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Hypercube Unfoldings that Tile R? and R?

Giovanna Diaz* Joseph O’Rourkef
December 9, 2015

Abstract
We show that the hypercube has a face-unfolding that tiles space, and
that unfolding has an edge-unfolding that tiles the plane. So the hyper-
cube is a “dimension-descending tiler.” We also show that the hypercube
cross unfolding made famous by Dali tiles space, but we leave open the
question of whether or not it has an edge-unfolding that tiles the plane.

1 Introduction

The cube in R? has 11 distinct (incongruent) edge—unfoldingsElto 6-square planar
polyominoes, each of which tiles the plane [Konl5]. A single tile (a prototile)
that tiles the plane with congruent copies of that tile (i.e., tiles via translations
and rotations, but not reflections) is called a monohedral tile. The cube itself
obviously tiles R%. So the cube has the pleasing property that it tiles R® and
all of its edge-unfoldings tile R2. The latter property makes the cube a semi-
tile-maker in Akiyama’s notation [AkiQ7], a property shared by the regular
octahedron.

In this note we begin to address a higher-dimensional analog of these ques-
tions. The 4D hypercube (or tesseract) tiles R*. Do all of its face-unfoldings
monohedrally tile R®? The hypercube has 261 distinct face-unfoldings (cutting
along 2-dimensional square faces) to 8-cube polycubes, first enumerated by Tur-
ney and recently constructed and confirmed by McClure [McC15] [O’R15al.
The second author posed the question of determining which of the 261 unfold-
ings tile space monohedrally [O’R15d.

Whether or not it is even decidable to determine if a given tile can tile the
plane monohedrally is an open problem [O’RI5b], and equally open for R®. The
only general tool is Conway’s sufficiency criteria [Sch8()] for planar prototiles,
which seem too specialized to help much here. In the absence of an algorithm,
this seems a daunting task.

Here we focus on two narrower questions, essentially replacing Akiyama’s
“all” with “at least one”:
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Question 1 Is there an unfolding of the hypercube that tiles R, and which
itself has an edge-unfolding that tiles R%?

Call a polytope that monohedrally tiles R? a dimension-descending tiler (DDT)
if it has a facet-unfolding that tiles R?~!, and that R¢~! polytope has a facet-
unfolding that tiles R?~2, and so on down to an edge-unfolding that tiles R2.
(Every polygon has a vertex-unfolding of its perimeter that trivially tiles R!.)
Thus the cube is a DDT. We answer Question 1 positively by showing that the
hypercube is a DDT, by finding one face-unfolding to an 8-cube polyform in R3,
which itself has an edge-unfolding to a 34-square polyominoe that tiles R2.

It is natural to wonder about the other 260 face-unfoldings of the hypercube,
and in particular, the most “famous” one, what we call the Dali cross, made
famous in Salvadore Dali’s painting shown in Figure

Figure 1: The 1954 Dali painting Corpus Hypercubus. (Image from Wikipedia).

Question 2 Does the Dali cross tile R?, and if so, does it have an edge-
unfolding that tiles R??

Here we are only partially successful: We show that the Dali cross does indeed
tile space (Theorem , but we have not succeeded in finding an unfolding of
this cross that tiles the plane.



2 Hypercube Unfoldings that Tile R?

So far as we are aware, there are now 4 hypercube unfoldings that are known to
tile space. The first two were found by Steven Stadnicki [Stald] in response to
the question raised in [O’RI5c]. We call the first of Stadnicki’s unfoldings the
L-unfolding. We describe this in detail for it is the unfolding we use to answer
Question 1.

2.1 The Hypercube L-unfolding tiles R3

The L-unfolding is shown in Figure (The labels will not be used until Sec-
tion ) Stadnicki showed this leads to a particularly simple tiling of space,
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Figure 2: The L-unfolding of the hypercube. Some face labels are shown.

because nestling one L inside another as shown in Figure [3] leads to a 2-cube
thick infinite slab, as illustrated in Figure Then of course all of R3 can be
tiled by stacking the 2-cube thick slabs. We will return to edge-unfolding the L
in Section .

Stadnicki showed that a second unfolding (Figure []) also tiles space [Stal5],
via a slightly more complicated but still simple structure. We will not describe
that tiling.



Figure 3: Five nestled L’s.



Figure 4: Ten nestled L’s. Note the evolving structure is two-cubes thick in
depth.



Figure 5: Another hypercube unfolding that tiles R? (Stadnicki).

2.2 The Dali Cross Unfolding tiles R?

Recall the Dali cross consists of four cubes in a tower, with the third tower-cube
surrounded by four more; see Figure @ (Again the labels will not be used until
Section [3])
Our proof that this shape tiles R3 is in six steps:
2-cross unit.
Cross-strip.
Cross-layer.
Two cross-layers.

Three cross-layers.

A A

Four cross-layers.

2.3 2-Cross Unit

We first build a 2-cross unit with prone, opposing crosses, as illustrated in
Figure[7] We will call planes of possible cube locations z-layers 1,2, 3, ..., corre-
sponding to z-height. The 2-cross unit has two cubes in z-layers 1 and 3, in the
same zy-locations, and the remaining cubes in z-layer 2. It will be convenient
to use bump to indicate a cube protruding above a particular layer of interest,
and use hole to indicate a cube cell as-yet unoccupied by a cube.



Figure 6: The Dali cross. Some face labels are shown.

2.4 Cross-strip

Now we form a vertical strip of 2-cross units as shown in Figure Here we
introduce a convention of displaying the construction by using colors and z-layer
numbers. So the cubes in a cross-strip occupy z-layers 1,2, 3, but only z-layers
2 and 3 are visible from above in an overhead view.

2.5 Cross-layer

Now we place cross-strips adjacent to one another horizontally, as shown in
Figure 0] The remaining steps stack cross-layers one on top of the other. So
the pattern of holes and bumps in each cross-layer will be important.

2.6 Two Cross-Layers

Henceforth we color all cubes in one cross-layer the same primary color, with
the bumps slightly darker, as in Figure a). Remember the bumps in one
cross-layer align vertically. Now we place a second cross-layer on top of the
first, with the bumps in the second cross-layer fitting into the holes of the
first. Figure [I0|b) shows the top view, which will be our focus. Note that now
we see cubes at z-layers 2,3,4. That there are no holes all the way through;
rather, z-layer-2 cells are dents and z-layer-4 cells bumps. We ask the reader
to concentrate on the pattern depicted in Figure in two adjacent columns,
we see (4,3,3,3,4) and (2,3,3,3,2), with the latter pattern shifted diagonally



Figure 7: A 2-cross unit.



Figure 8: Cross-strip.



10

2 2 2
. 2 |2 2)13]|2]2]2 . 2 |2
2 2 2 2 2 2
2 | 2 . 2 | 2] 2 . 212 | 2 . 2
2 2 2 2 2 2
32|22 . 2 | 2|23 ]|2]2
2 2 2 2 2 2
2 | 2 . 2 12| 2 . 2 | 2| 2 . 2
2 2 2 2 2 2
. 2 |21 2)13|2]|2]2 . 2 | 2
2 2 2 2 2 2
2 | 2 . 2 | 2] 2 . 2 12| 2 . 2
2 2 2 2 2 2
3 12| 2|2 . 2 | 2|23 ]|2]|2
2 2 2 2 2 2
2 | 2 . 212 | 2 . 2 | 2| 2 . 2
2 2 2
Figure 9: Cross-layer.
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Figure 10: Two cross-layers. (a) One cross-layer. (b) Two cross-layers.

upward one unit. It should be clear that the entire overhead z-layer-view is
composed of copies of this fundmental layer-pattern.

2.7 Three Cross-Layers

When we stack a third cross-layer on the construction, again inserting bumps
into dents, we do not quite regain the fundamental layer-pattern. Instead we see
that pattern shifted diagonally downward rather than upward; see Figure
Although we could argue that now we see a reflection (over a horizontal) of the
full pattern of visible z-layer numbers, it seems easier and more convincing to
us to add one more cross-layer.

2.8 Four Cross-Layers

With the addition of the fourth cross-layer (Figure [13]), we regain the exact
same pattern of z-layer numbers. Note the fundamental layer-pattern is now
(6,5,5,5,6) and (4,5,5,5,4), exactly +2 of the pattern in two cross-layers, as
emphasized in Figure

It is now clear that because we have regained at four cross-layers the exact
same “z-layer landscape” as we had at two cross-layers, the stacking can be
continued indefinitely.

Theorem 1 The Dali cross unfolding of the hypercube tiles R® monohedrally.

11



2 2 2
2 . 3 2|2 3 | 3 |
314|313 |3]|4]3 3 4 | 3 3
2 |3 32§33 B 3 .3
2 | 3 SE4Q030Q3 4|13]13]|3]|4]3:3
2 3 2 3 2 B 3 | 8
314|303 413 313 |4]3 5
P 3 2 i3 312 3.3
2 | 3 483|334 ]|3|3|3]4]S3:3

Figure 11: Fundamental layer-pattern after stacking two cross-layers.
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Figure 12: Three cross-layers and a reflected pattern.
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Figure 13: Four cross-layers.
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Figure 14: Two cross-layers (a) compared to four cross-layers (b), with the same
fundamental pattern indicated.

We have found another hypercube unfolding, shown in Figure [[5], that tiles
R3 in a similar manner, not described here.
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Figure 15: Another hypercube unfolding that tiles R3.

3 Edge-unfoldings to tile R?

Now we turn to unfolding the L to tile the plane. We label the cubes from 1
to 8, and the faces as {F, L, K, R, B, T} for {Front, Left, bacK, Right, Bottom,
Top} respectively. Refer again to Figure[2] There are 34 exposed faces of the 8
cubes. Through a mixture of heuristic computer searches and hand tinkering,
we found the unfolding shown in Figure [16]

That this tiles the plane (by translation only) is demonstrated in Figure
This then establishes our answer to Question 1:

Theorem 2 The L-unfolding of the hypercube has an edge-unfolding that tiles
the plane, establishing that the hypercube is a dimension-descending tiler.

3.1 Edge-unfoldings of the Dali cross

There are a huge number of edge-unfoldings of each hypercube unfolding. Each
edge-unfolding corresponds to a spanning tree of the dual graph, where each
square face is a node, and arcs represent uncut edges. There are at most
approximately 5™ spanning trees [Rot05] of planar graphs with n nodes, and
asymptotically that many for some graphs. It seems conservative to estimate
that the dual graph of the Dali cross has at least 2" = 234 ~ 10'° spanning trees,
and more likely 334 &~ 10%6. (The square grid has 3.2" spanning trees, and each
hypercube unfolding dual graph is also regular of degree 4.) Each of these trees
leads to an unfolding, but many self-overlap in their planar layout, and even
among those that avoid overlap, many delimit a region with holes, and so could

16



Figure 16: Unfolding of the L (Figure[2)), with face labels and dual-tree (uncut)
connections.
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Figure 17: Tiling of the plane with the unfolding shown in Figure
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not form tilers. With brute-force search infeasible, and no algorithm available,
we are left only with heuristics, with which we have not been successful.

Figure [I§ shows the closest to a tiling unfolding of the Dali cross that we
found.

Figure 18: An edge-unfolding of the Dali cross that nearly tiles the plane. (See
Figure [6] for labels.)

4 Open Problems

1. Is the 5-dimensional cube in R® a dimension-descending tiler?

2. What are good heuristics to test if the remaining 257E| hypercube unfold-
ings tile R3?

3. Can any of the hypercube unfoldings be proved not to tile R3?

2 261 — 4, because 4 are known to tile: Figures @

19



4. Does the Dali cross have an unfolding that tiles R2?

Addendum. We learned after posting this note that polyhedra that have an
edge-unfolding that tiles the plane are called tessellation polyhedra in [AKL™11].
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