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CLUSTER SET LOADING IN THE BACK SQUAT: KINETIC

AND KINEMATIC IMPLICATIONS
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BRAD H. DEWEESE,1 KIMITAKE SATO,1 AND MICHAEL H. STONE
1

1Department of Sport, Exercise, Recreation, and Kinesiology, Center of Excellence for Sport Science and Coach Education, East
Tennessee State University, Johnson City, Tennessee; 2Department of Exercise Science and Health Education, LaGrange
College, LaGrange, Georgia; and 3Department of Physical Therapy and Human Movement Science, Sacred Heart University,
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ABSTRACT

Wetmore, A, Wagle, JP, Sams, ML, Taber, CB, DeWeese, BH,

Sato, K, and Stone, MH. Cluster set loading in the back squat:

Kinetic and kinematic implications. J Strength Cond Res

XX(X): 000–000, 2018—As athletes become well trained, they

require greater stimuli and variation to force adaptation. One

means of adding additional variation is the use of cluster load-

ing. Cluster loading involves introducing interrepetition rest

during a set, which in theory may allow athletes to train at

higher absolute intensities for the same volume. The purpose

of this study was to investigate the kinetic and kinematic im-

plications of cluster loading as a resistance training program-

ming tactic compared with traditional loading (TL). Eleven

resistance-trained men (age = 26.75 6 3.98 years, height =

181.36 6 5.96 cm, body mass = 89.83 6 10.66 kg, and

relative squat strength = 1.84 6 0.34) were recruited for this

study. Each subject completed 2 testing sessions consisting of

3 sets of 5 back squats at 80% of their 1 repetition maximum

with 3 minutes of interset rest. Cluster loading included 30

seconds of interrepetition rest with 3 minutes of interset rest.

All testing was performed on dual-force plates sampling at

1,000 Hz, and the barbell was connected to 4 linear position

transducers sampling at 1,000 Hz. Both conditions had similar

values for peak force, concentric average force, and eccentric

average force (p = 0.25, effect size (ES) = 0.09, p = 0.25, ES

= 0.09, and p = 0.60, ES = 0.04, respectively). Cluster loading

had significantly higher peak power (PP) (p , 0.001, ES =

0.77), peak and average velocities (p , 0.001, ES = 0.77,

and p , 0.001, ES = 0.81, respectively), lower times to PP

and velocity (p , 0.001, ES = 20.68, and p , 0.001, ES =

20.68, respectively) as well as greater maintenance of time to

PP (p , 0.001, ES = 1.57). These results suggest that cluster

loading may be superior to TL when maintaining power output

and time point variables is the desired outcome of training.

KEY WORDS training, rest, strength and conditioning,

performance

INTRODUCTION

O
ver the past several years, new advanced training
(AT) methods have been proposed. These AT
include accentuated eccentric loading, contrast
sets, complex sets, and cluster sets (CS). Cluster

sets use short rest periods between repetitions as well as
typical rest periods between sets (10,11). According to the
specific adaptation to imposed demands (SAID) principle,
changing variables within the application of an exercise elicits
a specific response and subsequent adaptation, given adequate
recovery is provided (32). Thus, intraset rest theoretically
could allow CS to induce greater adaptations to training by
allowing for heavier loading at the same training volume load
(2,28), and potentiate explosiveness and power adaptations
(13) by maintenance of forces (15,28), velocity (V)
(12,15,17,28,34,35), or power (P) (12,15,19,20,25,27–29,34,35)
at a given load when compared to traditional resistance train-
ing protocols (TP). Cluster set training could be useful for
a variety of purposes such as enhancing the training effect
by offering a greater stimulus or varying the stimulus to pro-
mote further adaptation. For example, training over a few
years with little variation, such as can occur with maintaining
TP, can limit gains and cause stagnation (4,32). Introduction
of CS could produce an adaptive stimulus allowing for further
gains in strength, RFD etc. During peaking phases aimed at
improving power, CS training could enhance power output.
Thus, CS training could be valuable for several aspects of the
training process and possibly promote superior gains in
strength and power when used appropriately.

Traditional loading (TL) schemes are believed to enhance
adaptation, at least partly through acute fatigue. Acute
fatigue could enhance motor unit recruitment (19), and
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increase muscle (and whole body) metabolism and metabolite
production (5,6,8,9,17,18,28,29,32), both of which may
enhance adaptation to training (32). However, fatigue and
increased production of metabolites as a primary stimulus for
increased strength and power have both been questioned (3,5).
Folland et al. (5) found that higher levels of training-induced
fatigue (4 3 10 to failure) did not provide additional benefits
compared to a low fatigue protocol (40 3 1) with 30 seconds
of interrepetition rest designed to minimize metabolic accu-
mulation. In addition, Folland et al. noted a tendency toward
greater high-velocity gains in the low-fatigue protocol, suggest-
ing that velocity and perhaps power would be higher with
greater interrepetition rest. Indeed, further study on CS has
demonstrated increased, or maintained force, rate of force
development (RFD), velocity, and power for CS compared
to TP (2,10,12,13,15,17,19,20,25,26,28,29,34,35).

Although CS protocols have been previously investi-
gated, there are few studies describing both kinetic and
kinematic characteristics and there are a number of
limitations in these studies. A number of intraset rest
periods and exercises have been used (2,4,5,6,10–15,17–
22,25–29,34,35). These studies have demonstrated varying
results due to the variety of protocols used. Many of the
existing studies investigated CS using machines, which
could alter normal technique and may not be indicative
of a typical athletic setting in which CS would be logically
used. Studies (4,8,9,26,27,29) used untrained subjects,
which also may limit generalizability to trained popula-
tions. In addition, most studies used only one type of instru-
mentation or used solely kinetic or kinematic data to study
CS, which may have created errors in calculation of varia-
bles, especially power. For example, Cormie et al. (1) indi-
cate that using only kinetic data (e.g., force plate) may
result in underestimating power, whereas relying solely
on kinematic data (e.g., potentiometers) can result in over-
estimation. Combining both kinetic and kinematic data
seems to be superior when investigating force and related
variables such as RFD, velocity, and power (1).

The back squat is a commonly performed exercise,
particularly in athletic settings. To the best of the authors’
knowledge, only 2 previous studies have used a combination
of kinetic and kinematic data to study the squat in previously
trained subjects using CS (34,35). The results indicate that
CS can enhance maintenance of force-related variables com-
pared to TP. Due to the lack of in-depth studies investigating
CS, more research is warranted. The purpose of this study is
to compare CS and TP training schemes in well-trained
subjects. Both kinetic and kinematic collected data were
used to investigate the effects of CS as a programming tactic.

METHODS

Experimental Approach to the Problem

The barbell back squat was chosen for this study because it is
a widely used exercise in strength and conditioning and has
similar biomechanical and neuromuscular characteristics to
a variety of sporting activities (8,27,35). All subjects com-
pleted 1 pretesting session and 2 experimental testing ses-
sions. During the pretesting session, subjects were tested on
their 1 repetition maximum (RM) in the back squat to estab-
lish experimental loads. Three days separated 1RM testing
and experimental conditions. The cluster loading and TL
experimental conditions were randomly assigned, with 7
days separating the first and second testing session. Each
experimental testing session was completed at the same time
of day. A within-subject design was used to test the effect of
rest distribution on kinetic and kinematic performance
variables.

Subjects

Eleven male subjects (age = 26.1 6 4.1 years, range = 22–35
yrs, height = 183.5 6 4.3 cm, body mass = 92.5 6 10.5 kg,
and back squat to body mass ratio = 1.8 6 0.3, presented as

TABLE 1. Back squat warm-up.*

Sets 3 repetitions 3 intensity (%
1RM)

Rest interval
(min)

1 3 5 3 30% 1
1 3 3 3 50% 1
1 3 2 3 70% 2
1 3 1 3 80% 3
1 3 1 3 90% 3
1RM attempts 3

*1RM = 1 repetition maximum.

TABLE 2. Intraclass correlation coefficient.*

Load condition

TL CS

PF 0.97 0.97
AF 1.00 1.00
PP 0.96 0.98
AP 0.98 0.89
TW 0.99 0.98
PV 0.95 0.95
AV 0.95 0.65
TTPP 0.94 0.68
TTPV 0.94 0.69

*TL = traditional loading; CS = cluster sets; PF = peak
force; AF = average force; PP = peak power; AP = aver-
age power; TW = total work; PV = peak velocity; AV =
average velocity; TTPP = time to peak power; TTPV =
time to peak velocity.
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mean 6 SD) were recruited for this study. All subjects were
required to have at least 1 year of resistance training experience
with the back squat, be able to squat at least 1.33 their body
weight, and have no major injuries within the previous 3
months. This study was approved by the institutional review
board of East Tennessee State University. After explaining the
risks and benefits of the study, all subjects signed informed
consent documents before participation in accordance with
the institutional review board of the university.

Procedures

Body Composition. Body composition was estimated by a cer-
tified ISAK anthropometrist using skinfolds and Harpenden
skinfold calipers (Baty International, West Sussex, United
Kingdom). The skinfold sites used were: subscapular, triceps,
chest, midaxillary, abdomen, iliac crest, and quadricep.

Maximum Strength Testing. Before the maximal strength
testing session, each subject completed a standardized
warm-up. Subjects reported self-estimated 1RMs on which
warm-up repetitions were set. Warm-up repetitions began at
30% of their estimated maximum and ranged to 90%

(Table 1). Subjects then performed their 1RM using a pro-
tocol modified from McBride et al. (24) and Suchomel et al.
(33). The first recorded trial was at 90% of their reported
1RM and jumps were made by 2.5–5% until a maximum was
reached. Full depth was defined as the subject’s hip crease
being below the patella and was verified by multiple certified
strength and conditioning specialists.

Experimental Conditions. Subjects were randomly assigned to
either the traditional set or cluster set condition at least 2
days after the 1RM testing. The opposite testing condition
was separated by 1 week. Subjects were instructed to
continue training as normal between conditions while
restraining from any strenuous activity at least 48 hours
before each testing session. All subjects completed an
identical standardized dynamic warm-up before the 1RM
testing. Subjects completed 3 3 5 sets at 80% of the estab-
lished 1RM with 3 minutes’ rest between sets in the TL
condition. For the cluster condition, 30 seconds of unloaded
interrepetition rest was given with 3 minutes’ interset rest.
Interrepetition rest intervals began once the barbell was

Figure 1. Peak power changes across 3 sets. TL = traditional loading; CS = cluster sets.

TABLE 3. Full-rep kinetic variables.*†

TL CS p ES

Peak force (N) 3,002 6 503.501 3,012 6 464.86 0.249 0.091
Peak power (W) 2,518 6 784.099 2,834 6 981.664 ,0.001 0.77
Total work 3,035.674 6 523.757 3,068.183 6 575.398 ,0.001 0.279

*TL = traditional loading. CS = cluster set.
†Data are presented as mean 6 SD.
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securely racked after each repetition and ended when the
barbell was unracked. Subjects were instructed to stand up as
explosively as possible from the bottom of the squat. Full
depth was defined as the hip crease being below the patella
and was confirmed by multiple certified strength and condi-
tioning specialists.

Instrumentation. Data were collected using dual force plates (2
3 91 cm 3 45.5, 116 cm RoughDeck HP, Rice Lake, WI,
USA) sampling at 1,000 Hz. The barbell was connected to 4
linear position transducers (PT101-0100-H14-1120; Celesco
Measurement Specialties, Chatsworth, CA, USA) to collect
kinematic data. All data were simultaneously integrated into
LabVIEW (version 7.1; National Instruments).

Statistical Analyses

All data were analyzed using a custom-designed application
(R Studio version 3.4.1.) Kinetic variables analyzed included:
peak power (PP), peak force (PF), average power (AP),
average force (AF), and total work (TW). Kinematic
variables included: peak velocity (PV), average velocity
(AV), time to PP (TTPP), and time to PV (TTPV). Within-
subject reliability for each variable was assessed with intra-
class correlation coefficients (ICCs). Interpretation of ICC
was 0–0.1, 0.1–0.3, 0.3–0.5, 0.5–0.7, 0.7–0.9, and 0.9–1.0 as
trivial, small, moderate, large, very large, and nearly perfect,
respectively (16). Paired-sample t-tests were used to deter-
mine effects of condition on the above-listed variables. Co-
hen’s d effect sizes (ES) were calculated for each dependent

Figure 2. Changes in time to peak power across 3 sets. TL = traditional loading; CS = cluster sets.

Figure 3. Changes in time to peak velocity across 3 sets. TL = traditional loading; CS = cluster sets.

Cluster Set Loading in the Back Squat
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variable to determine the magnitude and potential meaning-
fulness of the differences between dependent variables across
load conditions. For practical significance, effect sizes were in-
terpreted with magnitude thresholds of 0–0.2, 0.2–0.6, 0.6–1.2,
1.2–2.0, and 2.0 and above as trivial, small, moderate, large, and
very large, respectively (16). Percent changes were calculated as
the change in value from repetition 1 to repetition 5 of each set
and were averaged across all subjects. Statistical analysis was
performed using a statistic software package (JASP version
0.8.2.0). Significance was defined as an alpha level of p # 0.05.

RESULTS

Kinetic Variables

There were no significant differences across all sets in PF (p =
0.25, ES = 0.09) or AF (p = 0.25, ES = 0.09) between con-
ditions. Cluster loading conditions did have statistically higher
TWacross all sets compared with TL conditions (p , 0.001,
ES = 0.28). In addition, cluster loading had a very large effect
on PP (p , 0.001, ES = 0.77). Kinetic results are shown in
Table 3. Traditional loading had statistically larger PP losses
across all sets compared to cluster loading (p = 0.005, ES =
0.52) with average losses of 8.5, 9.3, and 8.3% compared to 3.3,
+3.0, and 4.1% across sets 1, 2, and 3, respectively. Peak power
changes across all 3 sets are shown seen in Figure 1.

Kinematic Variables

Cluster loading displayed statistically higher PV (p , 0.001,
ES = 0.77) and AV (p , 0.001, ES = 0.81). In addition, cluster
loading had statistically lower TTPP (p , 0.001, ES = 20.68)
and TTPV (p , 0.001, ES = 20.68) compared to TL. Com-
plete kinematic results are listed in Table 4. Traditional load-
ing showed statistically greater increases in TTPP (p , 0.001,
ES = 1.57) across all sets when compared to cluster loading
with average increases of 31.6, 37.5, and 38.4% for sets 1, 2,
and 3, respectively, whereas cluster loading conditions dis-
played only 6.5, 9.3, and 11.6% increases for sets 1, 2, and 3,
respectively. Traditional loading conditions also demonstrated
somewhat larger, although nonstatistically significant, in-
creases in TTPV (p = 0.329, ES = 0.17) with average increases

of 30.3, 35.9, and 36.5% for sets 1, 2, and 3, respectively,
whereas cluster loading showed only 6.2, 9.2, and 11.4% in-
creases for sets 1, 2, and 3, respectively. Changes in TTPP and
TTPV are shown in Figures 2 and 3, respectively.

DISCUSSION

This study is only the third study to the best of the authors’
knowledge that has investigated both kinetic and kinematic
variables during cluster loading of the barbell back squat
(34,35). Cormie et al. (1) suggest using only kinetic data
may underestimate power output, whereas relying on kine-
matic data may result in overestimation in the back squat,
power clean, and jump squat. Therefore, a combination of
both kinetic and kinematic data was used to better estimate
power outputs. In addition, many previous studies have used
machines for testing (2,17,18,22,28–30). However, this may
cause alterations in exercise technique and may not accu-
rately reflect how most athletic populations train.

The results of this study support the hypothesis that
cluster set loading would produce higher PP outputs, AP
outputs, and velocities when compared to TL. Tufano et al.
(34) found similar results with CS showing greater PV, mean
velocity, PP, and mean power compared to TL. Because of
the effect on power, CS may prove to be a valuable tool to
enhance power, particularly during the later stages of
a sequential training plan that emphasizes power production
(3,32). Although evidence has consistently shown that stron-
ger athletes are more powerful then weaker athletes (32,33),
the inclusion of CS once the focus of training has shifted
toward power development warrants consideration.

This leads us to consider what mechanism allows for
regeneration of power with interset rest. It has been
suggested that CS allow for partial or complete regeneration
of phosphocreatine (PCr) to better maintain power output
(8–10). This is supported by the finding of Matuszak et al.
(21) that very short rest intervals as low as 1 minute are
sufficient to repeat 1RM attempts. It is commonly known
that high-intensity exercise relies on ATP as its main energy
source. However, these energy stores are limited and may be

TABLE 4. Kinematic variables.*†

TL CS p ES

Concentric peak velocity (m$s21) 1.013 6 0.175 1.106 6 0.217 ,0.001 0.767
Concentric average velocity (m$s21) 0.489 6 0.071 0.541 6 0.072 ,0.001 0.805
Concentric peak acceleration (m$s22) 4.292 6 1.503 4.421 6 1.262 0.03 0.172
Concentric average acceleration (m$s22) 20.006 6 0.002 20.007 6 0.003 0.002 0.241
Time to peak power (s) 1.267 6 0.226 1.134 6 0.178 ,0.001 0.682
Time to peak velocity (s) 1.311 6 0.225 1.178 6 0.177 ,0.001 0.684

*TL = traditional loading; CS = cluster sets.
†Data are presented as mean 6 SD.
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depleted during resistance training. PCr helps to sustain this
energy system but is also limited and may be depleted.
Therefore, it is possible that interset rest may allow for par-
tial replenishment of PCr, which is a more efficient energy
source and may allow for higher power outputs. It has also
been reported that lactate values are higher for TL than for
CS, suggesting a reliance on anaerobic glycolysis for energy
(2,6,29). Gorostiaga also reported higher reliance on lactate
during the last 5 repetitions in a set of 10 (8). These data
support the claim that CS would allow for less metabolic
disturbance than TL.

Cluster set loading may provide beneficial training adap-
tations, especially for athletic populations. The results of this
study and others suggest that cluster set loading consistently
demonstrates greater PP and AP outputs when compared to
TL. Although these findings are acute, chronic adaptations
to cluster loading have been previously investigated (26).
Morales-Artacho et al. (26) showed 3 weeks of cluster train-
ing in the countermovement jump caused greater adapta-
tions in velocity and power. In addition, athletes must be
sure to maximize movement intent when trying to stimulate
beneficial training adaptations (7). González-Badillo et al. (7)
showed greater gains in 1RM and AV in the bench press
when training with maximal intent. González-Badillo et al.
(7) also showed training with maximal intent may have
caused beneficial changes in myosin heavy chain isoforms,
excitability, firing rate, neural drive etc., all of which support
the development of power. Finally, because many sports are
time-limited (e.g., ground contact times in sprinting etc.),
TTPP and TTPVare important to consider. Because of their
greater maintenance of both TTPP and TTPV, CS may
allow athletes to train in a more explosive manner for the
entirety of the set. As mentioned earlier, this may also lend
support for the inclusion of traditional sets earlier in a train-
ing year and CS later in a sequential training year. Tradi-
tional sets cause athletes to spend more time accelerating the
bar, as noted in their longer TTPP and TTPV. This would
seem to support the goals of strength endurance and general
strength development. As you approach the later stages of
a periodized model, shorter TTPP and TTPV are desired as
the emphasis of training has shifted toward speed-strength
development.

One limitation of the current study is that only one
repetition scheme and one interrepetition rest interval were
investigated. Many possible configurations of CS can be
used. Others have previously investigated CS of different
configurations but used different rest intervals (2,4,6,10–
16,21,27). Additionally, it has been shown that exercise
intensity has an effect on power outputs (3). Future investi-
gation should be performed to determine the optimal set and
rest interval configurations as well as exercise intensities to
maximize training adaptations. Additionally, only one inten-
sity was used in this study. It has been shown that exercise
intensity affects power output (3). Future studies should con-
sider the effects of CS on a variety of intensities.

PRACTICAL APPLICATIONS

This study provides insight into a means of manipulating
training variables to achieve the desired adaptations to
training. In keeping with the principle of specificity, coaches
wanting to maximize power should use programming tactics
that emphasize power output. Cluster sets may provide
a means of developing strength while maximizing power
output by using greater absolute loads for the same volume
as TL. This study demonstrates that cluster set loading
maximizes power output through greater velocity both
within and across sets. Therefore, CS may provide a means
of directing training toward greater power development.
Coaches may consider including CS during training phases
in which power is the desired training goal.
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