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Highlights  

 BBP causes concentration dependent defects in caudal tail development 

 BBP alters expression of ntl in the notochord and myoD in the muscle 

 BBP causes defects in myofibrils and alteration to the vasculature 

 

Abstract 

Butyl benzyl phthalate (BBP) is commonly added during the manufacturing of plastics to increase 

flexibility and elasticity.  However, BBP leaches off of plastic and environment presence has been 

mailto:royn@sacredheart.edu


detected in soil, groundwater and sediment potentially effecting organisms in the environment.  

Given the widespread uses of BBP in household, consumer goods and the presence of BBP in the 

environment, studies on developmental toxicity are needed.  Here, we use a zebrafish model to 

investigate the early developmental toxicity of BBP.  We treated gastrula staged embryos with 

increasing concentrations of BBP and noted concentration-dependent defects in caudal tail 

development, but the effect was caudal specific with no other developmental defects noted.  In situ 

hybridization studies using muscle and notochord markers show alterations in muscle development 

and non-linear, kinked notochord staining.  A more detailed antibody staining using a myosin 

specific marker shows disorganized myofibrils and a loss of chevron shaped somites.  Furthermore, 

vascular development in the tail was also disrupted in a concentration dependent manner.  We 

conclude that BBP is toxic to caudal development in zebrafish.  The sensitivity of zebrafish during 

development to environmental toxins and chemicals has been useful in assessing the health of the 

aquatic environment.  The results presented here are a useful early warning system for 

contamination that could affect human health. 
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1. Introduction 

Esters of phthalic acids or phthalates are chemicals routinely used in the manufacture of 

plastics to increase the flexibility and durability of plastic polymers.  Each year, over three million 

metric tons of phthalates are produced globally and used primarily in polyvinyl chloride (PVC) 

(Schettler, 2006), but are also found in vinyl flooring, building materials, toys and medical devices.  

Additionally, as an inert component, phthalates can be found in cosmetics, pesticides, 

pharmaceuticals, detergents and wood finishes (Chatterjee and Karlovsky, 2010; Schettler, 2006).  

Phthalate contamination occurs readily as phthalates are not chemically bound to plastics and leach 

easily into the environment (Adams et al., 1995; Chatterjee and Karlovsky, 2010; Schettler, 2006). 

With massive annual production and continuous release into the environment, phthalates 

can be found in measurable concentrations in aquatic ecosystems worldwide (Oehlmann et al., 

2008) including river waters and sediments (Yuwatini et al., 2006) and municipal waste waters 

(Wibe et al., 2002).  Studies have documented the aquatic toxicity of numerous phthalate esters on 



fresh and saltwater microorganisms, algae, invertebrates and fish (Adams et al., 1995; Staples et 

al., 1997).  However, phthalate detection is not isolated to aquatic environments.  Phthalates have 

been found in food and food packing materials (Cao, 2010; Page and Lacroix, 1995; Schecter et 

al., 2013), human blood (Wan et al., 2013), breast milk (Main et al., 2006; Zimmermann et al., 

2012), urine (Lin et al., 2011) and home dust (Abb et al., 2009; Bornehag et al., 2004; Rudel et al., 

2003).  Phthalates easily pass the placenta from maternal blood to the developing fetus (Latini, 

2005; Planello et al., 2011).   

Amongst the phthalate esters family, butyl benzyl phthalate (BBP) is the environmentally 

present phthalate with the most documented health effects in humans and animals (Bornehag et 

al., 2004; Chatterjee and Karlovsky, 2010; Swan, 2008).  Most of the effects of BBP in fish and 

rats have been documented on adults or on the developing reproductive system and demonstrated 

estrogen-mimicking properties (Jobling et al., 1995; Sharpe et al., 1995).  For example, in 

pikeperch exposed to BBP, disrupted gonadal differentiation, delayed testicular development and 

feminization were observed (Jarmolowicz et al., 2014). In zebrafish, BBP exposure disrupted sex 

hormone balances by altering steroidogenic genes (Sohn et al., 2016) and decreased sperm quality 

in the males exposed to BBP (Oehlmann et al., 2009).  Teratogenic effects in rats have also been 

reported including testicular toxicity, decreased testosterone, decreased sperm production and 

altered sexual development (Ema et al., 1991; Ema and Miyawaki, 2002; Gray et al., 2000; Lyche 

et al., 2009; Parks et al., 2000; Piersma et al., 2000).  Behavioral effects of BBP have been noted 

in the threespine stickleback and Fundulus heteroclitis each having demonstrated alterations in 

shoaling and bottom-dwelling behaviors (Kaplan et al., 2013; Wibe et al., 2002).  BBP also alters 

social interactions and fear conditioning in rats (Betz et al., 2013) as well as alters feeding behavior 

in threespine stickleback (Wibe et al., 2004).  There are limited investigations into the 

embryotoxicity of BBP, but previous reports using zebrafish embryos have documented tail 

curvature and a lack of touch response in a 72 hour acute toxicity test as well as the estrogenic 

activity of BBP (Chen et al., 2014).  Mice also display a concentration-dependent embryolethality 

and developmental malformations (Saillenfait et al., 2003).   

Besides BBP’s anti-androgenic effects on sex development, mechanistically, not much is 

known about how BBP induces toxic effects.  However, a recent study in zebrafish has shown 7-

day BBP exposed fish demonstrated decreased acetylcholinesterase (AChE) activity as well as 



alterations in superoxide dismutase (SOD) activity (Zhang et al., 2014).  BBP has also been shown 

to suppress calcium signaling coupled to nicotinic acetylcholine receptors in cell lines (Liu et al., 

2009). 

The massive production volume and widespread usage of phthalates has made the presence 

of phthalates ubiquitous in the environment.  Fish become exposed in the water column, by 

sediment or food and phthalates can work their way up the food webs to affect higher order 

vertebrates and humans.  Thus, understanding the developmental effects of BBP exposure is an 

important consideration.  Here, we investigated the embryotoxicity of BBP using zebrafish as a 

model.  Zebrafish are a commonly used vertebrate model in developmental toxicology to monitor 

environmental contaminants given their high fecundity, rapid external development, transparent 

embryos, ability to absorb chemicals and their genetic similarity to higher order vertebrates (Hill 

et al., 2005).   

 

2. Materials and Methods 

2.1 Zebrafish Husbandry and Breeding  

Adult zebrafish were housed in a zebrafish module (Aquatic Habitats, Inc) on a 14:10 hour 

light:dark cycle.  Water quality (pH, ammonia, nitrate, nitrite, salinity) was monitored daily and 

fish were fed brine shrimp supplemented with TetraMin® flake food twice a day.  For breeding, 

two male and two female adult fish were placed in a standard breeding box at night (Westerfield, 

1993).  The following morning, embryos were collected and placed in 30% Danieau Buffer 

(Westerfield, 1993) prior to treatment. 

2.2 Embryo Treatments  

Butyl benzyl phthalate was obtained from Sigma-Aldrich (308501).  Treatment concentrations of 

10-30µM were diluted in 30% Danieau Buffer.  Methanol was used as a vehicle (Chen et al., 2014) 

to increase solubility with a final concentration in diluted samples not greater than 0.1%.  All 

treatments were performed in glass petri dishes.  Treatments began at the onset of gastrulation (6 

hpf (hours post-fertilization)) and embryos were continuously treated until 24hpf when they were 

either live imaged, fixed or processed.  This developmental time window was chosen as it covers 



gastrulation through segmentation, somitogenesis and neurulation, which establishes the larval and 

adult body. Embryos were staged according to the Kimmel staging series (Kimmel et al., 1995).   

Treatment protocols were approved by the Sacred Heart IACUC (Institutional Animal Care and 

Use Committee) committee as meeting ethical standards.  Treatments were repeated three times 

on separate occasions, minimum number of embryos per treatment concentration (0, 10, 20 and 

30µM) was 20. 

2.3 Imaging and Microscopy 

Live images were attained using a Leica dissection microscope with a Nikon Digital Sight DS-

2Mv digital camera with Q-Capture software.  Live embryos were sedated for imaging with 

tricaine methanesulfonate (MS-222) (Westerfield, 1993).  Fluorescent images of live transgenic 

embryos (fli1-gfp) (green fluorescent protein) (Lawson and Weinstein, 2002), live acridine orange 

staining or fixed fluorescent antibody staining were imaged with a Nikon Eclipse E400 fluorescent 

microscope attached to an Andor Zyla sCMOS cooled CCD (charge-coupled device) camera using 

Q-Capture software.  For all live images, transgenic or fixed, embryos were placed in a depression 

slide in a pool of 3% methylcellulose thickening medium to aid its positioning. 

2.4 Whole Mount in situ Hybridization and Immunohistochemistry 

In situ hybridization protocols were previously described (Roy et al., 2015; Sagerstrom et al., 

1996).  The ntl (no tail) probe, a common notochord marker and the myoD (myogenic 

differentiation) probe, a common muscle marker,  were generous gifts from the Sagerstrom Lab at 

the University of Massachusetts Medical Center.  The antisense ntl and myoD probes were 

digoxigenin (DIG) labeled (Roche Life Sciences, 11209256910) and transcribed using a T7 and 

SP6 in vitro transcription kit respectively (Promega, P1450).  Probes were visualized in whole 

mount using an anti-DIG antibody (Roche Life Sciences, 11093274910) conjugated to nitroblue 

tetrazolium and bromo-4-chloro-indolyl phosphate (NBT/BCIP, Promega, S3771).   

Whole mount immunohistochemistries were performed as previously described (Barresi et 

al., 2001; Devoto et al., 1996; Roy et al., 2015) using a myosin heavy chain specific antibody (F59, 

Developmental Studies Hybridoma Bank, University of Iowa).   A 1:5 dilution of F59 antibody 

was used along with a 1:200 dilution of a FITC-labeled goat anti-mouse secondary antibody (Santa 

Cruz Biotechnology). 



2.5 Cell Death 

Acridine Orange was obtained from Sigma-Aldrich (A6014) and prepared to a stock solution of 

1mg/ml in distilled water.  Embryos were treated in 1µg/ml dilution in 30% Danieau Buffer for 1 

hour and 30 minutes in the dark, washed extensively and imaged as described above. 

 

3. Results 

3.1  Live Gross Morphology 

To investigate general body morphology after BBP treatment, live embryos were imaged 

at 24hpf.  All treatment levels demonstrated normal neural morphology.  Fore, mid and hindbrains 

were normal, otic vesicles were present and lens and retinas were developed in relation to controls 

(Fig. 1, A-D).  However, caudal tail development was altered.  Control tails demonstrated straight 

extension, with a linear notochord and classic, chevron shaped somites (Fig. 1A’).  BBP treatments 

demonstrated a concentration-dependent increase in tail defects.  The low concetration (10µM) 

demonstrated a slight loss of linear extension with a slightly curvy notochord.  Somites were still 

present and boundaries clearly defined (Fig. 1B’).  At the 20µM concentration, the tails started to 

curve and extension was limited, the notochord was wavy and the somites were irregularly shaped 

and spaced and difficult to define.   Necrosis at the tail tip was also seen (Fig. 1C’).   At the high 

concentration (30µM), there was no tail extension, the notochord demonstrated an undulating 

pattern, no somites were detected and necrosis was present (Fig. 1D’).   

3.2  Notochord Development 

The ntl gene is a commonly used marker for the notochord, (Schulte-Merker et al., 1994; 

Yamada et al., 1991) which serves as a signaling source to pattern tissue including the paraxial 

(somatic) mesoderm (Stemple, 2005).  Control embryos demonstrated smooth ntl staining along 

the length of the notochord up to the tailbud by 24hpf (Fig. 2A, A’).  Increasing concentrations of 

BBP induced alterations in ntl staining in a concentration-dependent manner (Fig. 1 B-D’) in 

correlation with the wavy and undulating patterns seen in live imaging (Fig. 1) by 24hpf.  

Examination of ntl staining at an earlier developmental timepoint, the bud stage, marking the 



beginning of the segmentation period when somites form, showed no change in axial mesoderm 

staining in any treatment level (Fig. 2, E-H).   

3.3  Muscle Development 

As changes were seen in somite boundaries and patterning in live imagery, we sought to 

more specifically define the somatic changes via in situ hybridization with myoD, a basic helix-

loop-helix (bHLH) transcription factor with a major role in myogenesis (Weinberg et al., 1996).  

At 24hpf, control embryos demonstrated myoD staining within each somite block with the 

strongest staining at the tail (Fig.3 A).  Increasing concentrations of BBP induced alterations in 

myoD staining in a concentration dependent manner (Fig. 3, B-D).  At 10µM BBP it was difficult 

to note major changes as myoD staining appeared normal, but by 20µM, loss of patterning was 

seen, with somites becoming disorganized.  By 30µM, no somite patterning with myoD staining 

was detected. 

 To further characterize muscle changes, an F49 immunohistochemistry specifically 

marking myosin heavy chain was performed.  In control embryos, myosin stained muscle fibers 

were apparent in a linear pattern within each chevron shape somite (Fig. 4, A).  At the 10µM BBP 

treatment level, the somite boundaries were noted, but individual muscle fibers lost their linear 

shape demonstrating wavy muscle fibrils (Fig.4, B).  At the 20µM concentration, myofibrils started 

to lose any pattern and somite boundaries were becoming unclear (Fig. 4, C).  This phenotype 

became more severe at 30µM (Fig. 4, D), no muscle pattern or fibers were detected. 

3.4  Vasculature 

 To investigate if the alterations detected in musculature affected vascularization of the 

trunk and tail, we utilized fli-1 gfp transgenic embryos where the fli-1 promoter drives expression 

of GFP in developing endothelial blood vessels (Lawson and Weinstein, 2002).  By 24hpf in 

control embryos, GFP was expressed in the intersegmental vessels (ISVs) which extend up through 

the somites from the dorsal aorta (DA) to the dorsal longitudinal anastomotic vessel (DLAV) (Fig 

5. A,B).  Increasing concentrations of BBP induced alterations in the developing vasculature in a 

concentration-dependent manner.  These defects included truncation of the vessels and a lack of 

migration through the somite to the DLAV (Fig. 5C) or branching of the vessels (Fig. 5D, E) for 



10 and 20µM concentrations of BBP.  By 30µM BBP, little to no vascularization was seen in the 

tail region. 

3.5  Cell Death 

Lastly, we tested if BBP caused an increase in cell death.  At 24hpf in control embryos, 

cell death was not noted in the trunk somites or tail (Fig. 6A).  At 10µM, few spots were seen 

throughout the somite region, but clusters could be seen in tail region.  At the 20µM concentration, 

the tails started to curve (Fig. 1C’) and cell death was noted within the somite bodies and the tail 

(Fig. 6C).   At the high concentration (30µM), where there was no tail extension (Fig. 1D’), cell 

death was also noted throughout the curved tail with clustering at the tail tip (Fig. 6D).   

 

4. Discussion 

 Here we find that treatment with BBP results in loss of proper somite patterning and ventral 

bending of the tail.  It has recently been reported that BBP exposure in zebrafish causes decreased 

acetylcholinesterase (AChE) activity (Zhang et al., 2014).  Acetylcholine (ACh) is normally 

released from motoneuron terminals and migrates through the neuromuscular junction (NMJ) to 

bind to acetylcholine receptors (AChRs) clustered on the muscle membrane (Buss and Drapeau, 

2001).  Once bound, the muscle is depolarized causing calcium to be released from the 

sarcoplasmic reticulum into the cytosol.  Increasing cytosolic calcium levels activate troponin, 

which initiates sliding actions of actin and myosin inducing muscle contraction.  Excess ACh 

within the NMJ is rapidly degraded by the enzyme acetylcholinesterase (AChE).  The rapid 

removal of excess ACh within the NMJ along with decreasing cytosolic calcium levels performed 

by Ca+2-ATPase pumps is critical for normal muscle relaxation (Hirata et al., 2004).  Thus, 

acetylcholinesterase is a crucial enzyme for muscle functionality.  In zebrafish AChE mutants that 

lack ACh hydrolysis, embryos demonstrate abnormal myofibril organization and develop paralysis 

(Behra et al., 2002).  Exposure to the AChE inhibitor diisopropylfluorophosphate (DFP) induced 

abnormal somites and a ventral bend of the tail (Hanneman, 1992).  Here we find that treatment 

with BBP results in loss of proper somite patterning similar to what is seen in AChE mutants and 

the ventral bending seen with DFP treatment phenocopies what we see in our higher treatment 

concentrations (Fig. 1C,D).  Thus, it might suggest that the defects we see are a result of BBP 



blocking acetylcholinesterase causing overstimulation of muscle activity.  However, we did not 

specifically test this and the exact mechanism by which BBP blocks AChE is not yet known (Zhang 

et al., 2014).  We also find that myofibril organization is lost and results in a thinner disorganized 

pattern in the lower concentration of BBP (Fig. 4B).  This agrees with what is noted by others 

investigating myofibrils in ache and twister mutants (Behra et al., 2002; Hirata et al., 2004; 

Lefebvre et al., 2004) who note altered arrangement and/or integrity of myofibrils, myofibrils that 

were splayed apart or absent and fibers that were less fasciculated.   

Here, we find that increasing concentrations of BBP induce alterations in myoD staining 

and by the highest concentration, myoD somatic staining is absent (Fig. 3).  This is not surprising 

given the defects noted in somites in live images.  myoD expression occurs during the period when 

somites are forming (Weinberg et al., 1996) and if somatic development is affected, we would 

expect to see correlative defects in myoD staining. 

 In zebrafish muscle, superoxide dismutase (SOD), the enzyme responsible for eliminated 

dangerous superoxide radicals, has been shown to be induced in BBP treatments.  As the dose of 

BBP increased and more radicals developed, SOD synthesis was likely induced (Zhang et al., 

2014).  Oxidative stress induced necrosis is a common phenomenon when SOD cannot keep up 

with the level of radicals being produced.  We find in higher concentrations of BBP, necrosis was 

noted (Fig. 1C,D).  The necrosis seen is likely the reason for the lack of myofibrils noted in F59 

staining (Fig. 4C,D).  Acridine orange staining also noted cell death.  Increasing concentrations of 

BBP induce higher levels of cell death (Fig. 6).  These results indicate that higher concentrations 

of BBP are toxic to the developing embryo possibly due to increases in SOD although that was not 

specifically tested here. 

 Lastly, we examined the effect BBP has on the vasculature.  Specifically, we investigated 

intersegmental vessels (ISVs) which extend up through the somites from the dorsal aorta (DA) to 

the dorsal longitudinal anastomotic vessel (DLAV).  We found that increasing concentrations of 

BBP induced truncation and migratory defects and/or branching of the vessels (Fig. 5).  This is not 

a surprising result given the ISVs run in parallel with the somite borders and somite changes were 

detected.  By the highest concentration, little to no vascular pattern in the tail was seen suggesting 

that the higher concentration of BBP is toxic to the developing embryo. 



Alternatively, one could argue BBP alters notochord formation (seen in Fig. 2) and the 

effect seen on muscle is secondary to the notochord defects.  The notochord is necessary for somite 

patterning and is required to induce muscle cell pioneers, which develop into the adaxial mesoderm 

(Felsenfeld et al., 1991; Halpern et al., 1993).   Specificaly, ntl is necessary to induce adaxial 

muscle development and myoD expression in the paraxial mesoderm (Odenthal et al., 1996; 

Weinberg et al., 1996).  However, in contrast to our results, by 24hpf in ntl mutant embryos, 

somites do not become lost or disorganized as we see, but are reported to become block-like and 

columnar shaped (Halpern et al., 1993) or described as U-shaped (Odenthal et al., 1996).  

Additionally, a decreased number of muscle fibers have been noted in ntl mutants (Stickney et al., 

2000) whereas we did not detect a decrease or loss in muscle fibers until the higher toxic 

concentration (Fig. 4D), but rather noted disorganized myofibrils (Fig. 4 B,C).   

Zebrafish are a common toxicological model.  Zebrafish have high fecundity allowing for 

large sample sizes and high throughput screens for toxicity (Hill et al., 2005).  Their rapid ex utero 

and transparent development allows one to test toxicological endpoints at various stages of 

development, asses behavior in response to chemical exposure as well as address transgenerational 

outcomes (Sipes et al., 2011; Yang et al., 2009).  Most importantly, zebrafish can be used in 

monitoring the aquatic environment  (Dai et al., 2014).  Zebrafish have been used to monitor 

common environmental pollutants like heavy metals, endocrine disruptors and organics (Bambino 

and Chu, 2017; Dai et al., 2014) .  Use of zebrafish embryos have been well documented as 

sentinels in aquatic ecosystems (Carvan et al., 2000; Mizell and Romig, 1997; Scholz et al., 2008).  

Determining if a chemical effects embryonic development is essential to determining if the 

chemical is a risk to the environment and ultimately to human health (Mizell and Romig, 1997).  

Here, our endpoints on BBP toxicity in zebrafish during development will help environmental 

toxicologists in monitoring water contamination and provide key endpoints that provide an early 

warning signal for waters that could be dangerous for human health. 

5.  Conclusion 

 Here, we have shown that BBP is toxic to caudal development in zebrafish embryos.  We 

demonstrate that somite patterning, myofibril arrangement and a muscle specific marker, myoD 

expression are altered in a concentration-dependent manner in which higher concentrations 

become toxic.  Vasculature is also altered as a result of changes in somite development.  Increases 



in cell death are noted in a concentration-dependent fashion.  Further studies will investigate the 

effect BBP treatments have on movement and behavior as well as innervation of primary and 

secondary motorneurons, but that was beyond the scope of this preliminary study. 
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Figure Legends 

 

Fig. 1. Live Images of control and BBP treated embryos at 24hpf in lateral views.  Zoomed images 

of tails (A’-D’).  Control (A, A’) embryos demonstrate linear extension of the tail marked by a 

straight notochord (large dashes) and classic chevron shaped somites (small dashes).  Increasing 

concentrations of BBP (B-D’) cause concentration-dependent malformations in tail extension and 

development including wavy notochords, loss of somite patterning or somites, curved tail and 

necrosis (arrows).  (A, A’) Control, (B, B’) 10µM BBP, (C, C’) 20µM BBP and (D, D’) 30µM 

BBP. 



 

Fig. 2.  ntl in situ hybridization of control and BBP treated embryos.  (A-D) Whole body lateral 

views and (A’-D’) zoomed images of the tails at 24hpf in lateral view.  (E-H) Dorsal views at 

12hpf.  (A, A’, E) Control, (B, B’, F) 10µM BBP, (C, C’, G) 20µM BBP and (D, D’, H) 30µM 

BBP.  Arrows note wavy notochords.   



 

Fig.3.  myoD in situ hybridization of control and BBP treated embryos.  (A-D) Zoomed images of 

the tails at 24hpf in lateral view.  (A) Control, (B) 10µM BBP, (C) 20µM BBP and (D) 30µM BBP 

demonstrating concentration-dependent alterations to myoD staining.  Dashes represent normal 

chevron shaped somites (A,B) or show disorganized somite boundaries (C).  Lines represent areas 

where myoD expression is not defined. 



 

Fig.4.  Whole mount fluorescent immunohistochemistry using F59 myosin specific antibody at 

24hpf.  (A-D) Zoomed images of the tails at 24hpf in lateral view.  (A) Control, (B) 10µM BBP, 

(C) 20µM BBP and (D) 30µM BBP demonstrating concentration-dependent alterations to 

myofibril arrangement within somites.  Dashed lines represent normal chevron shaped somites 

(A,B) or show disorganized somite boundaries (C,D).  Arrows in A show linear myofibril 

arrangements within somites.  Dotted lines demarcate wavy myofibril arrangement shown by 

arrowhead (B).  Solid arches represent areas where F59 staining is not defined and loss of 

myofibrils is detected. 



 

Fig.5.   fli-1 transgenics and vasculature.  Live lateral images of vasculature as seen by green 

fluorescent protein.  Whole image of control embryo at 24hpf (A) with dashed box denoting area 

of imaging in zoomed view (B).  Increasing concentrations of BBP induced vascular defects 

including truncation of vessel migration (C, asterisks) and branching of ISVs (D,E, brackets) in 

both 10µM and 20µM concentrations.  Vascular staining is absent at the highest BBP 

concentration.  ISV:  intersegmental vessels, DA:  dorsal aorta, DLAV:  dorsal longitudinal 

anastomotic vessel, MCeV:  mid-cerebral vein 



 

Fig. 6.   Cell death in control and BBP treated embryos.  Live images of zoomed tails in lateral 

view at 24hpf (A-D).  Control (A) embryos demonstrate no cell death as marked by acridine orange 

staining.  Dashed lines represent chevron shaped somites.   Increasing concentrations of BBP (B) 

10µM BBP, (C) 20µM BBP and (D) 30µM BBP induce cell death in a concentration-dependent 

manner as noted by fluorescent dots. 
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