. The cases where |ab| is minimal (base
case) or ab ∈ Y5 are as discussed in the proof of Thm. 2. So

let c ∈ Q(a) and d ∈ Q(b) be in S such that −→ac ∈
−→
Y5 and

−→
bd ∈

−→
Y5, and let φ = ∠cab, and ψ = ∠dba (see Fig. 3a).

Now, instead of applying Lem. 1 for the maximum value
of φ (as in the proof of Thm. 2), we apply Lem. 1 only
for values φ ≤ θ or ψ ≤ θ, for some threshold angle θ (to
be determined later). These cases yield a spanning ratio
of t ≥ 1/(1 − 2 sin(θ/2)). We handle the remaining cases
differently, so for the remainder of the proof, we assume that
φ > θ and ψ > θ. We compute an exact value of θ shortly,
but for now we only need that θ/2 < θ < 3θ/4. This implies
that neither c nor d can lie to the right of ab, as this would
make the corresponding angle smaller than θ/2.

First consider the case where ac and bd intersect. In this
case, instead of directly applying an inductive argument to
either cb or da, we bound the distance cd and use induction
to show that |ac|+ t|cd|+ |db| ≤ t|ab|. To derive this bound,
consider the point c′ such that ∠c′ab = θ and |ac′| = |ab|
and the analoguously defined point d′ (see Fig. 3b). Let s
be the intersection point between ac′ and bd′. When ac and
bd intersect, the distance |cd| can be increased by rotating
c towards b and d towards a. Since both φ and ψ must be
larger than θ, the worst case occurs when φ = ψ = θ, leaving
c and d on the boundary of4c′d′s. As c′d′ is the longest side
of this triangle, it follows that |cd| < |c′d′|. Using the fact
that the triangles 4c′d′s and 4abs are similar and isosceles,
we can compute |c′d′|:

|c′d′| = 2|c′s| cos θ

= 2(|ac′| − |as|) cos θ

= 2

(
|ab| − |ab|

2 cos θ

)
cos θ

= (2 cos θ − 1)|ab|

Recall that our aim is to use induction on cd to obtain a
short path from a to b. We now compute the spanning ratio
t required for the inequality |ac|+ t|cd|+ |db| ≤ t|ab| to hold.
By the inequality above, we have that |ac| + t|cd| + |db| ≤
|ab| + t(2 cos θ − 1)|ab| + |ab|. This latter term is bounded
above by t|ab| for any t ≥ 1/(1− cos θ).

So far we derived two constraints on t and θ: t ≥ 1/(1 −
2 sin(θ/2)) and t ≥ 1/(1− cos θ). Because sin θ is increasing
and cos θ is decreasing for all values of θ under consideration,
we minimize t by choosing θ such that 1/(1− 2 sin(θ/2)) =
1/(1 − cos θ). This yields θ = arccos

(√
3 − 1

)
≈ 0.75 and

t = 2 +
√

3 ≈ 3.74.
Now consider what happens when one of ac or bd is“short”,

under some notion of short captured by the following lemma.

Lemma 5. Let 4abc be a triangle with angle α = ∠cab
and longest side ab. Let λ > 1 be a real constant. Then

|ac| ≤ 2λ2 cosα− 2λ

λ2 − 1
|ab| implies that |ac|+λ|bc| ≤ λ|ab|.

Proof. The first inequality above implies λ > 1/ cosα,
otherwise |ac| would be non-positive. By the Law of Cosines,

|bc| =
√
|ac|2 + |ab|2 − 2|ab||ac| cosα. By substituting this

in the inequality |ac| + λ|bc| ≤ λ|ab|, we see that it only

holds if |ac| ≤ 2λ2 cosα−2λ
λ2−1

|ab|, as stated by the lemma.
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φ

ψ
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c′

d′

θ

θ

(a) (b)
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(c)

a
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d

ψ

φ

c

c′

d′

Figure 3: (a) Two vertices of Y5 with their closest vertices. (b) The worst-case situation when ac and bd cross. (c) The
rotation to maximize |cd| when ac and bd do not cross.

The only case left to consider is when ac and bd are both
long, but they do not intersect. In this case, we again seek
to bound the distance |cd|. If we can show that |cd| ≤
(2 cos θ − 1)|ab|, we can apply the same argument as for
the intersecting case and we are done. Let c′ be the point
on the extension of ac with |ac′| = |ab|, and let d′ be the
analoguous point on the extension of bd (see Fig. 3c). If
ac does not intersect bd′, we can rotate d away from c by
increasing ψ. Similarly, if bd does not intersect ac′, we can
rotate c away from d by increasing φ. Thus, the distance |cd|
is maximized when φ+ ψ is maximal, which in our context
happens when φ + ψ = 3θ/2 = 3π/5. Note that in most
cases, rotating this far moves the corresponding vertex past
the boundary of the cone. But since we are only trying to
find an upper bound, this is not a problem.

Now let c′′ be the point on the line through ac with |ac′′| =
2t2 cosφ−2t

t2−1
|ab|, and let d′′ be the point on the line through

bd with |bd′′| = 2t2 cosψ−2t
t2−1

|ab|. If c lies on ac′′, Lem. 5 tells

us that |ac| + t|bc| ≤ t|ab|, which is exactly what we need.
The only difficulty is that the location of c changed during
the rotation. But since the rotation preserved |ac| and only
increased |bc|, the inequality must hold for the configuration
before the rotation as well. The same argument applies for
the case when d lies on bd′′. The situation where c and d lie
on c′′c′ and d′′d′, respectively, is handled by the following
lemma.

a b
δ

γ

d′

c′

s
d′′

c′′

Figure 4: Illustration of Lem. 6

Lemma 6. Let a, b, c, d ∈ S. Let γ = ∠cab and δ = ∠dba
such that γ > θ, δ > θ, and γ+δ = 3π/5. Let t = 2+

√
3. If

2t2 cos γ−2t
t2−1

|ab| ≤ |ac| ≤ |ab| and 2t2 cos δ−2t
t2−1

|ab| ≤ |bd| ≤ |ab|,
then |cd| ≤ (2 cos θ − 1)|ab|.

Proof. Assume without loss of generality that γ ≥ δ and
|ab| = 1. Then 3π/10 ≤ γ ≤ 3π/5 − θ and θ ≤ δ ≤ 3π/10.
Let c′ be the point on the extension of ac with |ac′| = |ab|,
and let d′ be the analoguous point on the extension of bd. Let
s be the intersection of ac′ and bd′. Let c′′ be the point on

the line through ac with |ac′′| = 2t2 cos γ−2t
t2−1

|ab|, and let d′′ be

the point on the line through bd with |bd′′| = 2t2 cos δ−2t
t2−1

|ab|
(see Fig. 4). Let c1 = 2t2

t2−1
and c2 = 1

sin(3π/5)
. We derive

(after some calculations)

d|ac′′|
dγ

= −c1 sin γ, (1)

d|bd′′|
dγ

= c1 sin(3π/5− γ), (2)

d|as|
dγ

= −c2 cos(3π/5− γ), (3)

d|bs|
dγ

= c2 cos γ. (4)

Let

x1 = |as| − |ac′′| = sin δ

sin(γ + δ)
− 2t2 cos γ − 2t

t2 − 1
, (5)

x2 = |ac′| − |as| = 1− sin δ

sin(γ + δ)
, (6)

y1 = |bs| − |bd′′| = sin γ

sin(γ + δ)
− 2t2 cos δ − 2t

t2 − 1
, (7)

y2 = |bd′| − |bs| = 1− sin γ

sin(γ + δ)
. (8)

Note that the values of x1 and y1 could be negative if c′′

or d′′ lie past s. Substituting c1, c2, and (1) - (4) in the
equalities above yields

dx1
dγ

= −c2 cos(3π/5− γ) + c1 sin γ, (9)

dx2
dγ

= c2 cos(3π/5− γ), (10)

dy1
dγ

= c2 cos γ − c1 sin(3π/5− γ), (11)

dy2
dγ

= −c2 cos γ. (12)

Recall that c1 = 2t2

t2−1
, c2 = 1

sin(3π/5)
, and 3π/10 ≤ γ ≤

3π/5− θ. We verify the following:



d2x1
dγ2

= −c2 sin(3π/5− γ) + c1 cos γ

> −1.1 sin(3π/10) + 2.1 cos(3π/5− θ) > 0,

d2x2
dγ2

= c2 sin(3π/5− γ) > 0,

d2y1
dγ2

= −c2 sin γ + c1 cos(3π/5− γ)

> −1.1 sin(3π/5− θ) + 2.1 cos(3π/10) > 0,

d2y2
dγ2

= c2 sin γ > 0.

Therefore, by plugging in γ = 3π/10 or γ = 3π/5− θ as the
lower- or upper-bound of γ into (9) - (12), we can verify the
following ranges:

−c2 cos(3π/10) + c1 sin(3π/10) ≤dx1
dγ

,

−c2 cos θ + c1 sin(3π/5− θ) ≥dx1
dγ

,

c2 cos(3π/10) ≤dx2
dγ
≤ c2 cos θ, (13)

c2 cos(3π/10)− c1 sin(3π/10) ≤dy1
dγ

,

c2 cos(3π/5− θ)− c1 sin θ ≥dy1
dγ

,

−c2 cos(3π/10) ≤dy2
dγ

,

−c2 cos(3π/5− θ) ≥dy2
dγ

.

Specifically, we can verify that

dx1
dγ
≥ max

(
dx2
dγ

,

∣∣∣∣dy1dγ

∣∣∣∣ , ∣∣∣∣dy2dγ

∣∣∣∣) , (14)

which implies d(x1−x2)
dγ

= dx1
dγ
− dx2

dγ
> 0. By simply plug-

ging in γ = 3π/10 into (5) and (6), we verify that (x1 −
x2) > 0 when γ = 3π/10 and hence x1 > x2 for all γ ∈
[3π/10, 3π/5−θ]. Similarly, we have x2 > 0 when γ = 3π/10,
and hence by (13), x2 > 0 for all γ ∈ [3π/10, 3π/5−θ]. These
together yield x1 > x2 > 0. By the triangle inequality,

|c′′d′′| ≤ |sc′′|+ |sd′′| = |x1|+ |y1| = x1 + |y1|,
|c′′d′| ≤ |sc′′|+ |sd′| = |x1|+ |y2| = x1 + |y2|,
|c′d′′| ≤ |sc′|+ |sd′′| = |x2|+ |y1| ≤ x1 + |y1|,
|c′d′| ≤ |sc′|+ |sd′| = |x2|+ |y2| ≤ x1 + |y2|.

By (14),

d(x1 + |y1|)
dγ

≥ d(x1)

dγ
−
∣∣∣∣d(y1)

dγ

∣∣∣∣ ≥ 0,

d(x1 + |y2|)
dγ

≥ d(x1)

dγ
−
∣∣∣∣d(y2)

dγ

∣∣∣∣ ≥ 0.

By plugging in γ = 3π/5 − θ into (5), (7), and (8), one
can easily verify that x1 + |y1| ≤ 2 cos θ − 1 and x1 + |y2| ≤
2 cos θ−1 when γ is maximized. Therefore max(x1+|y1|, x1+
|y2|) ≤ 2 cos θ − 1 for all γ ∈ [3π/10, 3π/5 − θ], and hence
|cd| ≤ max(|c′′d′′|, |c′′d′|, |c′d′′|, |c′d′|) ≤ 2 cos θ − 1 as re-
quired.

This completes the proof for the upper bound. Next, we
prove a lower bound on the spanning ratio.

Theorem 7. Y5 has spanning ratio at least 2.87.

Proof. The inductive proof of the upper bound on the
spanning ratio of Y5 suggests a possible construction for a
lower bound. It is based on recursively attaching the “lat-
tice” shown in Fig. 3b to pairs of non-adjacent points (e.g.,
pairs {a, d′}, {b, c′}, {c′, d′} in Fig. 3b). This recursion-based
construction results in a “fractal” starting from the pair
{a, b} ({u, v} in Fig. 5). However, the growth of the fractal
is limited by collisions of neighboring fractal branches that
create shortcuts to the paths, as shown in the circled area
of Fig. 5. This construction yields a spanning ratio of 2.66.
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Figure 5: Spanning ratio 2.66. The fractal growth is limited
by collision of branches in the circled area. The shortest
paths between u and v are colored.

We adjust the shape of the fractal to increase the spanning
ratio. In Fig. 6, we obtain a spanning ratio of more than
2.87 by equalizing the length of all shortest paths between
u and v.
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Figure 6: The spanning ratio is increased to 2.87 by adjust-
ing the shape of fractal to equalize the lengths of the shortest
paths between u and v.

The coordinates for the points in Fig. 6 can be found in
Appendix A.



3. SPANNING RATIO OF Y6

In this section we fix k = 6 and show that, for any pair
of points a, b ∈ S, p(a, b) ≤ 5.8|ab|. We also establish a
lower bound of 2 for the spanning ratio of Y6. Our proof
is inductive and it relies on two simple lemmas, which we
introduce next.

Let a, b ∈ S and let −→ac ∈
−→
Y6 be the edge from a within the

cone that includes b. The next two lemmas will be relevant
in the context where we seek to bound p(a, b) by applying
the induction hypothesis to p(c, b). The basic geometry is
illustrated in Fig. 7.

c

ba
x

α β

s
r

r

h

1

Figure 7: Notation for triangle 4abc. Here the dimensions
have been normalized so that |ab| = 1.

Lemma 8. [Triangle] Let 4abc be labeled as in Fig. 7,
with |ac| ≤ |ab|, |bc| < |ab|, x = |ab| − |bc| and s = |ac|. The
ratio s/x is equal to some function t that depends on α and
β:

s

x
= t(α, β) =

cos(β/2)

cos(α+ β/2)
. (15)

Proof. Normalize the triangle so that |ab| = 1; this does
not alter the quantity we seek to compute, s/x. Let |bc| = r
to simplify notation. Then x = 1 − r and x ≥ 0 because
r = |bc| ≤ |ab| = 1. Note that each of the angles ∠cab
and ∠cba is strictly less than π/2, because |ac| ≤ |ab| and
|bc| ≤ |ab|. Thus the projection of c onto ab is interior to
the segment ab. Computing the altitude h of 4abc in two
ways yields

s sinα = r sinβ.

Also projections onto ab yield

s cosα+ r cosβ = 1.

Solving these two equations simultaneously yields expres-
sions for r and s as functions of α and β:

r =
sinα

sinα cosβ + cosα sinβ
, s =

sinβ

sinα cosβ + cosα sinβ

Now we can compute s/x = s/(1− r) as a function of α and
β. This simplifies to

s

x
=

cos(β/2)

cos(α+ β/2)

as claimed.

The following lemma derives an upper bound on the func-
tion t(α, β) from Lem. 8, which will be used in Thm. 10 to
derive an optimal value for δ.

Lemma 9. Let a, b, c ∈ S satisfy the conditions of Lem. 8,
and let t(α, β) be as defined in (15). Let δ ∈ (0, π/3) be a
fixed positive angle. If α ≤ π/3− δ, or β ≤ π/3− δ, then

t(α, β) ≤ t(π/3, π/3− δ) =
cos(π/6− δ/2)

sin(δ/2)
.

Proof. The derivative of t(α, β) with respect to α is

∂t

∂α
=

sinα+ sin(α+ β)

1 + cos(2α+ β)
> 0.

This means that, for a fixed β value, t(α, β) reaches its
maximum when α is maximum. Similarly, the derivative
of t(α, β) with respect to β is

∂t

∂β
=

sinα

2 cos(α+ β/2)2
> 0.

So for a fixed value α value, t(α, β) reaches its maximum
when β is maximum. Because |ac| ≤ |ab|, β ≤ ∠acb. The
sum of these two angles is π − α, therefore β ≤ π/2 − α/2.
This along with the derivations above implies that, for a
fixed value α ≤ π/3− δ, t(α, β) ≤ t(α, π/2−α/2) ≤ t(π/3−
δ, π/3 + δ/2) (we substituted α = π/3 − δ in this latter
inequality). Next we evaluate

t(π/3, π/3− δ)
t(π/3− δ, π/3 + δ/2)

=
cos(π/6− δ/2) sin(3δ/2)

cos(π/6 + δ/2) sin(δ/2)
> 1.

It follows that t(π/3, π/3− δ) is maximal.

We are now ready to prove the main result of this section.

Theorem 10. Y6 has spanning ratio at most 5.8.

This result follows from the following lemma, with the vari-
able δ substituted by the quantity δ0 = 0.324 that mini-
mizes t(δ). (It can be easily verified that t(δ) ≥ t(0.324)
and t(0.324) < 5.8.)

Lemma 11. Let δ ∈ (0, π/9) be a strictly positive real
value. The graph Y6 has spanning ratio bounded above by

t = t(δ) = max

{
cos(π/6− δ/2)

sin(δ/2)
,

2

1− sin(2δ)
sin(π/6+2δ)

}
. (16)

Proof. The proof is by induction on the pairwise dis-
tance between pairs of points a, b ∈ S. Without loss of
generality let b ∈ Q0(a).

Base case.
We show that, if |ab| is minimal, then

−→
ab ∈

−→
Y6 and so

p(a, b) = |ab|. If
−→
ab ∈

−→
Y6, then the lemma holds. So as-

sume that
−→
ab 6∈

−→
Y6; we will derive a contradiction. Because−→

ab 6∈
−→
Y6, there must be another point c ∈ Q0(a) such that

−→ac ∈
−→
Y6 and |ac| = |ab|. Let α1 and α2 be the angles that

ab and ac make with the horizontal respectively. Because
both α1, α2 ∈ [0, π/3), necessarily |α1 − α2| < π/3. Thus
|bc| < |ab| = |ac|, contradicting the assumption that |ab| is

minimal. So in fact it must be that
−→
ab ∈

−→
Y6, and the lemma

is established.
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Figure 8: The δ-cones are shaded. (a) b and c in the same δ-cone. (b) b and c in different δ-cones. (c) Q0(a) and Q2(b). Here
β is “small”.

Main idea of the inductive step.
It has already been established that Y7 is a spanner [3]; the

sector angles for Y7 are 2π/7. The main idea of our inductive
proof is to partition the π/3-sectors of Y6 into peripheral
cones of angle δ, for some fixed δ ∈ (0, π/9), leaving a central
sector of angle π/3−2δ. (The δ-cones are the shaded regions
in Fig. 8.)

When an edge of Y6 falls inside the central sector, induc-
tion will apply, because an edge within the central sector
makes definite progress toward the goal in that sector (as
it does in Y7), ensuring that the remaining distance to be
covered is strictly smaller than the original. This idea is
captured by the flowing lemma.

Lemma 12. [Induction Step] Let a, b, c ∈ S such that b
and c lie in the same cone with apex a, and −→ac ∈ Y6. Let
α = ∠cab and β = ∠cba. If either α < π/3 − δ or β <
π/3 − δ, then we may use induction on p(c, b) to conclude
that p(a, b) ≤ t|ab|.

Proof. This configuration is depicted in Fig. 7. Because
−→ac ∈ Y6 and b and c lie in the same cone with apex a, we
have that |ac| ≤ |ab|. Because at least one of α or β is
strictly smaller than π/3, we have that |cb| < |ab|. Thus
the conditions of Lem. 8 are satisfied, so we can use Lem. 8
to bound |ac| in terms of x = |ab| − |bc|: since |ac|/x < t,
|ac| < tx. Because |cb| < |ab|, we may apply induction to
bound p(c, b): p(c, b) ≤ t|cb|. Hence

p(a, b) ≤ |ac|+ p(c, b) ≤ tx+ t|cb| = t(x+ |cb|) = t|ab|.

We will henceforth use the symbol Induct as shorthand for
applying Lem. 12 to a triangle equivalent to that in Fig. 7.

Lem. 12 leaves out Y6 edges falling within the δ-cones, that
could conceivably not make progress toward the goal. For
example, following one edge of an equilateral triangle leaves
one exactly as far away from the other corner as at the start.
However, we will see that when all relevant edges of Y6 fall
with the δ-cones near π/3, the restricted geometric structure
ensures that progress toward the goal is indeed made, and
again induction applies.

Inductive step.
The inductive step proof first handles the cases where

edges of Y6 directed from a or from b fall in the central
portion of the relevant sectors, and so satisfy Lem. 9, and
so Lem. 12 applies.

Recall that b ∈ Q0(a) by our assumption. If
−→
ab ∈

−→
Y6, then

p(a, b) = |ab| and we are finished. Assuming otherwise, there

must be a point c ∈ Q0(a) such that −→ac ∈
−→
Y6 and |ac| ≤ |ab|.

For the remainder of the proof, we are in this situation,
with ac ∈ Y6 and |ac| ≤ |ab|. The proof now partitions into
three parts: (1) when only Q0(a) is relevant and leads to

Induct ; (2) when Q2(b) leads to Induct ; (3) when we fall
into a special situation, for which induction also applies, but
for different reasons.

(1) The Q0(a) sector.
Consider 4abc as previously illustrated in Fig. 7. If either

b or c is not in one of the δ-cones of Q0(a), then α = ∠bac <

π/3− δ: Induct.
Now assume that both b and c lie in δ-cones of Q0(a). If

they both lie within the same δ-cone (Fig. 8a), then again

α is small: Induct. So without loss of generality let b lie
in the lower δ-cone, and c in the upper δ-cone of Q0(a); see
Fig. 8b. We cannot apply induction in this situation because
the ratio s/x in Lem. 8 has no upper bound.

(2) The Q2(b) sector.
Now we consider Q2(b), the sector with apex at b aiming

to the left of b, and assume that c ∈ Q2(b). Refer to Fig. 8c.
The case c /∈ Q2(b) will be discussed later (special situation).

Because b may subtend an angle as large as δ at a with
the horizontal, the “upper 2δ-cone” of Q2(b) becomes the
relevant region. If c is not in the upper 2δ-cone of Q2(b)
(as depicted in Fig. 8c), then 4abc satisfies Lem. 9 with

β < π/3 − δ: Induct. Note that this conclusion follows
even if c is in the small region outside of and below Q2(b):
the angle β at b is then very small.

Assume now that c is in the upper 2δ-cone of Q2(b). Let

d ∈ Q2(b) be the point such that
−→
bd ∈

−→
Y6. We now consider

possible locations for d. If d = c, then p(a, b) ≤ |ac|+ |cb| ≤
2|ab|, and we are finished. So assume henceforth that d is
distinct from c.

If d is not in the upper δ-cone of Q0(a) (Fig. 9a), then
4abd satisfies Lem. 9 with the roles of a and b reversed: bd
takes a step toward a, with the angle at a satisfying ∠bad <
π/3− δ: Induct.

If d is not in the upper 2δ-cone of Q2(b) (Fig. 9b), then
4abd satisfies Lem. 9 again with the roles of a and b reversed
and this time the angle at b bounded away from π/3, ∠abd <

π/3− δ: Induct.
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Figure 9: (a) d not in the upper δ-cone of Q0(a): ∠bad is small. (b) d not in the upper 2δ-cone of Q2(b): ∠abd is small.
(c) Lem. 13: |cd| < |ab|.

Assume now that d is in the intersection region between
the upper δ-cone of Q0(a) and the upper 2δ-cone of Q2(b).
Recall that we are in the situation where c lies in the same
region, so it is close to d. See Fig. 9c. This suggests the
strategy of following ac and db, connected by p(c, d). We
show that in fact |cd| < |ab|, so the inductive hypothesis can
be applied to p(c, d). More precisely, we show the following
result.

Lemma 13. Let a, b, c, d ∈ S be as in Fig. 9c, with
−→
bd ∈

Y6, b, c ∈ Q0(a) and c, d ∈ Q2(b). If both c and d lie above
the lower rays bounding the upper 2δ-cones of Q0(a) and
Q2(b), then for any 0 ≤ δ ≤ π/9,

|cd| ≤ sin(2δ)

sin(π/6 + 2δ)
|ab|. (17)

Note that c lies in the intersection region between the up-
per 2δ-cones of Q0(a) and Q2(b), because c ∈ Q0(a)∩Q2(b)
(by the statement of the lemma). However, Lem. 13 does
not restrict the location of d to the same region. Indeed, d
may lie either below or above the upper ray bounding Q0(a),
as long as it satisfies the condition |bd| ≤ |bc|. (This condi-
tion must hold because c, d are in the same sector Q2(b), and
−→
bd ∈ Y6.) To keep the flow of our main proof uninterrupted,
we defer a proof of Lem. 13 to Section 4.1.

By Lem. 13 we have |cd| < |ab|. Thus we can use the
induction hypothesis to show that p(c, d) ≤ t|cd|. We know
that |ac| ≤ |ab| because both b and c are in Q0(a) and −→ac ∈
−→
Y6. We also know that |bd| ≤ |bc| because both c and d

are in Q2(b) and
−→
bd ∈

−→
Y6. Let u and i be the upper and

lower intersection points between the rays bounding Q2(b)
and the upper ray of Q0(a), as in Fig. 9c. Note that 4bui
is equilateral, and because c lies in this triangle, we have
|bc| ≤ |bu| = |bi| ≤ |ab|. It follows that |bd| ≤ |ab|. So in
this situation (illustrated in Fig. 9c), we have:

p(a, b) ≤ |ac|+ p(c, d) + |bd|
≤ 2|ab|+ p(c, d)

≤ 2|ab|+ t|cd|

≤ 2|ab|+ t
sin(2δ)

sin(π/6 + 2δ)
|ab|

≤ t|ab|.

Here we have applied Lem. 13 to bound |cd|. Note that the
latter inequality above is true for the value of t from (16).

(3) Special situation.
The only case left to discuss is the one in which c lies

in the upper δ-cone of Q0(a) and to the right of the upper
ray of Q2(b). This situation is depicted in Fig. 10. Next
consider Q4(c). Because b ∈ Q4(c), there exists −→cz ∈ Y6,
with z ∈ Q4(c) and |cz| ≤ |cb|. Clearly z ∈ Q0(a) ∪ Q5(a).
Note that the disk sector D0(a, |ac|) ⊂ Q0(a) with center a
and radius |ac| must be empty, because −→ac ∈ Y6.
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Figure 10: Case c /∈ Q2(b), z ∈ Q0(a): Lem. 13 applies on
bd.

Case 3(a).
If z ∈ Q0(a), then z lies in the lower δ-cone of Q0(a) and

to the right of D0(a, |ac|), close to b. See Fig. 10a. In this
case we show that the quantity on the right side of inequal-
ity (17) is a loose upper bound on |bz|, and that similar in-
ductive arguments hold here as well. Let the circumference
of D0(a, |ac|) intersect the right ray of Q4(c) and the lower
ray of Q0(a) at points z′ 6= c and b′, respectively. Refer to
Fig. 10b. Let γ ≤ δ be the angle formed by ac with the upper
ray of Q0(a). Then ∠z′ab′ = γ and ∠z′cb′ = γ/2. This im-
plies that both b′ and z′ lie in the intersection region between
the lower δ-cone of Q0(a) and the right δ/2-cone of Q4(c).
Thus a, b, c, z ∈ S satisfy the conditions of Lem. 13, with the
roles of b and c reversed: |bz| ≤ sin(2δ)/ sin(π/6 + 2δ) · |ac|.

Arguments similar to the ones used for the case depicted
in Fig. 13a show that |cz| ≤ |ac|. This along with |ac| ≤ |ab|
(because −→ac ∈ Y6) and the above inequality imply

p(a, b) ≤ |ac|+ |cz|+ p(z, b) ≤ 2|ab|+ t|bz| ≤ t|ab|

for any t satisfying the conditions stated by this lemma.

Case 3(b).
Assume now that z /∈ Q0(a). Then z ∈ Q5(a), as depicted

in Fig. 11. In this case z lies in the disk sector D4(c, |cb|)
(because |cz| ≤ |cb|) and below the horizontal through a
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Figure 11: Case c /∈ Q2(b) and z ∈ Q5(a) (a) z left of uv (b)
z right of uv.

(because D0(a, |ac|) is empty). This implies that there exists
−→ae ∈ Y6, with e ∈ Q5(a) and |ae| ≤ |az|. Similarly, there

exists
−→
bf ∈ Y6, with f ∈ Q3(b) and |bf | ≤ |bz|. If e lies

above the lower 2δ-cone of Q5(a), then ∠bae ≤ π/3 − δ,

which leads to Induct and settles this case. Similarly, if f
lies above the lower δ-cone of Q3(b), then ∠abf ≤ π/3 − δ,
which again leads to Induct . Otherwise, we show that the
following lemma holds.

Lemma 14. Let a, b, c, z ∈ S be in the configuration de-

picted in Fig. 11, with −→ac,−→cz ∈ Y6. Let −→ae,
−→
bf ∈ Y6, with

e in the lower 2δ-cone of Q5(a) and f in the lower δ-cone
of Q3(b). Then at least one of the following is true: (a)
e ∈ Q3(b), or (b) f ∈ Q5(a).

We defer a proof of Lem. 14 to Section 4.2.
Lem. 14 guarantees that, if condition (a) holds, then ae

may not cross the lower ray bounding Q3(b). This case re-
duces to one of the cases depicted in Figs. 9 and 13, with e
playing the role of c and the path passing under ab rather
than above. Because ae does not cross the lower ray bound-
ing Q3(b), the special situation depicted in Fig. 10 (with e
playing the role of c) may not occur in this case. Similarly,
condition (b) from Lem. 14 reduces to one of the cases de-
picted in Figs. 9 and 13, with the roles of a and b reversed
and with f playing the role of c; the special situation de-
picted in Fig. 10 (with bf playing the role of ac) may not
occur in this case. Having exhausted all cases, we conclude
the proof.

Next we establish a lower bound on the spanning ratio of
Y6.

Theorem 15. Y6 has spanning ratio at least 2.

Proof. We construct a lower bound example by extend-
ing the shortest path between two points a and b. Let
b ∈ Q1(a) lie arbitrarily close to the cone boundary sepa-
rating Q0(a) and Q1(a) (see left of Fig. 12). Let c ∈ Q1(a)
and d ∈ Q4(b) such that |ac| = |ab| and |bc| ' |ab|. Similarly,
let and d ∈ Q4(b) such that |ab| = |bd| and |ad| ' |ab|. Then
Y6 is as depicted in the right of Fig. 12. Note that there are
two shortest paths between a and b of length ' 2|ab|.

b

a d

b
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a d

c

Figure 12: Y6 has spanning ratio at least 2.

4. DEFERRED PROOFS

4.1 Proof of Lemma 13
Lemma 13. Let a, b, c, d ∈ S be as in Fig. 13a, with

−→
bd ∈

Y6, b, c ∈ Q0(a) and c, d ∈ Q2(b). If both c and d lie above
the lower rays bounding the upper 2δ-cones of Q0(a) and
Q2(b), then for any 0 ≤ δ ≤ π/9,

|cd| ≤ sin(2δ)

sin(π/6 + 2δ)
|ab|

Proof. Let u and v be the top and bottom points of
the intersection quadrilateral R between the upper 2δ-cones
of Q0(a) and Q2(b). See Fig. 13. Then c ∈ R. For any
δ ≤ π/9, the angles opposite to the diagonal uv of R are
bounded below by 5π/9, therefore uv is the diameter of R.
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Figure 13: Lem. 13: (a) uv is minimum when γ = 0.
(b) |cd| ≤ |uv| .

Assume first that d ∈ R as well. In this case, the quantity
|cd| is bounded above by the length |uv| of the diameter of
R. Let γ be the angle formed by ab with the horizontal. We
show that |uv| is maximized when γ = 0. Set a coordinate
system with the origin at a. Scale the point set S so that
|ab| = 1. Then the coordinates of b are (cos γ, sin γ). The
point u is at the intersection of the two lines passing through
a and b with slopes tanπ/3 and − tanπ/3 respectively, given
by y =

√
3x and y = −

√
3(x − cos γ) + sin γ. Solving for x

and y gives the coordinates of u

xu =

√
3 cos γ + sin γ

2
√

3
, yu =

√
3 cos γ + sin γ

2
.

Similarly, the point v is at the intersection of two lines
given by y = tan(π/3 − 2δ)x and y = − tan(π/3 − 2δ)(x −
cos γ) + sin γ. Solving for x and y gives the coordinates of v



xv =
tan(π/3− 2δ) cos γ + sin γ

2 tan(π/3− 2δ)
,

yv =
tan(π/3− 2δ) cos γ + sin γ

2
.

We can now compute |uv| =
√

(xu − xv)2 + (yu − yv)2 as

Figure 14: Lem. 13. The derivative of |uv| with respect to
γ, for γ, δ ∈ [0, π/9].

a function of γ and δ. The derivative of this function with
respect to γ is represented as a graph in Fig. 14 for γ, δ ∈
[0, π/9]. Note that this function is negative on the given
interval, therefore |uv| increases as γ decreases. Thus |uv|
is maximum when γ = 0. We now set γ = 0 and compute
|uv| ≤

√
3/2 − cot(2δ + π/6)/2 = sin(2δ)/ sin(2δ + π/6) as

claimed.
Assume now that d /∈ R, so d lies above the upper ray

bounding Q0(a). Let i be the intersection point between
the upper ray bounding Q0(a) and the lower ray bounding
the upper 2δ-cone of Q2(b). Then c must lie outside the disk
D2(b, |bi|), because d lies outside this disk (by assumption)

and |bd| ≤ |bc| (because
−→
bd ∈ Y6). Refer to Fig. 13b. Let j

be the intersection point between the lower ray bounding the
upper 2δ-cone of Q2(b) and the circumference of D2(b, |bu|).
Then both c and d lie in the strip delimited by D2(b, |bi|),
D2(b, |bj|) and the two rays bounding the upper 2δ-cone of
Q2(b). Thus cd is no greater than the diameter of this strip,
which we show to be no greater than the diameter of R. For
this, it suffices to show that max{|ui|, |uj|, |ij|} ≤ |uv|.

Because ui is an edge of R, |ui| is clearly no greater than
the diameter |uv| of R. Next we show that |uj| ≤ |uv|.
From the isosceles triangle 4buj we derive ∠ujv = π/2− δ.
Angle ∠uvj is exterior to 4uvb, therefore ∠uvj = ∠vub +
2δ ≤ π/6 + 2δ (note that ∠vub = π/6 when ab is horizontal,
otherwise ∠vub < π/6). It follows that ∠ujv ≤ ∠uvj for
any δ ≤ π/9. This along with the law of sines applied to
4ujv yields |uj| ≤ |uv|.

It remains to show that |ij| < |uv|. We will in fact show
that |ij| < |uj|, which along with the conclusion above that
|uj| ≤ |uv|, yields |ij| < |uv|. Angle ∠uij is exterior to
4uib, therefore π/3 ≤ ∠uij ≤ π/3 + 2δ. Earlier we showed
that ∠ujv = π/2 − δ ≥ 7π/18, for any δ ≤ π/9. It follows
that ∠iuj ≤ π−(7π/18+π/3) = 5π/18 is the smallest angle
of 4uij, therefore |ij| < |uv|. This completes the proof.

4.2 Proof of Lemma 14
Lemma 14. Let a, b, c, z ∈ S be in the configuration de-

picted in Fig. 11, with −→ac,−→cz ∈ Y6. Let −→ae,
−→
bf ∈ Y6, with e

in the lower 2δ-cone of Q5(a) and f in the lower δ-cone of
Q3(b). Then at least one of the following is true:

(a) e ∈ Q3(b)

(b) f ∈ Q5(a)

Proof. We define four intersection points u, v, i and j
as follows: u is at the intersection between the top rays of
Q0(a) andQ2(b); v is at the intersection between the bisector
of ∠aub and the boundary of the disk sector D4(u, |ub|); i
is the foot of the perpendicular from a on the lower ray of
Q3(b); and j is the foot of the perpendicular from b on the
lower ray of Q5(a). Refer to Fig. 11.

Note that |ae| ≤ |ai| implies condition (a), and |bf | ≤ |bj|
implies condition (b). We show that the first holds if z lies
to the left of or on uv, and the latter holds if z lies to the
right of or on uv (and so at least one of the two conditions
holds). We first show that z ∈ D4(u, |ub|). This follows
immediately from the inequality |uz| + |cb| < |cz| + |ub|
(which can be derived using the triangle inequality twice on
the triangles induced by the diagonals of ucbz), and the fact
that |cz| ≤ |cb| (because −→cz ∈ Y6). It follows that |uz| < |ub|,
therefore z ∈ D4(u, |ub|).

Condition (a).
Assume that z lies to the left of uv (as in Fig. 11a). Be-

cause z ∈ D4(u, |ub|) is below the horizontal through a, ∠azv
is obtuse and therefore |az| ≤ |av| (equality holds when z co-
incides with v). Also |ae| ≤ |az|, because z and e are in the
same sector Q5(a) and −→ae ∈ Y6. It follows that |ae| ≤ |av|.
We now show that |av| ≤ |ai|, which implies |ae| ≤ |ai|, thus
settling this case.

Let γ ∈ [0, δ] be the angle formed by ab with the horizontal
through a. Then ∠abi = π/3−γ and |ai| = |ab| sin(π/3−γ).
The law of sines applied to 4uav tells us that

|av|
sinπ/6

=
|ua|

sin∠uva
=

|uv|
sin∠uav

.

Note that |uv| = |ub| ≤ |ua|, because v lies on the circumfer-
ence of D(u, |ub|) and a lies outside of this disk. This along
with the latter equality above yields ∠uav ≤ ∠uva. The sum
of these two angles is 5π/6 (recall that uv is the bisector of
∠aub), therefore ∠uva ≥ 5π/12. Also note that ∠uva <
π/2, because v lies strictly below the horizontal through a
(otherwise d may not exist). It follows that sin∠uva ≥
sin 5π/12. Substituting this in the equality above yields
|av| ≤ |ua| sinπ/6/ sin 5π/12. The law of sines applied to
triangle 4abu yields |au| = |ab| sin(π/3 + γ)/ sinπ/3, which
substituted in the previous equality yields

|av| ≤ |ab| sin(π/3 + γ) sinπ/6

sinπ/3 sin 5π/12
.

Thus the inequality |av| ≤ |ai| holds for any γ satisfying

sin(π/3 + γ) sinπ/6

sinπ/3 sin 5π/12
≤ sin(π/3− γ).

It can be easily verified that this inequality holds for any
γ ≤ δ ≤ 23π/180, and in particular for the δ values restricted
by Lem. 11.



Condition (b).
Assume now that z lies to the right of uv (as in Fig. 11b).

In this case |bf | ≤ |bz| ≤ |bv|. We now show that |bv| ≤ |bj|,
which implies |bf | ≤ |bj|, thus settling this case. From the
right triangle 4baj with angle ∠baj = π/3 + γ, we derive
|bj| = |ab| sin(π/3 + γ). Next we derive an upper bound
on |bv|. From the isosceles triangle 4vub, having angle
∠vub = π/6, we derive |bv| = 2|bu| sinπ/12. The law of
sines applied to triangle 4uab gives us |ub| = |ab| sin(π/3−
γ)/ sinπ/3, which substituted in the previous equality yields
|bv| = 2|ab| sin(π/3−γ) sinπ/12/ sinπ/3. Thus the inequal-
ity |bv| ≤ |bj| holds for any γ value satisfying

2 sin(π/3− γ) sinπ/12

sinπ/3
≤ sin(π/3 + γ).

It can be verified that this inequality holds for any γ ≤
δ ≤ π/3, and in particular for the δ values restricted by
Lem. 11.
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APPENDIX
A. LOWER BOUND COORDINATES

The following table lists the coordinates of the points in
the Y5 graph shown in Fig. 6 whose spanning ratio is more
than 2.87.

( 0, 0) u
( 252, 82) v
( 130, 230) w
( 12, 193) z
( 30, 302)
( 293, 269)
( 321, 229)
(-143, 130)
(-143, 80)
( 193, 384)
( 158, 367)
(-135, 272)
( -91, 287)
(-153, -55)
( 371, 75)
( 410, 115)
( 334, 276)
( 341, 264)
(-179, 97)
(-180, 112)
( -91, -75)
( 316, 36)
( 352, 229)
( 303, 297)
(-167, 63)
(-167, 147)
( -26, -75)
( 371, 213)
( 51, 310)
(-176, 37)
( 344, 274)
(-189, 105)
( 99, 320)
( -15, 284)

Table 1: Coordinates of the points in Fig. 6
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