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RESEARCH ARTICLE

The Effect of In Vitro Cultivation on the
Transcriptome of Adult Brugia malayi
Cristina Ballesteros1☯, Lucienne Tritten1☯, Maeghan O’Neill1, Erica Burkman2,3, Weam
I. Zaky3,4, Jianguo Xia1, Andrew Moorhead2,3, Steven A. Williams3,4, Timothy G. Geary1*

1 Institute of Parasitology, Centre for Host-Parasite Interactions, McGill University, Sainte-Anne-de-
Bellevue, Quebec, Canada, 2 Department of Infectious Diseases, College of Veterinary Medicine, University
of Georgia, Athens, Georgia, United States of America, 3 Filariasis Research Reagent Resource Center,
Northampton, Massachusetts, United States of America, 4 Department of Biological Sciences, Smith
College, Northampton, Massachusetts, United States of America

☯ These authors contributed equally to this work.
* timothy.g.geary@mcgill.ca

Abstract

Background

Filarial nematodes cause serious and debilitating infections in human populations of tropical

countries, contributing to an entrenched cycle of poverty. Only one human filarial parasite,

Brugia malayi, can be maintained in rodents in the laboratory setting. It has been a widely

used model organism in experiments that employ culture systems, the impact of which on

the worms is unknown.

Methodology/Principal Findings

Using Illumina RNA sequencing, we characterized changes in gene expression upon in
vitromaintenance of adult B.malayi female worms at four time points: immediately upon

removal from the host, immediately after receipt following shipment, and after 48 h and 5

days in liquid culture media. The dramatic environmental change and the 24 h time lapse

between removal from the host and establishment in culture caused a globally dysregulated

gene expression profile. We found a maximum of 562 differentially expressed genes based

on pairwise comparison between time points. After an initial shock upon removal from the

host and shipping, a few stress fingerprints remained after 48 h in culture and until the

experiment was stopped. This was best illustrated by a strong and persistent up-regulation

of several genes encoding cuticle collagens, as well as serpins.

Conclusions/Significance

These findings suggest that B.malayi can be maintained in culture as a valid system for

pharmacological and biological studies, at least for several days after removal from the host

and adaptation to the new environment. However, genes encoding several stress indicators

remained dysregulated until the experiment was stopped.
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Author Summary

Infections with filarial worms cause serious physical impairment and affect tens of millions
of people in tropical and subtropical countries. To better understand the biology and phar-
macology of these parasites, Brugia malayi is often used as a model. This parasite can be
maintained in the laboratory in Mongolian jirds, enabling researchers to test drugs in vivo
and in vitro, among other studies. The effects of removing worms from their hosts and cul-
turing them may affect many aspects of their physiology, including response to drugs, but
the extent to which the worms undergo changes during culture has remained unknown.
Using deep RNA sequencing and bioinformatics tools, we examined the global transcrip-
tomic profile of B.malayi females at four different time points over 5 days in culture.
Focusing on genes that are differentially expressed at various time points, we observed a
general perturbation of the expression profile between dissection from the host and receipt
after shipment. The expression of several genes remained changed at the end of the experi-
ment, after 5 days under controlled conditions; in particular, genes encoding cuticle colla-
gens were prominently represented and strongly overexpressed.

Introduction
Lymphatic filariasis (LF) is a neglected tropical disease caused by three filarial nematodes:
Wuchereria bancrofti, Brugia malayi, and Brugia timori, which are transmitted by several spe-
cies of mosquitoes [1]. LF is presently endemic in 60 countries, mainly in subtropical and tropi-
cal regions of the world. It is estimated that over 120 million people are currently infected and
up to 800 million people are at risk [2]. Chronic LF can lead to severe disabilities due to clinical
manifestations such as chronic lymphoedema (elephantiasis) and hydrocoele in men, and
those affected are often plagued by social stigma and adverse economic consequences [3].

In 1994, the UNDP/World Bank/World Health Organization Special Programme for
Research and Training in Tropical Diseases (TDR) initiated The Filarial Genome Project
(FGP); B.malayi was chosen as a model organism due to the availability of all life cycle stages
for the construction of cDNA libraries [4]. In 2007, the nuclear and mitochondrial genomes of
this parasite were sequenced, as well as the genome of its bacterial endosymbiontWolbachia
[5]. Access to genomic data is key to advancing our understanding of parasitic nematodes and
developing new ways to control and eliminate diseases caused by them.

In vitro studies are vital to the advancement of filariasis research. A weakness of in vitro cul-
ture systems for all pathogens, especially metazoans such as helminths, is that they do not accu-
rately replicate the physiological conditions at the infection site in a host, as evidenced by the
inability to maintain prolonged viability of adult stages. Hence, culture studies provide results
that are of uncertain relevance for the biology of the parasite in situ.

Organisms have the ability to sense and adapt to environmental changes (short or long
term) to maintain homeostasis [6]. Alteration of gene expression plays an important role in
adaptation, with extensive regulation at the transcriptional and post-transcriptional levels.
Changes in environmental factors such as temperature, humidity, water, light intensity, supply
of nutrients, and interactions with other organisms (i.e., infection or mechanical damage) can
lead to stress and altered gene expression patterns [7]. Subsequently, changes in gene expres-
sion can occur which are not usually observed in the unstressed organism. An example is the
production of heat shock proteins as a specific response to elevated temperatures, and modifi-
cation of basic metabolism as a non-specific response [8].

Transcriptome of In Vitro Cultured Brugia malayi
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The goal of this study was to evaluate changes in gene expression over time upon in vitro
maintenance of adult B.malayi female worms in culture as an index of adaptation to removal
from the host. We examined the worm’s global transcriptome by Illumina sequencing technol-
ogy, a method shown to be highly replicable for identifying differentially expressed genes [9],
from the time the parasites were extracted from jirds in Georgia (USA), shipped to Montreal
(Canada), and after maintenance for up to 5 days in culture under controlled conditions. A
number of in vitro drug testing studies have relied on worms shipped by the NIH-NIAID Fila-
riasis Research Reagent Resource Center (FR3) at the University of Georgia [10, 11] with tim-
ing and conditions similar to those employed in the present work.

Materials and Methods

Ethical statement
All animal procedures were approved by the University of Georgia Institutional Animal Care
and Use Committee and complied with U.S. Department of Agriculture regulations (USDA
Assurance No. A3437-01).

Worms and study design
Adult male jirds (Meriones unguiculatus) were injected subcutaneously with�400 B.malayi
infective third-stage larvae (L3). After a minimum of 90 days post-infection (ranging from 3 to
6 months), jirds were euthanized by exposure to CO2 and adult worms were collected from
the peritoneal cavity via lavage. Using 3 jirds in total, female worms recovered upon necropsy
from an individual jird were assigned to 8 groups (4 time points, 2 technical replicates) of
8 worms without randomization, to assess transcriptomic variability attributable to host of ori-
gin (Fig 1). Worms selected for the first group (T1) were thoroughly washed in sterile PBS and
flash-frozen in liquid N2 before being shipped on dry ice to McGill University. The remaining
groups of 8 were shipped overnight in separate 15 ml tubes containing RPMI-1640 (Lonza,
Walkersville MD) and 1% gentamycin (Gentamycin solution, 10 mg/ml, Sigma Aldrich,
St. Louis, MO) via FedEx from Georgia to Montreal.

Fig 1. Study design. At each time point, two groups of 8 worms from each jird were washed, flash-frozen
and used for RNA extraction.

doi:10.1371/journal.pntd.0004311.g001
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Upon arrival at McGill, two separate groups of 8 worms from each jird were washed
3 times in sterile PBS and used for RNA extraction (T2). The remaining groups were incubated
1 worm per well of a 12-well plate (Costar) containing 6 ml RPMI 1640 (Sigma-Aldrich,
St. Louis MO) supplemented with 10% v/v heat-inactivated fetal bovine serum (Sigma-Aldrich,
F1051), 5% penicillin/streptomycin (Sigma–Aldrich) and 2% gentamycin (Gibco, 15750–060)
for either 48 h (T3) or 5 days (T4) at 37°C in 5% CO2. On a daily basis, 3 ml of culture medium
in each well was replaced with fresh medium.

RNA extraction
Surfaces were washed with RNase AWAY (Molecular BioProducts) and all dilutions were pre-
pared with UltraPure distilled water (Invitrogen, Life Technologies, Burlington, ON). Washed
live worms were pooled in 1.5-ml tubes; immotile worms were excluded. RNA was extracted
from 5 to 8 worms per group. For both live and already frozen worms (group T1), 125 μl 0.1X
nuclease-free Tris-EDTA (TE) buffer, pH 8.0 (Ambion, Life Technologies, Burlington, ON) and
375 μl Trizol LS reagent (Ambion) were added to each tube on ice. Three cycles of flash-freezing
in liquid N2 and crushing of worms in TE/Trizol LS with plastic pestles were performed to obtain
homogeneous worm extracts. One hundred (100) μl chloroform was added to each tube and the
samples were vortexed and incubated 3 min at room temperature. The mixtures were transferred
to phase-lock gel heavy tubes (5 PRIME, Gaithersburg, MD) and centrifuged at 11,900 x g at 4°C
for 15 min. The aqueous phase was transferred to fresh tubes and mixed with 250 μl ice-cold iso-
propanol. Tubes were centrifuged at 12,200 x g at 4°C for 30 min and left overnight at -20°C for
RNA precipitation. Supernatants were discarded, pellets were washed twice with 80% EtOH and
allowed to dry for several hours before resuspension in 50 μl 0.1X TE. A 10 min incubation at
55°C solubilized the pellet. Total RNA was purified and concentrated using an RNeasy Min-
Elute Cleanup Kit (Qiagen, Valencia, CA). Samples were treated with DNase to remove contami-
nating DNA using an Ambion DNA-free Kit (Life Technologies, AM1906, Burlington, ON). The
concentration and quality of the RNA for each sample was assessed by spectrophotometry
(NanoDrop 1000, Wilmington, DE). RNA samples were shipped overnight on dry ice to the
NIH-FR3 (Molecular Division) at Smith College (Northampton, MA) for cDNA library prepara-
tion and Illumina sequencing. RNA concentration was further verified using the Qubit RNA BR
Assay Kit (Life Technologies, Q10210, Burlington, ON) and the integrity and purity was assessed
on an Agilent 2100 Bioanalyzer (Santa Clara, CA).

cDNA library preparation and Illumina sequencing
Messenger RNA (mRNA) was enriched with a NEBNext Poly (A) mRNAMagnetic Isolation
Module (NEB, E7490, Ipswich, MA). Using the enriched mRNA as template, cDNA libraries
were constructed using the NEBNext Ultra RNA Library Prep Kit Illumina (NEB, E7530, Ips-
wich, MA) and NEBNext Multiplex Oligos for Illumina (Index Primer 1–12) (NEB, E7600, Ips-
wich, MA) following the manufacturer’s instructions. To verify the quality, DNA concentration
and product size of the cDNA libraries, a Qubit 2.0 Fluorometer (Life Technologies, Q32866),
Qubit dsDNA BR assay kit (Life Technologies, Q32850), High Sensitivity DNA Analysis Kit
(Agilent, 5067–4626) and Bioanalyzer were used. cDNA libraries were sequenced on an Illumina
MiSeq Platform employing a 150 base pair single-end NGS setting. Data fromMiSeq sequencing
runs were uploaded and stored in BaseSpace (https://basespace.illumina.com) for data analysis.

Data analysis
RNA sequencing analysis. Next generation sequencing unaligned raw data (fastq) files

were downloaded from BaseSpace to the Mason-Galaxy platform (http://galaxy.iu.edu/
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(Indiana University) [12, 13]. Files were groomed using Fastq Groomer (v 1.0.4) and quality
control statistics were verified using FastQC: Reads QC (version 0.52). Quality and adapter
trimming was performed using Fastq Quality Trimmer (v 1.0.0) and Trim Galore (v 0.2.8.1).
Based on quality statistics, sequences were trimmed from both the 5’ and 3’ ends and adapter
sequences removed. Tophat2 (v 0.6) was used for mapping gapped reads to the B.malayi refer-
ence genome (B.malayi V3 243 reference, ftp://ftp.wormbase.org/pub/wormbase/species/b_
malayi/sequence/genomic/b_malayi.PRJNA10729.WS243.genomic.fa.gz). Picard alignment
summary metrics were obtained from the alignment BAM files using SAM/BAM Alignment
Summary Metrics (version 1.56.0) from Picard tools (http://broadinstitute.github.io/picard/)
(Table 1). Differential expression analysis between time points was performed using edgeR
(version 3.10.5) [14] in networkanalyst.ca [15, 16] after counting the number of reads per tran-
script using HTSeq-count (version 1.0.0) [17]. The union mode was used to handle reads over-
lapping more than one feature. All other parameters were kept at their default settings. Read
counts for gene features were normalized in edgeR using the trimmed mean of M-values
(TMM) method which corrects for different library sizes and reduces RNA compositional
effect [18]. Tagwise (gene-specific) dispersion values were estimated by an empirical Bayes
method based on weighted conditional maximum likelihood [19]. Pairwise differential expres-
sion testing between time points was performed using the exact T-test once negative binomial
models were fitted and dispersion values estimated. Significance was assessed as having an
experiment-wide false discovery rate (FDR)<0.01 (calculated using the Benjamini Hochberg
method [20]). Genes which had a log2 fold-change value� 1.0 or�-1.0 were further filtered
and prioritized. Although we considered all significantly differentially expressed genes which
had a FDR<0.01 biologically relevant, we applied an arbitrary fold-change cutoff to a level we
considered interesting to limit the set of differentially expressed genes to a workable number
for further analysis without applying too stringent a cutoff. A list of these genes for each com-
parison was imported into Microsoft Excel for further analysis. A Venn diagram was produced
using Venny 2.0 (http://bioinfogp.cnb.csic.es/tools/venny/).

Bioinformatics analysis of the sequence data. From lists of filtered genes for each pair-
wise comparison between time points, the Wormbase Gene ID was used to retrieve the primary
corresponding sequence name of the gene fromWormbase (http://www.wormbase.org/) and
the UniProt accession number [21]. Available Gene Ontology (GO) terms [22] were obtained
from the B.malayi gene table from nematode.net (v 4.0; http://nematode.net/NN3_frontpage.
cgi) [23, 24], Gene Ontology (GO) term and KEGG/Panther pathway enrichment analysis was
performed using KOBAS 2.0 [25]. As the free-living nematode Caenorhabditis elegans is excep-
tionally well-annotated and in the same phylum as B.malayi, we used the orthologs (Uniprot
accession numbers) of differentially expressed genes found in this study for enrichment analy-
sis, considering hits with a minimal E-value of 1�10−20.

To visualize the RNA sequencing data, customized heat maps were created using Network
Analyst [15, 16] from a count table generated in HTSeq [17]. Genes were clustered according
to Euclidean distance metrics. Specific heat maps were created to examine the changes in gene
expression of genes found in Gene Ontology (GO) and pathway enrichment analysis and inter-
jird variability.

Validation of quantitative gene expression. To validate Illumina sequencing results,
5 genes were chosen at random and gene expression was analyzed by quantitative polymerase-
chain reaction (qPCR) for different pairwise comparisons. For each original RNA sample,
100 ng total RNA were reverse transcribed using the SuperScript VILOMasterMix (Invitrogen,
#11755–050, Life Technologies, Burlington, ON) and diluted 5-fold for qPCR reactions. Real-
time PCR was performed in triplicate using specific primers designed using Primer-BLAST
(http://www.ncbi.nlm.nih.gov/tools/primer-blast/) for Bm8439, Bm9996, Bm7583, Bm1023,
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and Bm11095. Bm5699 (glyceraldehyde-3-phosphate dehydrogenase, GAPDH) was chosen as
an endogenous control and normalizer, as its expression was found to be stable over time and
across samples. S1 Table shows the selected candidate and reference genes used for the qPCR
validation of the RNAseq data. Assays were carried out in 20 μl-reaction volumes containing
10 μl 2X SYBR Select Master Mix (Life Technologies, #4472908), 200 nM final concentration
of each forward and reverse primer, and 2 μl cDNA in MicroAmp Fast Optical 96-well plates
(Life Technologies, # 4346907). Plates were sealed with optical adhesive film (Life Technolo-
gies, #4360954) and run in an ABI 7500 real time PCR system using the following program:
50°C for 2 min, 95°C for 2 min, 40 cycles defined as 95°C for 15 sec, 58°C for 15 sec, 72°C for
1 min, followed by a melt curve. Relative expression in the samples of interest was calculated
using the ΔΔCt method [26] for relative quantifications of each gene normalized to GAPDH
(Bm5699). The correlation coefficient between Illumina RNA sequencing and qPCR data was
analyzed by the Pearson test, with a statistical significance p<0.01.

Results

Sequencing and mapping
The total number of transcripts identified in each sample and the number of sequence reads
for each cDNA library are shown in Table 1. An average of 76.65% of the total number of high
quality sequence reads were mapped to the B.malayi transcriptome after elimination of ambig-
uous sequence matches. Alignment summary metrics are shown in Table 1. The number of
sequence reads mapped per gene varies from one to> 49,000. Between 93.94% and 95.40% of
all sequence reads in each library mapped to a transcript.

Changes over time
We used gene expression levels from the transcriptome of worms immediately after extraction
from jirds as the baseline/control and compared gene expression levels in the other three tran-
scriptomes (upon arrival at McGill, after 48 h in culture and after 5 days in culture) against this
baseline to identify genes with differential expression in each sample relative to time.

Pairwise comparisons between time points revealed 138 to 562 differentially expressed
genes after applying log2 fold-change cutoffs of +1.0 and -1.0 (Tables 2 and S2). Between 35.4
and 47.1% of differentially expressed genes could be assigned GO terms, while between 49.8
and 65.2% had a C. elegans ortholog. The highest number of differentially expressed genes was
observed between T3 and T2, followed by T4 compared to T2. The lowest number of changes
resulted from the comparison between T4 and T3. Comparing each time point (T2, T3, and
T4) to baseline (T1), we found 30 differentially expressed genes which overlap across all three
comparisons. The greatest number of differentially expressed genes in common was 99 across

Table 1. Picard alignment summarymetrics.

Time point #
Transcripts

Av. Total #
Reads

Av. Total # Reads
Mapped

Av. Total # High Quality Reads
Mapped

% High Quality Reads
Mapped

T1 = upon
dissection

11485 1494658 1494570 1185542 79.32

T2 = upon arrival 11596 2352432 2352242 1702625 72.38

T3 = 48 h 11628 1290903 1290786 996403 77.19

T4 = 5 days 11456 1567087 1566944 1217739 77.71

Summary of the sequencing and mapping of the data to the B. malayi transcriptome from BAM files.

doi:10.1371/journal.pntd.0004311.t001
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the comparisons T3 vs T1 with T4 vs T1. Among 266 genes dysregulated at T2 compared to
T1, 219 returned to baseline levels at T4 (48 h in culture), representing 82% recovery of the ini-
tial perturbation. At T4, 35 genes returned to perturbed levels, as was already the case at T2
compared to baseline. Overlaps among the 3 comparisons are displayed in Fig 2. Genes encod-
ing myosin tail family proteins, cadherin domains and proteins orthologous to C. elegans titin
were particularly represented.

Applying the cutoff (log2 fold-change ±1.0; i.e., keeping genes with log2 fold-change> 1.0
and< -1.0), the proportion of differentially expressed genes represented a maximum of 4.8%
of the number of transcripts that were mapped for each time point. Without this cutoff, up to
18.7% of those total transcripts were differentially expressed (in T3 vs T2).

Fig 3 displays the 32 most prominently differentially expressed genes (log2 fold-change cut-
off: +/- 3.5). GO annotations (Nematodes.net) show that a collagen-related protein (Bm8439)
is among the most profoundly up-regulated genes. Similarly, a serpin precursor (Bm9380) was
strongly up-regulated in several comparisons.

Table 2. Summary of number and nature of differentially expressed genes over time after removal from host.

T2 vs T1 T3 vs T2 T3 vs T1 T4 vs T3 T4 vs T2 T4 vs T1

Total DE genes 932 2169 697 491 1252 884

Total DE genes (cutoff log2 fold-change ±1.0) 266 562 272 138 412 361

DE genes log2 fold-change >1.0 101 320 128 59 294 182

DE genes log2 fold-change <-1.0 165 242 144 79 118 179

Sequences with GO terms (cutoff log2 fold-change ±1.0) 115 245 118 65 146 138

Sequences with C. elegans ortholog 151 331 163 90 205 208

A log2 fold-change of ±1.0 was applied. T1: upon isolation from host; T2: 24 h after shipping; T3 and T4: after 48 h and 5 days in culture, respectively. GO

terms were provided by Nematode.net v 4.0.

doi:10.1371/journal.pntd.0004311.t002

Fig 2. Venn diagram showing the number of overlapping genes across pairwise comparisons of each
time point compared to baseline. Venn diagram was created using Venny 2.0.

doi:10.1371/journal.pntd.0004311.g002
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Comparing T3 to T2, T4 to T2 and T4 to T1 revealed the most important changes, with
over 300 differentially expressed genes. Comparing T4 to T3 revealed the lowest number of dif-
ferentially expressed genes. Statistically significantly enriched GO terms in the T2 vs T1 com-
parisons were mainly related to regulation of developmental and multicellular organism
growth, whereas terms involving phagocytosis and apoptotic cell clearance were most enriched
in the T4 vs T2 comparison (S4 Table) and terms related to the nervous system in T3 vs T1, T3
vs T2, and T4 vs T1. Fig 4 shows the timewise expression changes of these genes from GO and
pathway enrichment analysis. Below, we present the changes observed comparing T4 to T1
and T4 to other time points in greater detail.

Transcriptomic profile after 5 days in culture compared to baseline
Among functionally annotated up-regulated genes at T4 compared to T1, a gene encoding a
cuticle collagen showed the largest change in expression (log2 fold-change = 5.42). A B.malayi
serpin precursor (Bm9380; log2 fold-change = 3.1), as well as a gene annotated as Epstein–Barr

Fig 3. Differentially expressed genes in each time point comparison, with the highest fold-changes. A log2 fold-change of +3.5 and -3.5 was applied,
respectively. GO terms were retrieved from Nematode.net. Green indicates down-regulation and red, up-regulation.

doi:10.1371/journal.pntd.0004311.g003
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virus (EBV) nuclear antigen 2 (ebna-2; Bm9996; log2 fold-change = 3.26), were among the
most up-regulated at T4 compared to T1. Bm9996 is also orthologous to a mini-collagen pro-
tein (C1IS34,Malo kingi), with 75.6% identity (E-value = 14 � 10−21).

Genes encoding neuropeptide precursors and neuropeptide receptors were also prominently
represented in the up-regulated fraction, including a FMRFamide-like neuropeptide precursor
(Bm-flp-11; log2 fold-change = 2.87), a neuropeptide receptor (Bm-frprp-14; log2 fold-
change = 2.59), and a corticotropin-releasing factor receptor precursor (Bm2293; log2 fold-
change = 2.04) (S2 Table). A dual-specificity phosphatase (Bm12973; log2 fold-change = 2.46),
and a neurotransmitter transporter with sodium symporter activity (Bm-SNF-11; log2 fold-
change = 2.90) were also among the genes up-regulated after 5 days in culture. GO term and
pathway analysis showed enrichment of terms related to neurogenesis and nervous system
development (Table 3) and enrichment of the Wnt and cadherin signaling pathways (S3
Table).

Applying a log2 fold-change cutoff of -3.5, only one functionally annotated gene had
decreased in expression at the end of the experiment (log2 fold-change = -3.69), compared to
T1. This hypothetical protein, F53F10.3 (Bm1023), is annotated as a probable mitochondrial
pyruvate carrier in C. elegans.

The T4 vs T1 comparison resulted mainly in significantly enriched GO terms related to the
nervous system (Table 3).

Changes between the last two time points
The comparison between T4 and T3 revealed 138 differentially expressed genes. We noted sig-
nificant up-regulation of Bm8519 (log2 fold-change = 3.06). This gene is annotated as phero-
phorin-dz1 in GenBank, but its function has not been characterized. The sequence contains a
ground-like domain which includes a characteristic pattern of conserved cysteine residues. Fif-
teen collagen genes, as well as the neuropeptide precursor Bm-flp-11, were expressed at higher
levels after 5 days in culture (T4) than after 2 days (T3), showing log2 fold-changes between 1.0
and 2.3.

GO term enrichment analysis between the last two time points revealed only one statistically
significant enriched GO term: inductive cell migration (GO:0040039). This biological process
is defined by the « migration of a cell in a multicellular organism that, having changed its loca-
tion, is required to induce normal properties in one or more cells at its new location ».

Cuticle collagens
Twenty-five cuticle collagen genes (log2 fold-change ± 1.0) were significantly differentially
expressed. Ten were down-regulated at T2 and/or T3 compared to T1 (Bm11024, Bm11095,
Bm7894, Bm9941, Bm9021, Bm8043, Bm2854, Bm4507, Bm8444, Bm6324). Fifteen were up-reg-
ulated at T4 compared to T3 (Bm11024, Bm11095, Bm2854, Bm3144, Bm4507, Bm4605,
Bm6324, Bm6324, Bm6421, Bm7408, Bm7894, Bm8043, Bm8439, Bm9021, Bm9092). One,
Bm8439, was strongly up-regulated over time (log2 fold-change between 1.47 and 6.26), espe-
cially between T3 and T4 compared to T1 and T2, but no significant change in its expression was
observed between T2 and T1. With the exception of Bm8439, Bm1249, Bm10414, and Bm9504,
all collagen genes showing differential expression were down-regulated at T3 and T2 compared
to the earlier time points (T2 and T1, respectively), but became more up-regulated over time.

Other significantly differentially expressed genes
Several serpins were significantly up-regulated upon arrival (Bm1937; log2 fold-change = 1.87)
and at T3 (Bm1988; log2 fold-change = 1.78) compared to T1. Expression levels of Bm1937
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decreased by T4, returning to levels observed at extraction from the host. A substantial increase
in expression of a serpin precursor occurred over time in culture (T3 and T4) (Bm9380; log2
fold-changes between 2.66 and 4.11) compared to T1 and T2.

We observed a very large increase in the expression of Bm3563 at T3 and T4 (log2 fold-
change = 3.53 at T3 vs T2 and log2 fold-change = 3.88 at T4 vs T2). This gene is homologous to
lymphocyte antigen 75 in Ascaris suum (48% sequence identity, E-value = 140�10−51) and clec-
1 (C-type lectin) in C. elegans (37.9% sequence identity, E-value = 5.2�10−27).

Host-related variability
Few genes (0–7) were differentially expressed in worms retrieved from different jirds upon
extraction (S5 Table and S1 Fig). Pearson correlation coefficients between samples at T1 were
very high (0.954 to 0.995; S6 Table). Six genes were significantly differentially expressed
between worms from jird 3 and jird 2 and four genes between jirds 2 and 1. Five of the seven
genes were annotated as hypothetical. A ShTK domain-containing protein (Bm7941) was
down-regulated in worms extracted from jird 2 and up-regulated in worms from jird 3, and a
Ser/Thr protein phosphatase family protein partial mRNA (Bm7394) was significantly up-reg-
ulated in jird 3. A three-dimensional Principal Component Analysis graph (S2 Fig) shows the
spatial relationship of the level of proximity between gene expression data from biological rep-
licates from each jird. Biological Coefficients of Variation (BCV) [27] were calculated using the
EdgeR (V 3.12.0) Bioconductor package in RStudio for pairwise comparisons at T1 and showed
the lowest BCV between jird 2 and 3 (S7 Table).

Fig 4. Timewise comparison of gene expression. A. Heat map showing pairwise comparison of genes from GO enrichment analysis. B. Heat map
showing pairwise comparison of genes found in enrichment pathway analysis. Genes were normalized using the trimmed mean of M-values normalization
method in edgeR and clustered according to Euclidean distance metrics. Green indicates relative down-regulation and red relative up-regulation. Values on
the X-axis represent the sample identifications at each time point. Each sample identification is coded by the jird number from which it originated, the time
point at which it was analyzed, and the sample replicate letter (a or b).

doi:10.1371/journal.pntd.0004311.g004

Table 3. Distribution of the most enriched biological processes after 5 days in culture compared to baseline (T1).

GO Term GO Term ID Input Genes Reference Genes P-Value

neuron projection development GO:0031175 7 161 0.00739

cell projection organization GO:0030030 7 161 0.00739

neuron differentiation GO:0030182 7 164 0.008112

neurogenesis GO:0022008 7 164 0.008112

neuron development GO:0048666 7 164 0.008112

nervous system development GO:0007399 7 164 0.008112

generation of neurons GO:0048699 7 164 0.008112

dendrite development GO:0016358 4 60 0.010368

neuron recognition GO:0008038 5 96 0.011260

cell recognition GO:0008037 5 96 0.011259

axonal fasciculation GO:0007413 5 96 0.011259

cellular component morphogenesis GO:0032989 9 274 0.013990

axon development GO:0061564 6 143 0.014837

protein complex assembly GO:0006461 7 214 0.028819

protein complex biogenesis GO:0070271 7 214 0.028819

Analysis was performed using KOBAS 2.0 with the C. elegans orthologs of differentially expressed genes that met a threshold fold change of +/- 1.0 and

FDR<0.01.

doi:10.1371/journal.pntd.0004311.t003
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No gene was significantly differentially expressed between jird 3 and jird 1.

qPCR validation
We performed qPCR to confirm gene expression levels measured by sequencing. We randomly
chose 5 genes that were significantly up- or down-regulated at different time points compared
to T1. A robust correlation was found between Illumina RNA sequencing and qPCR data, with
a correlation coefficient r = 0.9961, analyzed by the Pearson test (p<0.01) (see Fig 5 and S1
Table).

Discussion
We assessed the impact over time of the maintenance of adult B.malayi females in vitro at the
transcriptomic level. To ensure robustness of the data, we used worms from three different
hosts and processed them in duplicate groups, for a total of six samples for each time point.
The strong correlation between RNA sequencing data and qPCR for 5 genes confirm the accu-
racy of Illumina sequencing and the suitability of the approach for comparative transcriptomic
studies. The qPCR results further emphasize the rigor of the study.

Shipment of worms after removal from their hosts triggered a global but transient perturba-
tion of the mRNA profile. Several elements could have contributed to this global perturbation
(e.g., shipment in non-supplemented culture media, varying temperatures during this process)
which cannot be separately evaluated. Up to 3 worms per group of 8 were immotile and consid-
ered dead at the end of the experiment and were excluded from the study. Hence, culturing
under these conditions for so long (6 days after removal from hosts) is not optimal, because of
the significant loss of viability. We observed a minor loss at T3 (48 h in culture): 3/48 worms
considered for extraction at T3 were immotile and excluded. Our analysis revealed up to 562
differentially expressed genes in pairwise comparisons, representing up to 4.84% of all genes.
This number stems from the fact that we applied a fairly permissive cutoff (log2 fold-change
of ± 1.0), and is comparable to the number of genes observed to be differentially expressed
under oxidative stress in C. elegans [28]. Using a much more stringent cutoff at ± 3.5 revealed a
maximum of 32 differentially expressed genes in pairwise comparisons. This highlights the
very small proportion of strongly dysregulated gene expression over 5 days in culture. Of

Fig 5. Correlation between RNAseq and qPCR data from 5 genes at different time points. Fold-change
values of the selected genes are displayed in S1 Table. The correlation coefficient between RNAseq (x-axis)
and qPCR (y-axis) data (log2 fold-change) analyzed by the Pearson test was 0.9961 with a statistical
significance p<0.01.

doi:10.1371/journal.pntd.0004311.g005
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particular interest are genes encoding cuticle collagens and serpins, which are typically highly
expressed in adult females, eggs and embryos compared to other stages [29].

The pattern of gene expression of worms obtained from 3 different jird hosts was in general
very highly conserved, with Pearson correlation coefficients ranging from 0.954 to 0.995
between samples.

The nematode cuticle, which is predominantly composed of cross-linked collagens, is a
highly impervious barrier between the animal and its environment and is required for the
maintenance of body morphology and integrity [30, 31]. It plays a critical role in locomotion
via attachments to body wall muscles [32]. Cuticle collagens are believed to be involved in
stress resistance, defense against environmental perturbations and longevity in C. elegans [28].
That we observed twenty-two collagen genes to be substantially and increasingly strongly up-
regulated over time in culture may indicate that culture places increasing stress on the worms.
Several genes encoding other cuticle collagens were down-regulated at T2 and T3 compared to
T1, but up-regulated at T4 compared to earlier time points.

The serpins are a superfamily of serine protease inhibitors that employ a suicide substrate-
like mechanism [33]. They are 350–500 amino acids in length and fold into a conserved struc-
ture. Serpins have been identified in animals, plants, insects, and certain viruses [34]. At least
14 serpins are predicted in the Brugia genome, but only two have been characterized: Bma-
SPN-1 and Bma-SPN-2, which are exclusively secretory [35–37]. Previously, Bm9380 (related
to Bma-SPN-2) and Bm1988 were found to be highly abundant in the excretory-secretory
products of microfilaria [38, 39]. Bma-SPN-2 is exclusively expressed in microfilariae and elic-
its a strong but short-lived immune response in mice and humans [40]. It may play a role in
protection from immunity by inhibiting neutrophil function [35, 41]. Bma-SPN-1, in contrast,
is expressed in all life cycle stages, but little has been reported about its target protease(s) [35].
None of the serpin-encoding genes that were dysregulated in the present study mapped to Bm-
SPN-1. Interestingly, we found a serpin precursor (Bm9380) to be increasingly up-regulated
until the end of the experiment. In C. elegans, intracellular serpins regulate proteolytic path-
ways leading to cell death in a pro-survival manner. SRP-6, for example, functions by blocking
intestinal cell lysosomal disruption, cytoplasmic proteolysis and death induced by hypotonic
shock, thermal stress, oxidative stress, hypoxia, and cation channel hyperactivity [42]. Minutes
after hypotonic shock, srp-6 null worms undergo a catastrophic series of events resulting in
lysosomal disruption, cytoplasmic proteolysis, and death [42]. The up-regulation of serpins
Bm9380, Bm1937 and Bm1988 upon arrival suggests a pro-survival function for these genes.

Our results also showed a very large increase in the expression of a lymphocyte antigen 75/
clec-1 homolog (Bm3563) at 48 h (T3) and 5 days (T4) in culture. The C-type lectins in B.
malayi have not been well characterized. However, several pathogens exploit lectin receptors to
escape intracellular degradation and to suppress the generation of an efficient immune
response [43, 44]. The substantial and persistent up-regulation of Bm3563 up to 5 days in cul-
ture is in line with suggested roles in the prevention of cellular degradation.

The B.malayi genome encodes 14 sequences with ground-like domains. Ground-like genes
are referred to as hedge-hog (hh)-related genes. Bm3090, which contains a ground-like
domain, was down-regulated at T3 compared to T2, and Bm14306 was up-regulated in T4
compared to T2. Bm3090 is homologous to the hh-related gene grl-4 in C. elegans, which
encodes a protein that is expressed in the pharynx, reproductive system, vulva, larval neurons,
and larval rectal epithelium [45]. Several hh-like proteins, including grl-4, were up-regulated in
C. elegans in response to oxidative stress [28]. In B.malayi, grl-4 is highly expressed in the L3
infective larval stage and may play a role in molting [46].

One of the genes with the most marked differential expression pattern across several time
points was Bm9996. This gene is annotated as Epstein–Barr virus (EBV) nuclear antigen 2
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(ebna-2). It is the only ebna-2 gene sequence found in Nematoda. EBNA-2 is an EBV viral tran-
scription factor which can regulate viral and cellular genes and is associated with Burkitt’s lym-
phoma and Hodgkin’s disease [47]. Interestingly, EBNA-2 is capable of mimicking notch 1
and, although not related by sequence, they have similar biochemical and functional properties
[48]. Notch signaling is critical for cell-to-cell communication, development and metabolism
[49]. Notch signaling pathway homolog protein 1 is present in B.malayi. The ebna-2 gene in B.
malayi has been shown to be preferentially expressed in L3 and L4 stages [29]. A plausible
explanation of the function of EBNA-2 in the context of in vitro culture is not readily apparent.
Its high degree of sequence identity to mini-collagens is interesting and suggests that it may
play a structural function. Mini-collagens are small collagen-like peptides containing long
stretches of polyproline and many cysteine residues and are a major component of the inner
wall of nematocysts in all species of cnidarians [50].

Among other significantly dysregulated genes were several that encode zinc finger domain-
containing proteins of the C2H2 type (Bm1469 and Bm3388) and a DHHC zinc finger
domain-containing protein (Bm11360). C2H2 zinc finger domains are the most common
DNA-binding motifs in eukaryotic transcription factors and can also bind to RNA and target
proteins [51]. The DHHC zinc finger domain-containing protein functions in post-transla-
tional modification by attaching palmitate via a thioester linkage mainly to cysteine residues
[52].

Several dysregulated genes were annotated as hypothetical (Bm2888, Bm5606). GO analysis
of the encoded proteins revealed associations with iron binding, oxygen binding, and oxidore-
ductase activity; two genes which were significantly down-regulated had calcium ion binding
GO terms (Bm4715 and Bm3541).

Neuropeptides are well-known modulators of nematode behavior. The gene encoding the
neuropeptide precursor Bm-flp-11 was overexpressed after 5 days in culture (T4), compared to
all previous time points. In C. elegans, FLP-11 peptides inhibit pharyngeal activity [53, 54]. In
A. suum, most FLPs exerted an inhibitory effect on oviposition [55]. In line with the trend of
neuropeptide precursors to be overexpressed over time, a gene encoding the neuropeptide
receptor Bm-frpr-14 was also up-regulated at T3 and T4 compared to the two earlier time
points.

After 5 days in culture (T4), we saw an enrichment of GO terms primarily related to the ner-
vous system. Three genes linked to the cadherin and Wnt signaling pathways (Bm3384,
Bm3576, and Bm6122) were strongly down-regulated at T4 vs T1. These 3 genes are orthologs
of fmi-1, cdh-4, and hmr-1 in C. elegans, respectively. In C. elegans, hmr-1 encodes a neuronal
classic cadherin involved in regulation of axon fasciculation, with loss-of-function mutations
resulting in the disruption of axonal guidance in a subset of motor neurons [56]. Cadherin
FMI-1 is mainly expressed in the nervous system in C. elegans and regulates GABAergic neuro-
nal development. Loss-of-function mutants show patterning defects in the GABAergic ventral
D-type (VD) neurons and fmi-1mutants show defective axon pathfinding as well as reduced
synapse number, aberrant size and morphology [57]. Interestingly, cadherin-4 functions in the
same pathway as FMI-1 in the regulation of GABAergic neuron development and plays a role
in axon guidance [58, 59]. As the cadherin signaling pathway also converges with the Wnt sig-
naling pathway, it is not surprising that we see an enrichment of both [56]. The significant
down-regulation of these genes at T4 is suggestive of nervous system degeneration and a
decline in axon regeneration in an aging cellular environment [60, 61].

In the T4 vs T3 comparison, the only GO term found to be significantly enriched, with 4 C.
elegans orthologs (cocg-1, emb-9, ccdc-55, and let-2) of Bm6792, Bm7637, Bm2249, and
Bm3144, respectively, was “inductive cell migration” (GO:0040039). Interestingly, these genes
also have GO terms associated with embryo and larval development, suggesting a role in
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reproduction. COGC-1 (orthologous to Bm6792 which was down-regulated in T4 vs T3) is
required for normal gonadal distal tip cell migration, as well as normal vulval morphology in
C. elegans [62, 63]. Bm2249 (also significantly down-regulated) is orthologous to ccdc-55 which
in C. elegans also plays a role in distal tip cell migration and larval development [64]. The
remaining two genes (Bm7637 and Bm3144) were up-regulated in this comparison and are
orthologous to emb-9 and let-2, which encode collagen alpha-1 (IV) chain and collagen alpha-
2 (IV) chain, respectively. Type IV collagen is a major component of basement membranes.
Mutations in emb-9 and let-2 in C. elegans cause embryonic development arrest [65], suggest-
ing the importance of these genes in embryogenesis. The dysregulation of these 4 genes at T4
vs T3 suggests that reproduction and embryogenesis may be affected after 5 days in culture due
to events similar to aging. The enrichment of GO terms at T4 vs T2 related to apoptotic cell
clearance and phagocytosis is also consistent with the hypothesis that the animal is degenerat-
ing and dying cells are being removed and may suggest that the animal is under oxidative
stress, which is known to be a mediator of apoptosis and neuronal cell death [66–68].

We observed differentially expressed genes paralleling oxidative stress responses in C. ele-
gans (overexpression of collagens, hedgehog proteins, etc.). However, heat shock proteins and
ATPases, strongly represented in stressed C. elegans [28], were not prominent in cultured B.
malayi females (with 1 gene and 8 genes respectively, in our dataset). In addition, GO terms
associated with oxidative stress in C. elegans [28] did not overlap substantially with our find-
ings. In C. elegans, elt-2 and osm-12 are markers of osmotic stress [69] and in the present study
we saw the up-regulation of Bm2533 (orthologous to elt-2) upon receipt (T2), which was
down-regulated after 48 h in culture, and the up-regulation of Bm7137 at 48 h which returned
to baseline levels by 5 days. This gene is annotated as a hypothetical gene in B.malayi yet is
orthologous to osm-12. In hyperosmotic stress conditions in C. elegans, glycerol-3-phosphate
dehydrogenase is highly up-regulated [70]. We did not detect dysregulated expression of
gpdh-1.

Finally, the variability attributable to the host was only minor. The number of significantly
differentially expressed genes was low (0–7 genes with no fold-change cut-off) and the high val-
ues obtained from the Pearson correlation of coefficients between samples documents the simi-
larity of sample gene sets immediately after worm extraction. The biological coefficient of
variation between replicates ranged from 14.4 to 25.3%. Moreover, the jirds used to maintain
B.malayi are an outbred strain, paralleling human populations.

In summary, we characterized the transcriptomic effects of in vitromaintenance of adult B.
malayi females after up to 5 days in culture, i.e. 6 days after isolation from a host. We suggest
that environmental changes encountered after removal from the host and shipping provoke
important perturbations in gene expression. We noted changes in expression levels of a few
genes that are general indicators of stress, best illustrated by strong increases in expression of
genes encoding cuticle collagens. We conclude that the in vitro culture system is a valuable
study tool after the worms are allowed to acclimatize to a new environment and suggest that
the stress of removal and shipping can be partially overcome after 48 h in culture. In vitro culti-
vation, however, was not free of stress for the worms, as new dysregulated genes appeared at
every time point. We suggest that culture of this parasite under the conditions used here (no
feeder cell layer) should not be extended past 6 days post removal from hosts. After that, more
worms are expected to die, highlighting the need for rigorous controls.

Supporting Information
S1 Fig. Focus view heatmap showing the pairwise gene expression comparisons between
duplicate groups of pooled worms upon extraction (T1) from 3 different jirds. The heatmap
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was created using the TMM-Normalized expression matrix from edgeR in networkanalyst.ca.
(TIF)

S2 Fig. Principal Component Analysis (PCA) graph showing the relationship between gene
expression datasets among the duplicate samples from 3 jirds upon extraction (T1).
(TIF)

S1 Table. qPCR results validation. Five genes were chosen for validation. The primers used,
the qPCR amplification efficiencies, and the correlation coefficient of determination of the
slope of the standard curve for each gene are given.
(DOCX)

S2 Table. Timewise comparisons of differentially expressed genes. All genes with a log2 fold-
change< -1.0 or> +1.0 are listed for all comparisons between time points.
(XLSX)

S3 Table. Pathway enrichment analysis. All enriched pathways (p<0.05) analyzed using
KOBAS 2.0 for each pairwise comparisons.
(DOCX)

S4 Table. Gene Ontology Enrichment tables for other timewise comparisons. Tables con-
taining top enriched GO terms for T2 vs T1 (A), T3 vs T1 (B), T3 vs T2 (C), and T4 vs T2 (D).
T4 vs T3 is not displayed, as only “inductive cell migration” was found to be significantly
enriched.
(DOCX)

S5 Table. Host related variability. All genes with a log2 fold-change< -1.0 or> +1.0 are listed
for all comparisons between biological replicates coming from three different hosts.
(XLS)

S6 Table. Proximity matrix of Pearson correlation coefficients between variables upon
extraction of worms from hosts (T1). The matrix was generated using XLStat and shows the
similarity coefficients between all gene expression variables generated at T1.
(DOCX)

S7 Table. Common dispersion values and biological coefficients of variation for jird pair-
wise comparisons upon extraction from hosts (T1). Common dispersion values and biologi-
cal coefficients of variations were calculated for each pairwise comparisons between jirds using
the EdgeR (V 3.12.0) Bioconductor package in RStudio.
(DOCX)
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