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Abstract

We investigate generalized Beverton–Holt difference equations of order k of
the form

xn+1 =
af(xn, xn−1, . . . , xn+1−k)

1 + f(xn, xn−1, . . . , xn+1−k)
, n = 0, 1, . . . , k ≥ 1,

where f is a function nondecreasing in all arguments, a > 0, and x0, . . . , x1−k ≥ 0
such that the solution is defined. We will discuss several interesting examples of
such equations involving transcendental functions and present some general the-
ory. In particular, we will analyze the global dynamics of the class of difference
equations for which f(x, . . . , x) is chosen to be a concave function. Moreover,
we give sufficient conditions to guarantee this equation has a unique positive and
globally attracting fixed point.

AMS Subject Classifications: 39A20, 39A28, 39A30.
Keywords: Beverton–Holt, difference equation, global, local stability, attractivity, higher-
order, transcendental.

1 Introduction and Preliminaries
Consider the following order-k difference equation:

xn+1 =
af(xn, xn−1, . . . , xn+1−k)

1 + f(xn, xn−1, . . . , xn+1−k)
, n = 0, 1, . . . , k ≥ 1, (1.1)
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where f is a continuous function nondecreasing in all arguments, the parameter a is a
positive real number, and the initial conditions x0, x−1, . . . , x1−k are arbitrary nonnega-
tive numbers such that the solution is defined. We assume f is never identically equal
to the zero function.

Equation (1.1) is a generalization of the first-order Beverton–Holt equation

xn+1 =
axn

1 + xn
, (1.2)

where a > 0 and x−1, x0 ≥ 0. Global dynamics are known and may be summarized as
follows:

lim
n→∞

xn =

{
0 a ≤ 1

a− 1 a > 1 and x0 > 0.

Many variations of Equation (1.2) have been studied. The form of the model actually
predates its use by Beverton and Holt; see [16]. German biochemist Leonor Michaelis
and Canadian physician Maud Menten used the model in their study of enzyme kinetics
in 1913. Additionally, Jacques Monod, a French biochemist, happened upon the model
empirically in his study of microorganism growth around 1942. It was not until 1957
that fisheries scientists Ray Beverton and Sidney Holt used the model in their study of
population dynamics; see [16].

For instance, the so-called Monod system of differential equations is given by

dS

dt
= −1

γ
N

rS

a+ S
,

dN

dt
= N

rS

a+ S
, (1.3)

where N(t) is the concentration of bacteria at time t,
dN

dt
is the growth rate of the

bacteria, S(t) is the concentration of the nutrient, r is the maximum growth rate of the
bacteria, k is a half-saturation constant, and the constant γ is called the growth yield;
see [16]. Both Equation (1.2) and System (1.3) contain the function f(x) = rx/(a+ x)
known as the Monod function, Michaelis-Menten function, Beverton–Holt function, or
Holling function of the first kind; see [1, 4, 9, 11]. Some global dynamic scenarios of
several two-generation models using this function were obtained in [3]. The special
case of Equation (1.1) where f(xn, xn−1) = axn + bxn−1 and a, b > 0 was investigated
in [15].

The Beverton–Holt function is an increasing and concave function and we will prove
some global attractivity results for general difference equations with a transition func-
tion that is increasing and concave along the diagonal. More precisely, we will prove
some global attractivity results for Equation (1.1), where f(x, . . . , x) is an increasing
and concave function.

The following theorem from [2] applies to Equation (1.1) when k = 2.

Theorem 1.1. Let I be a set of real numbers and F : I × I → I be a function which is
nondecreasing in both variables. Then, for every solution {xn}∞n=−1 of the equation

xn+1 = F (xn, xn−1) , x−1, x0 ∈ I, n = 0, 1, . . . , (1.4)
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the subsequences {x2n}∞n=0 and {x2n−1}∞n=0 of even and odd terms of the solution are
eventually monotonic.

The consequence of Theorem 1.1 is that every bounded solution of Equation (1.4)
converges to either an equilibrium, a period-two solution, or to a singular point on the
boundary. Notice that Theorem 1.1 does not apply if k > 2, but the results from [6,8,12]
can give global dynamics in some regions of the parametric space. In the case k > 2,
Equation (1.1) may have periodic solutions of different periods and even chaos; see [7].

The following theorem from [10] applies to the kth-order Equation (1.1) and will be
instrumental in establishing our main result.

Theorem 1.2. Consider the equation

xn+1 = F (xn, xn−1, . . . , xn+1−k), x0, x−1, . . . , x1−k ∈ I, n = 0, 1, . . . , (1.5)

where I ⊆ [0,∞) is some open interval, and assume that F ∈ C[Ik, (0,∞)] satisfies
the following conditions:

(i) F is nondecreasing in each of its arguments;
(ii) Equation (1.5) has a unique positive equilibrium point x̄ ∈ I and the function F

satisfies the negative feedback condition:

(x− x̄)(F (x, . . . , x)− x) < 0 for every x ∈ I\{x̄}.

Then every solution of Equation (1.5) with initial conditions x0, x−1, . . . , x1−k in I con-
verges to x̄.

The rest of this paper is organized as follows. The next section utilizes the concavity
and increasing character of the transition function to analyze the local and global stabil-
ity of the zero and positive equilibrium solutions. In view of the fact that Theorem 1.1
does not hold in higher dimensions, the obtained results are particularly relevant. The
third section will provide some examples of global dynamics of Equation (1.1) when
the function f(u1, . . . , uk) is defined using either exponential, trigonometric, or linear
functions. The obtained results will be interesting from a modeling point of view as
they cover a wide range of nonlinear functions such as logistic, inverse tangent, and
polynomial functions.

2 General Stability Results and Global Attractivity
Let the function F : [0,∞)k → [0, a) be defined as follows:

F (u1, . . . , uk) =
af(u1, . . . , uk)

1 + f(u1, . . . , uk)
. (2.1)

Using Equation (2.1), Equation (1.1) may be rewritten as xn+1 = F (xn, . . . , xn+1−k)
for all n = 0, 1, . . . , where F is a nondecreasing function in all its variables. It is clear
that 0 ≤ xn < a for all n ≥ 1.
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It will be useful to examine the multivariable functions f and F along the diagonal.
For convenience, make the following definitions:

g(x) = f(x, . . . , x) (2.2)
G(x) = F (x, . . . , x). (2.3)

An equilibrium x̄ of Equation (1.1) satisfies

x̄ (1 + g(x̄)) = ag(x̄). (2.4)

Clearly x̄0 = 0 is an equilibrium point if and only if g(0) = f(0, . . . , 0) = 0.

2.1 Local Stability of an Equilibrium
The linearized equation of Equation (1.1) about an equilibrium x̄ is

zn+1 = Fu1(x̄, . . . , x̄)zn + . . .+ Fuk
(x̄, . . . , x̄)zn+1−k, n = 0, 1, . . . .

Set

λ(x̄)k =
k∑

i=1

Fui
(x̄, . . . , x̄) =

a
k∑

i=1

fui
(x̄, . . . , x̄)

(1 + f(x̄, . . . , x̄))2
. (2.5)

In view of [12, Corollary 2] we have the following result.

Theorem 2.1. Let x̄ be an equilibrium of Equation (1.1). Then

x̄ is


locally asymptotically stable if λ(x̄)k < 1
nonhyperbolic if λ(x̄)k = 1
unstable if λ(x̄)k > 1.

2.2 Existence and Global Attractivity of a Unique Positive Equilib-
rium

We will now establish several sufficient conditions under which Equation (1.1) will have
a unique positive fixed point. Recall the definitions of G and g given in Equations (2.2)
and (2.3).

Lemma 2.2. Suppose G is twice differentiable and satisfies the following three condi-
tions:
(i) G(0) = 0,
(ii) G′(0) > 1, and
(iii) G′′(x) < 0 for all x ∈ (0, a).
Then Equation (1.1) has a unique positive equilibrium.
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Remark 2.3. Notice that G(0) = 0 if and only if g(0) = 0. If indeed G(0) = g(0) = 0
then G′(0) = ag′(0). Further, since x ≥ 0, we interpret derivatives at zero in the
right-handed sense.

Proof. First we will show that there exists a positive equilibrium for Equation (1.1).
First, let H(x) = G(x)− x. Notice that H(0) = 0 and H(a) < 0, as

H(a) = G(a)− a = F (a, . . . , a)− a =
af(a, . . . , a)

1 + f(a, . . . , a)
− a < a− a = 0.

Also, H ′(0) = G′(0) − 1 > 0 by assumption (ii) and hence H is increasing at x = 0;
by continuity of H ′, for any sufficiently small δ > 0 it must be the case that H(δ) > 0.
But since H(δ) > 0 and H(a) < 0, by the intermediate value theorem there exists some
point p ∈ (δ, a) such that H(p) = 0. But this immediately implies that G(p) = p, and
hence p is a fixed point of Equation (1.1), as required.

Next we will show this fixed point is unique. Suppose there are two fixed points
p1, p2 > 0 of Equation (1.1) such that p1 < p2. Since G′′(x) < 0 for all x ∈ (0, a), the
function is strictly concave on this interval; that is, for all t ∈ (0, 1) and all x, y ∈ (0,∞)
with x 6= y,

G(tx+ (1− t)y) > tG(x) + (1− t)G(y). (2.6)

Let b ∈ (0, p1) be arbitrary and set t =
p2 − p1

p2 − b
. Here t ∈ (0, 1) since 0 < b < p1 < p2.

By Inequality (2.6), if x = b and y = p2, we obtain the following:

G

((
p2 − p1

p2 − b

)
b+

(
1− p2 − p1

p2 − b

)
p2

)
>

(
p2 − p1

p2 − b

)
G(b) +

(
1− p2 − p1

p2 − b

)
p2

⇐⇒ p1 = G(p1) >
G(b) (p2 − p1) + p2 (p1 − b)

p2 − b
⇐⇒ p1(p2 − b)− p2(p1 − b) > G(b)(p2 − p1) ⇐⇒ b > G(b).

Therefore for each b ∈ (0, p1), H(b) = G(b) − b < 0. However, this contradicts our
initial claim that H(δ) > 0 for δ > 0 small enough.

Lemma 2.4. Suppose G is twice differentiable and satisfies the following three condi-
tions:
(i) G(0) = 0,
(ii) G′(0) ≤ 1, and
(iii) G′′(x) < 0 for all x ∈ (0, a).
Then there exists no positive fixed point for Equation (1.1).

Proof. If H(x) = G(x) − x, then H ′(x) = G′(x) − 1 and H ′′(x) = G′′(x), so in
particular H ′′(x) < 0 for all x ∈ (0, a). For any x ∈ (0, a] we may apply the mean
value theorem to H ′ over [0, x] to conclude that there exists some c ∈ (0, x) such that

H ′(x)−H ′(0)

x− 0
= H ′′(c).
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But since H ′′(c) < 0, we have that H ′(x) < H ′(0) ≤ 0 and hence H is strictly de-
creasing for all x ∈ (0, a). But since H(0) = 0, we have that H(x) < 0 (and hence
G(x) < x) for all x ∈ (0, a), and therefore in this case there exist no positive fixed
points for G.

Theorem 2.5. Under the hypotheses of Lemma 2.2, the unique positive equilibrium of
(1.1) is a global attractor of all solutions with positive initial conditions.

Proof. By Lemma 2.2, Equation (1.1) has a unique positive fixed point p. Now H(x) =
G(x) − x is continuous and has only one positive root (at x = p) such that it does not
change sign on (0, p) or (p, a); in particular, H(x) > 0 for x ∈ (0, p) and H(x) < 0 for
x ∈ (p, a). If I = (0, a), we have that (x − p)(G(x) − x) < 0 for all x ∈ I\{p}. By
Theorem 1.2, we have that every positive solution with initial conditions in I converges
to p. Since (0, a) is an attracting, invariant interval for all solutions with positive initial
conditions, the proof is complete.

Remark 2.6. If (0, a) is an attracting interval for all nonzero solutions, including those
with initial conditions that are not all necessarily positive, then the results of Theorem
2.5 (and later Corollary 2.8) will give a complete classification of global dynamics for
any choice of nonnegative initial conditions.

Theorem 2.7. Under the hypotheses of Lemma 2.4, the zero equilibrium is a global
attractor of all solutions.

Proof. By Lemma 2.4, Equation (1.1) has only the zero equilibrium in the invariant
interval [0, a]. But then the kth-order extension of [13, Theorems 1.4.8 and A.0.1] or [14,
Theorem 4] will apply to this equation. Since [0, a] is an attracting interval, all solutions
must converge to the zero equilibrium.

Corollary 2.8. Suppose g(x) is a strictly concave function on (0, a).
(1) Under hypotheses (i) and (ii) of Lemma 2.2, the unique positive equilibrium of Equa-
tion (1.1) is a global attractor of all solutions with positive initial conditions.
(2) Under hypotheses (i) and (ii) of Lemma 2.4, the zero equilibrium is a global attractor
of all solutions.

Proof. Since g(x) = f(x, . . . , x) is strictly concave for all x ∈ (0, a), g′′(x) < 0. An
immediate computation yields

G′′(x) =
a
[
g′′(x) (1 + g(x))− 2 (g(x))2]

(1 + g(x))3 < 0.

Thus condition (iii) is satisfied for Lemmas 2.2 and 2.4, and the proof follows from an
application of Theorems 2.5 and 2.7.
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Remark 2.9. Corollary 2.8 shows that g(x) being concave is a sufficient but not neces-
sary condition for G(x) to be concave. For the case k = 2, consider f(u, v) = pu2 +qv.
If a = 1, p = 1, q = 2, then

g′′(x) =
d2

dx2
(f(x, x)) = 2 > 0 yet G′′(x) =

d2

dx2
(F (x, x)) =

−6

(1 + x)4
< 0,

so for these values G(x) is concave even though g(x) is convex.
In some cases neither the function g(x) nor G(x) is concave on the interval (0, a).

In such situations it is useful to have the following theorem, which provides a sufficient
condition to guarantee the existence (or nonexistence) of a unique positive fixed point
that is a global attractor of positive solutions.

Theorem 2.10. Let g be continuously differentiable such that g′(0) 6= 0 and g(x) > 0
for all x > 0. If

xg′(x) < g(x) (g(x) + 1) (2.7)
for all x ∈ (0, a), then Equation (1.1) has at most one positive fixed point.
(1) If G(0) = g(0) = 0 and G′(0) = ag′(0) > 1, then Equation (1.1) has precisely
one positive fixed point, and it is a global attractor of all solutions with positive initial
conditions.
(2) If G(0) = g(0) = 0 and G′(0) = ag′(0) ≤ 1, then Equation (1.1) has only the zero
equilibrium, and it is a global attractor of all solutions.

Proof. Solve Equation (2.4) for a to find that

a =
x

g(x)
+ x.

Set u(x) =
x

g(x)
+ x. If u(x) is an injective (or monotone) function, then it intersects

the line y = a at most once. Setting u′(x) > 0 and rearranging will establish the main
claim.

To prove the remaining claims, suppose u′(x) > 0. By l’Hôpital’s rule,

lim
x→0+

u(x) = lim
x→0+

(
x

g(x)
+ x

)
= lim

x→0+

1

g′(x)
=

1

g′(0)
. (2.8)

Now lim
x→0+

u(x) < a implies there exists exactly one positive fixed point of Equation

(1.1), so Equation (2.8) establishes the hypothesis of (1). As in the proof of Theorem
2.5, the global attractivity of the unique fixed point will again follow from Theorem 1.2.

If lim
x→0+

u(x) ≥ a, then Equation (1.1) has only the zero equilibrium since u is

increasing, and Equation (2.8) establishes the hypothesis of (2). Again we may employ
the order-k generalization of [13, Theorems 1.4.8 and A.0.1] or [14, Theorem 4] to
obtain the global attractivity of the zero equilibrium, and the proof is complete.

Remark 2.11. In some cases the veracity of Inequality (2.7) of Theorem 2.10 may im-
ply the concavity condition required by Theorems 2.5 or 2.7 or Corollary 2.8, but the
hypotheses of the latter results may be easier to verify.
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3 Examples
In most of the provided examples we will focus on equations of second order for conci-
sion. However, all results can be generalized to corresponding equations of any order.

3.1 Exponential Nonlinearity: f(u, v) = p(1− e−u) + q(1− e−v)
We consider the equation

xn+1 =
a (p(1− e−xn) + q(1− e−xn−1))

1 + p(1− e−xn) + q(1− e−xn−1)
, n = 0, 1, . . . , (3.1)

where p, q > 0. An equilibrium x̄ of Equation (3.1) satisfies the following:

x̄ =
a(p+ q)(1− e−x̄)

1 + (p+ q)(1− e−x̄)
.

In particular, x̄0 = 0 has λ(x̄0) = a(p+ q), so

x̄0 is


locally asymptotically stable if a(p+ q) < 1
nonhyperbolic if a(p+ q) = 1
unstable if a(p+ q) > 1.

The following results give the global dynamics of Equation (3.1).

Theorem 3.1. (1) If a(p + q) > 1, then there exists a unique positive equilibrium x̄+,
and it is a global attractor of all nonzero solutions.
(2) If a(p+ q) ≤ 1, then x̄0 = 0 is a global attractor of all solutions.

Proof. Notice G(0) = 0, G′(0) = ag′(0) = a(p + q), and g′′(x) =
d2

dx2
(f(x, x)) =

−e−x(p+ q) < 0. Moreover, if x−1 +x0 > 0, then x1 = F (x0, x−1) > 0 since p, q > 0,
and similarly x2 > 0. Thus all solutions enter the attracting, invariant interval (0, a). In
view of Remark 2.6, the result follows by a direct application of Corollary 2.8.

We may also consider the kth-order equation

xn+1 =

a
k−1∑
i=0

pi(1− e−xn−i)

1 +
k−1∑
i=0

pi(1− e−xn−i)

, n = 0, 1, . . . , (3.2)

where pi ≥ 0 for i = 0, . . . , k− 1. We can establish global results for Equation (3.2) by
immediately applying Corollary 2.8.



Higher-Order Beverton–Holt Equations 79

Theorem 3.2. (1) If a
k−1∑
i=0

pi > 1, then there exists a unique positive equilibrium x̄+,

and it is a global attractor of all solutions with positive initial conditions.

(2) If a
k−1∑
i=0

pi ≤ 1, then x̄0 = 0 is a global attractor of all solutions.

However, notice that we cannot necessarily establish global dynamics for all values
of the nonnegative parameters and initial conditions. Equation (3.2) may have a variety
of periodic solutions in which some of the entries in the periodic cycle equal zero.
However, the above result captures the substantial global dynamics for all solutions
with positive initial conditions.

3.2 Arctangent Nonlinearity: f(u, v) = p arctan(u) + q arctan(v)

We next consider the equation

xn+1 =
a (p arctan(xn) + q arctan(xn−1))

1 + p arctan(xn) + q arctan(xn−1)
, n = 0, 1, . . . , (3.3)

where p, q > 0. An equilibrium x̄ of Equation (3.3) satisfies the following:

x̄ =
a(p+ q) arctan(x̄)

1 + (p+ q) arctan(x̄)
.

Again x̄0 = 0 has λ(x̄0) = a(p+ q), so

x̄0 is


locally asymptotically stable if a(p+ q) < 1
nonhyperbolic if a(p+ q) = 1
unstable if a(p+ q) > 1.

Notice that, as in the previous second-order example, G(0) = 0, G′(0) = a(p + q),

and g′′(x) =
d2

dx2
(f(x, x)) = −2x(p+ q)

(1 + x2)2
< 0 for x > 0. It is clear that the global

dynamics of Equation (3.3) are described exactly by Theorem 3.1.

Remark 3.3. There are a wealth of other functions f such that g(x) is concave and
Corollary 2.8 applies to Equation (1.1). Second-order examples include the logarithmic
function

f1(u, v) = log ((1 + u)p(1 + v)q)

as well as the shifted sigmoid function

f2(u, v) =
p

1 + e−u
+

q

1 + e−v
− p+ q

2
=
p

2
tanh

(u
2

)
+
q

2
tanh

(v
2

)
,

which has a wide range of applications in neural networks.
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3.3 Sine Nonlinearity: f(u, v) = p (u+ sin(u)) + q (v + sin(v))

Consider the equation

xn+1 =
a (p (xn + sin(xn)) + q (xn−1 + sin(xn−1)))

1 + p (xn + sin(xn)) + q (xn−1 + sin(xn−1))
, n = 0, 1, . . . , (3.4)

where p, q > 0. Notice that fu(u, v) = p(1+cos(u)) ≥ 0 and fv(u, v) = q(1+cos(v)) ≥
0. The second-order difference equation xn+1 =

1

2
f(xn, xn−1) for p = q = 1 was

investigated in [5, Example 1].
The applicability of Corollary 2.8 is limited by the fact that g(x) = (p+ q)(sin(x) +

x) is strictly concave only when sin(x) > 0, and therefore global results can only be
obtained for a ≤ π. Using the full strength of Theorems 2.5 and 2.7 will also have
limitations for any choice of a > 0; the interval [0, a] is always invariant for Equation
(3.4), but a larger value of a would prescribe the need for a larger interval over which
G(x) should be concave. Instead we may consider applying Theorem 2.10.

Theorem 3.4. Suppose that, for all x ∈ (0, a),

x cos(x) < (p+ q)(sin(x) + x)2 + sin(x). (3.5)

(1) If 2a(p+ q) > 1, then Equation (3.4) has precisely one positive fixed point, and it is
a global attractor of all solutions with positive initial conditions.
(2) If 2a(p+q) ≤ 1, then Equation (3.4) has only the zero equilibrium, and it is a global
attractor of all solutions.

Remark 3.5. Verifying Inequality (3.5) in general appears to be difficult, although for
specific values of p and q this hypothesis should be able to be easily checked. For
example, when p = q = 1, this condition is immediately satisfied and leads to a

global exchange of stability result as a passes through the critical value
1

4
. In gen-

eral, Mathematica verifies this inequality should hold for all x > 0 when approximately
p + q > 0.2015. For p and q smaller than this threshold, multiple equilibria or even
interior periodic solutions may exist.

3.4 Order-k Linear

Consider the equation

xn+1 =

a
k−1∑
i=0

cixn−i

1 +
k−1∑
i=0

cixn−i

, n = 0, 1, . . . , (3.6)
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where ci ≥ 0 for i = 1, . . . , k − 1. An equilibrium x̄ of Equation (3.6) satisfies the
following:

x̄ =

a
k−1∑
i=0

cix̄

1 +
k−1∑
i=0

cix̄

.

Using Equation (2.5) we see that the zero equilibrium x̄0 = 0 has λ(x̄0)k = a
k−1∑
i=0

ci, so

x̄0 is



locally asymptotically stable if a
k−1∑
i=0

ci < 1

nonhyperbolic if a
k−1∑
i=0

ci = 1

unstable if a
k−1∑
i=0

ci > 1.

If a
k−1∑
i=0

ci > 1, then Equation (3.6) has the unique positive equilibrium

x̄+ =

a

(
k−1∑
i=0

ci

)
− 1

k−1∑
i=0

ci

.

Since
λ(x̄+)k =

1

a
k−1∑
i=0

ci

< 1,

we have that x̄+ is locally asymptotically stable whenever it exists. The next result,
which gives the global dynamics of Equation (3.6), is a simple exchange of stability
bifurcation result.

Theorem 3.6. Consider Equation (3.6).

(1) If a
k−1∑
i=0

ci ≤ 1, then x̄0 is a global attractor of all solutions.

(2) If a
k−1∑
i=0

ci > 1, then x̄+ is a global attractor of all solutions with positive initial

conditions.
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Proof. The proof of (1) is the same as that of Theorem 2.7. To prove (2), notice that

xn+1 − x̄+ =

a
k−1∑
i=0

cixn−i

1 +
k−1∑
i=0

cixn−i

−
a

k−1∑
j=0

cj − 1

k−1∑
j=0

cj

=

k−1∑
i=0

ci (xn−i − x̄+) +
k−1∑
j=0

cj (x̄+ − a) + 1(
1 +

k−1∑
i=0

cixn−i

)
k−1∑
j=0

cj

=

k−1∑
i=0

ci (xn−i − x̄+)(
1 +

k−1∑
i=0

cixn−i

)
k−1∑
j=0

cj

.

Let
gl =

cl(
1 +

k−1∑
i=0

cixn−i

)
k−1∑
j=0

cj

.

The substitution yn = xn − x̄+ yields

yn+1 =
k−1∑
l=0

glyn−l.

Now we have
k−1∑
l=0

|gl| =
1

1 +
k−1∑
i=0

cixn−i

≤ 1

1 +M
< 1

for some M > 0 so long as
k−1∑
i=0

cixn−i > 0. The latter is true by assumption since

ci > 0 for at least one i and the initial conditions satisfy x1−j > 0 for each j = 1, . . . , k.
By [12, Theorem 1], lim

n→∞
yn = 0, and hence lim

n→∞
xn = x̄+.

Remark 3.7. Theorem 3.6 is proven using the powerful linearization technique discussed
in [12]. However, we could also use Theorems 2.5 and 2.7 to arrive at the same result.

Proof. Notice that in the case of Equation (3.6) we have g(x) = x

k−1∑
i=0

ci and hence
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G(x) =

ax
k−1∑
i=0

ci

1 + x
k−1∑
i=0

ci

. Now G(0) = 0, G′(0) = a

k−1∑
i=0

ci, and

G′′(x) =

−2a

(
k−1∑
i=0

ci

)
2(

1 + x
k−1∑
i=0

ci

)
3

< 0 for all x ≥ 0.

Thus an application of Theorems 2.5 and 2.7 completes the proof.
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[7] E. Denette, M. R. S. Kulenović, and E. Pilav, Birkhoff normal forms, KAM theory
and time reversal symmetry for certain rational map, Mathematics, MDPI, 2016;
4(1): 20.

[8] M. DiPippo, E. J. Janowski, and M. R. S. Kulenović, Global asymptotic stability
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