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1 Abstract

This paper explores the ”Minimum Sudoku Problem,” that says there must be at

least 17 clues in order for a Sudoku Board to have a unique solution. We prove

uniqueness up to seven clues for 9x9 boards. We also take a look at the different

patterns of 4x4 boards, and how graph theory and the coloring of a graph relates

to solving a Sudoku puzzle.

2 Introduction

When we solve a common Sudoku puzzle, we notice that there are at least 17 clues

given. However, what would happen if we were given less than 17 clues? Would we

be able to come up with a unique and valid board? The answer to this question is

NO! If we are given less than 17 clues, it is impossible to come up with a unique and

valid board. Gary McGuire, Bastian Tugemanny and Gilles Civarioz have already

exhaustively proven this using a specific algorithm and computer program, which

checked all the 6.7 x 1021 possible solutions of a Sudoku board [1]. This paper

will take a look at some of their results in a simpler way by exploring the Sudoku

boards that contain between 1,...,7 clues, and furthermore, proving why there does

not exist a unique solution board for these such cases.
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3 Background

3.1 Definitions

In order to fully understand the terms used in this paper, we will first start off

with some definitions:

Definition 3.1. A Sudoku puzzle is a 9x9 grid, some of whose cells already contain

a digit between 1 and 9. The task is then to complete the grid by filling in the

remaining cells such that each row, each column, and each 3x3 box within the

bolded lines of the larger 9x9 box contains the digits from 1 to 9 exactly once.

Figure 1: Example of an Empty Sudoku Board

Definition 3.2. A complete board is a Sudoku board that satisfies all the rules of

Sudoku.

Definition 3.3. A unique board is a Sudoku board that has only one completion.

Definition 3.4. A valid board is a Sudoku board for which there exists exactly one

completion which follows all the rules of Sudoku.
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Note: Valid Boards can have empty cells.

Definition 3.5. A band is the set of rows 1-3, rows 4-6, or rows 7-9.

Figure 2: Example of a band

Definition 3.6. A stack is the set of columns 1-3, columns, 4-6, or columns 7-9.

Figure 3: Example of a stack

Lemma 3.7. The pigeonhole principle states that if n items are put into m con-

tainers, with n > m, then at least one container must contain more than one

item.[1]
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3.2 History

Gary McGuire of the University College Dublin was the first to show a legitimate

proof of the minimum number of clues, or starting digits, needed to complete a

Sudoku puzzle with a unique solution, which is 17. With the help of his team,

including Bastian Tugemanny and Gilles Civarioz, he was able to test all possible

completed grids for every 16-clue puzzle. However, this took about seven million

CPU hours and a full 365 days to complete at the Irish Centre for High-End Com-

puting in Dublin. His computer used an algorithm that cut down the number of

grids by looking for unavoidable sets, or arrangements of numbers within the com-

pleted puzzle that are interchangeable, and thus could result in multiple solutions.

Then the clues must overlap, or ”hit”, the unavoidable sets which would prevent

the unavoidable sets from causing multiple solutions. This then lead to a smaller

computing task for his team to show that no 16-clue puzzle can hit them all.

Currently, the only way to prove that no unique 16-clue puzzle exists is through

this brute force way. However, many mathematicians are still working on different

algorithms to prove such problem, including Gordon Royle of the University of

western Australia [2].
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4 9x9 Boards

After studying boards with exact numbers of starting clues, we were able to come

up with the following theorems.

Theorem 4.1. If we are given exactly one clue, called n, which is a number from

the set {1,...,9}, on a blank Sudoku board, then there is not a unique solution.

Proof. Let n be a number from the set {1,...,9}that is placed in a random box on

the Sudoku board. We can then create a complete board by filling in the rest of

the boxes. Using proof by contradiction, assume that this complete board, G1, is

unique. Now if we switch the two stacks that n is not in, we can create another

completion, G2,that is different from G1. Therefore, G1 is not unique. Thus, when

we are given exactly one clue, our initial board is not valid.

Theorem 4.2. If we are given up to exactly 5 clues, called n1, n2, n3, n4 and n5,

which are numbers from the set {1,...,9 }, on a blank Sudoku board, then there is

not a unique solution.

Proof. Let n1, n2, n3, n4 and n5 be five numbers from the set {1,...,9}that are

placed in five separate boxes on the Sudoku board. This forms a completion that

we will call G1. Since we have nine columns, at least four of those nine columns

are guaranteed to be empty. Thus by the pigeonhole principle, after we place those

four columns into three stacks we can see that one stack is guaranteed to have at
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least two empty columns. Therefore, we can switch those two empty columns and

create another completion called G2. Therefore, if we are given up to five clues

the initial board is not valid.

As stated in the proof above, this theorem holds for boards that have exactly

five clues or less. Thus, if we did not want to use Theorem 3.1, we can also use

the one stated above to prove that no unique solution exists for a one-clue Sudoku

board. This proof also applies to rows/bands as well.

Theorem 4.3. If we are given up to exactly seven clues, called n1,..., n7, which

are numbers from the set {1,...,9 }, on a blank Sudoku board, then there is not a

unique solution.

Proof. Let n1,...,n7 be seven numbers from the set {1,...,9}that are placed in seven

separate boxes on the Sudoku board. This forms a completion that we will call G1.

Now since there are seven clues given, we know that there are at least two numbers

which do not appear on the initial board and thus can be manipulated. Let us

call these two numbers x and o. Now take the initial board and switch all the x’s

to o’s and all the o’s to x’s to create another completion called G2. Therefore, if

we are given up to seven clues the initial board is not valid.

This theorem can ultimately replace Theorem 3.1 and Theorem 3.2, as it is

able to prove that no unique solution exists for up to seven clue-Sudoku boards.

Unfortunately, I could not prove further than a seven-clue Sudoku board with
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paper and pencil alone. However, I did change my course and took a look into 4x4

boards.

5 4x4 Boards

When we focused on a smaller board, specifically a 4x4 board, it was easier to see

more patterns. First, we must understand the way in which we will be referring to

them. When we talk about i, we are referring to the rows, and j refers to columns.

So for example, if we say we have to switch (1, 2) and (3, 4) we are talking about

the square that is of the first row, second column and the square of the third row,

fourth column. The figure below highlights the squares I am referring to.

Figure 4:

Then when we talk about quadrants, the first quadrant is the upper right 2x2

square, the second is the upper left 2x2 square, the third is the lower left 2x2
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square and the fourth one is the lower right 2x2 square. Figure 5 depicts it below.

Figure 5: Quadrants

In studying various diagonal 4x4 boards, I came up with the following theorem.

Theorem 5.1. If four clues are given along the diagonal of a 4x4 board and they

need not be unique, then the solution board is not unique.

Proof. Let the squares on the diagonals, (1, 1), (2, 2),(3, 3) and (4, 4), contain four

numbers that need not be unique, but allow for at least one completion. That is

some of the numbers can repeat more than once on the diagonal as long as they

are not in the same quadrant. Then we can fill in the rest of the board properly

according to the definition of Sudoku, which creates a completion called G1. Now

we can form another completion that is different from G1, called G2, by using the

same four clues on the diagonal. We can apply the definition of transpose,in which

each column becomes its corresponding row and each row becomes its correspond-
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ing column. We can do this because in the second quadrant of G1 we see that

(1, 1) and (2, 2) are filled with two different numbers, thus in order for it to be a

Sudoku board it must not have any repeats within the quadrant. Furthermore,

(1, 2) and (2, 1) must be different than (1, 1) and (2, 2) because we cannot have

repitition either. However, since we want to form a board different than G1, (1, 2)

and (2, 1) must contain different numbers than what they originally contained in

G1. The only option we have is to switch them in order to not have repitition

and to form a different board than G1. Then we must look at the rows in G1.

Since the rules of Sudoku do not allow for repitition of numbers within rows we

know that when we take the transpose of the first row of G1 and make it the first

column of G2 there must also be no repitition. We continue this for each row and

corresponding column. So we can take the transpose of the second row of G1 and

make it the second column of G2 in which there must be no repitition because

the second row of G1 did not have repitition. Next we can take the transpose of

the third row of G1 and make it the third column of G2 in which there must be

no repitition because the third row of G1 did not have repitition. Lastly, we can

take the transpose of the fourth row of G1 and make it the fourth column of G2

in which there must be no repitition because the fourth row of G1 did not have

repitition. Thus, we see that this forms another completion that differs from our

initial completion. Therefore, the initial board is not valid.
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We notice that this works similarly if we took each column in G1 and made it

into a corresponding row in G2.

Below is an example of what this proof looks like for both unique and non-

unique numbers on the diagonal.

Figure 6: Unique Numbers

We also note, for unique numbers only, that G2 can be formed by switching

(1, 2) and (2, 1), (3, 4) and (4, 3), as well as rotating the numbers in the cells in

quadrants one and three either clockwise or counterclockwise. We choose each

quadrant’s rotational direction by seeing if the rules of Sudoku are violated. For

example, if there is repitition of a number in a row or column by rotating it

clockwise, then we go the other direction counterclockwise.
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Figure 7: Non-Unique Numbers

6 Graph Theory

Now let us look at a Sudoku board as a graph. When a board is complete we can

translate it to a graph in which each vertex corresponds to a cell in the board and

two distinct vertices are adjacent if and only if two cells share a row, column, or n

x n block. Now some more definitions.

Definition 6.1. A graph is a collection of points, called vertices, together with

lines connecting (some of) them, called edges.

Definition 6.2. A proper graph coloring is a way of coloring the vertices of a

graph such that no two adjacent vertices share the same color; this is called a

vertex coloring.

Definition 6.3. A partially colored graph is the original puzzle with open squares,

which means the graph representing it has yet-to-be-colored vertices.

Definition 6.4. A coloring that uses at most k colors is called k-coloring.
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Figure 8: Graph Coloring

Definition 6.5. An independent set to which a cell belongs is to be comprised of

all the cells that include the same entry as the cell. [3]

First we start of with an independent set of the puzzle below:

Figure 9: Independent Set

”1” = [(3, 1)] = {(3, 1), (2, 3), (1, 2), (4, 4)}
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”2” = [(4, 1)] = {(4, 1), (3, 4)}

”3” = [(1, 1)] = {(1, 1), (3, 2), (4, 3)}

”4” = [(2, 1)] = {(2, 1), (1, 4), (3, 3)}

The minimum number of colors required for a proper completion of any partial

coloring is equal to the number of colors present in the partial coloring. For

Sudoku this corresponds to the number of distinct digits appearing in the puzzle.

Therefore, that would mean the puzzle in Figure 10, on the right hand side, needs

at least four digits for a completion, which is the 4-coloring. The maximum number

of colors which may appear in a proper coloring of a partial coloring is equal to the

number of blank cells plus the number of colors already appearing in the graph.

For Sudoku, this means that the puzzle in Figure 10, on the left hand side, needs

a maximum of eight digits, which is the 8-coloring.[3]

Example below:

Figure 10: K-Colorings

We can form the empty cells into a graph in which the vertices are labeled with
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their grid coordinates.

Figure 11:

Furthermore, we can create a partially colored graph, which will have vertices

marked by the color classes that must be avoided.

Figure 12: Partially Colored Graph

Once we have created our partially colored graph, we can then use the method

of deletion and contraction to come up with the chromatic polynomial, X(G, k),
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which is the polynomial whose value at k is the number of proper colorings of a

graph G using at most k colors. When applying deletion-contraction, any vertex

formed by contracting an edge shares the adjacencies, and thus the coloring re-

strictions, of the formerly distinct vertices. Then the restricted color classes of a

contracted-edge vertex correspond to the union of the restrictions of the distinct

vertices. [3]

Now we will show how deletion-contraction works for our original board in

Figure 9:

Figure 13: Deletion-Contraction Method

Depending on how many colors it has to avoid, we can find its chromatic
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Figure 14: Deletion-Contraction Method Continued

polynomial. For our example above, we find that

X(G, k)=(k−3)2(k−4)2-(k−3)3(k−4)2-(k−4)3+(k−4)2+(k−3)(k−4)-(k−4)

X(G, k)=k4 − 16k3 + 50k2 − 80k + 270

In order for any coloring to be consistent with the puzzle, k must be at least as

large as the number of distinct colors already used. [3] Therefore, in our example

it would be k ≤ 4. We see that 4 = 1, which is true because this puzzle has only
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one possible completion based on the rules of Sudoku as seen below:

Figure 15:

7 Conclusion

Although we were not able to accomplish the greatest goal of proving that their is

not a valid initial board up to 16 clues, we were able to get to seven by hand. we

also were able to find some patterns within 4x4 boards and explore graph theory’s

role in Sudoku a little bit. My brain still wonders if there is a way in which we can

ultimately prove the rest without a computer. With more time, I would have liked

to learn more about the chromatic polynomial and its relationship to Sudoku.
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