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Abstract

Origami is the art of folding paper into particular shapes and designs.The

paper will demonstrate the use of unfolded and folded crease patterns and

the circuits these crease patterns create. This paper will explore the criteria

required for flat foldability with a single vertex. The results will show the

need for an even number of creases and a di↵erence of 2 between total

mountain and valley creases. Other results discussed in this paper include

the number of layers at any point must be even and the Kawasaki-Justin

Theorem using the alternating sum of the angles to obtain flat foldability.
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1 Introduction

Origami is the folding of paper into di↵erent shapes and figures. Normal asso-

ciations with the term origami produces ideas of 3D shapes or figures. However

the beginning stages of the folding involved flat folds. A flat fold involves making

several folds in a piece of paper ultimately resulting in the paper lying flat in one

plane. There are many folds that can make a piece of paper fold flat. However,

when using only a single vertex there is certain criteria that is required for a flat

foldability to be obtained. The next section, section 2, explains the specifics of

how to fold the paper, shows base cases, and diagrams of examples of flat single

vertex folds. Section 3 shows and proves certain criteria required to have a piece

of paper fold flat. These include needing an even number of total creases, needing

a certain amount of mountain creases M and valley creases V, and needing M and

V to di↵er by 2. Other results we found are the sum of alternating angles equals

zero and the number of layers at any point on the folded paper results in an even

number of layers.

2 Background

A single sheet of origami paper is colored on one side and white on the other.

Defining the colored side of the paper to be the top then any crease that is convex

will be called a M, mountain crease and any crease that is concave will be called a
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V, valley crease. Figure 1 shows an example of what mountain and valley creases

look like.

Figure 1: Mountain and Valley Creases

The total number of creases C is defined by the sum of the number of mountain

and valley creases (i.e. M+V=C). We define a crease as going from the vertex to

an edge. Creases do not need to go from one edge of the paper to the other. If a

single fold creates a crease that goes from one edge of the paper to the other we

define this to be two creases not one since a crease is said to go from the vertex to

the edge and not from edge to edge. The vertex is defined by the intersection of

two or more creases. In this study we will be only using one vertex. This means

that every crease created must come from a single point on the paper and extend

to the edge of the paper. Folds that involve creases extending from another point

other than the single vertex identified has introduced another vertex and will not

hold for this research.
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2.1 Base cases

A flat piece of paper that has not been folded is the zero case in this study and is

disregarded as a true case. Figure 2 shows an example of what this looks like.

Figure 2: Zero case

Our base case for this study is a piece of paper folded in half once as shown

in Figure 3. There is one vertex in this example. However, we cannot define the

vertex explicitly because in the base case there is an infinitely many number of

vertex points, these points being anywhere along the fold.
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Figure 3: Base Case

So without loss of generality identify a single vertex as the midpoint of our

fold. By identifying a vertex we can now see that the base case has 2 mountain

creases and 0 valley creases.

.

2.2 Diagrams

There are three main ways to look at and diagram single flat vertex folds.

Figure 4 shows an unfolded diagram of what a single vertex flat fold looks

like. For sake of clarity solid lines denote a mountain crease and lines with a dash

pattern denotes a valley crease. Each crease is labeled C1,...,Cn (where order of

labeling does not matter but it used for clarity). The example fold in figure 4

shows a fold with a total of 6 creases, 4 mountain, and 2 valley. We will use this
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example to aid in understanding moving forward in the paper.

Figure 4: Unfolded

Figure 5 shows the paper from Figure 4 completely folded. This view allows

us to see how the unfolded paper looks when it is folded flat and clearly see the

single vertex.

Figure 5: Folded

5
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Figure 6 is a diagram of the circuit created by the folds from the example in

Figure 4. The circuit shows the circular pattern created by the creases of the

folded paper.

Figure 6: Circuit

To better understand how the circuit is created it helps to take a piece of paper

folded flat (as seen in Figure 5) and cutting o↵ the tip or the vertex. This cut can

be seen in Figure 7.

Figure 7: Folded with top cut

6
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Figure 8: Paper view of circuit

Once the top of the paper is cut o↵ we can

now look at an areal view of our fold as seen

in Figure 8. From Figure 8 we can see how we

can trace each layer of paper around until we

make an entire circle. This overview is used

to help construct the circuit in Figure 6. If we

start tracing on the layer of paper closest to the

bottom left hand corner and move to the right

we can construct the exact circuit in Figure 6.

Looking at the vertex a zig-zag circuit pattern

is created from the mountain and valley creases.

The circuit starts at an arbitrary point p and moves around through all the creases

rotating either clockwise or counterclockwise depending on the type of crease. The

circuit shows how we can make our way around the creases of the vertex.

3 Results

In order for a piece of paper to fold flat with only a single vertex there must be a

certain amount and certain types of creases involved.

Theorem 3.1. In a flat single vertex fold the number of M, mountain creases and

V, valley creases di↵er by 2. i.e. |V �M | = 2
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Proof. Consider a single vertex flat fold with C, creases labeled C1,...,Cn. Using

the circular circuit start at a point p at 0 degrees. Without loss of generality begin

moving around the circuit to the right. Every time you encounter a M, mountain

crease rotate -180 degrees (counterclockwise). Every time you encounter a V, valley

crease rotate 180 degrees (clockwise). To get back to the beginning point p a 360

degree rotation must be completed. Thus 180V - 180M= 360. Thus |V �M | = 2.

Therefore, the number of M and V creases di↵ers by 2.

This conclusion is why in Figure 3 of the base we define there to be two moun-

tain creases. To better understand how this proof uses the circuit it will help to

look at our example in Figures 4-8. Take Figure 6 and pick an arbitrary point p.

This is shown in Figure 9.

Figure 9: Circuit example

Starting at that arbitrary point p begin to move to the right of our circuit. The

first crease we encounter is C1. From Figure 4 we know C1 is a mountain crease so

we rotate and turn -180 (counterclockwise) degrees and continue until we encounter

8
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our next crease C6. Again looking at Figure 4 we know C6 is a valley crease so we

rotate and turn 180 (clockwise) and continue until we encounter another crease.

Continuing in this matter we will only be able to complete the circuit and come

back to point p if we encounter each crease once and fully complete the circuit. If

we look at figure 4 we can clearly see how this theorem holds true in our example.

There are 4 mountain creases and 2 valley creases making for a di↵erence of 2.

Theorem 3.1 ia known as the Maekawa-Justin Theorem and an alternate proof

can be found in Project Origami [1].

Theorem 3.2. In a flat single vertex fold the number of total creases, C, must be

even.

Proof. Using Theorem 3.1 we know M-V=2. Thus, M=2+V. Then, we know the

total number of creases, C=M+V.

) C = (2 + V ) + V

) C = 2 + 2V

) C = 2(1 + V )

Therefore, C is an even number. Thus the total number of creases must be even.

Theorem 3.2 is known as the Even Degree Theorem and an alternate proof can

be found in Project Orgiami [1].
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Next we consider the layers formed. By putting our pencil anywhere on the

folded paper the number of layers under the pencil at that point is even. Looking

at our original example from Figure 4 and the circuit that fold created as seen in

Figure 6, we will now put in a perpendicular line L. This can be seen in Figure 10.

Figure 10: Circuit with line L

We will follow along the circuit once again rotating appropriately as outlined

in the proof of Theorem 3.1. From the figure we can see how each encounter of

a crease results in a change in direction, either right to left or left to right thus

causing at least 2 layers of paper. As we can see in Figure 10 any interesting line

L that we pick will always result in an even number of layers. If we look at the

base case in Figure three we can see that no matter where we place our pencil we

end up with 2 layers which is an even number of layers.

We must note though that this does not imply that the number of layers at the

thickest point equals the number of creases. Figure 11 shows an example of a fold

that has 6 creases but at the thickest point of the fold the total number of layers

is 4, which is an even number but does not equal the total number of creases.
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Figure 11: Layers Counterexample

Figure 12 shows the circuit for Figure 11. Here, we can see that if we pick a

point at the thickest part of the paper the total number of layers is 4 which does

not equal the total number of creases which is 6. However, any point we do pick

will result in an even number of layers.

Figure 12: Circuit counterexample

Thus we can only conclude that the number of layers at any point on the folded

paper is even.

Theorem 3.3. The number of layers at any point on the folded paper is even.

Proof. Using the circular path of the circuit draw an arbitrary perpendicular in-

teresting line L. Then every time line L is crossed in the circuit indicates a new

11
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layer of paper. Suppose we start at the intersecting line L on the circuit and move

to the right. This movement to the right indicates one layer of paper. Once a

crease is encountered rotate the appropriate direction as indicated in the proof for

Theorem 3.1. The rotation will lead to a direction shift back to the left causing

line L to be crossed again indicating another layer of paper. Thus every shift to

the right will cause a shift ot the left and vice versa. For every shift to the right

there must be a shift back to the left in order for the circuit to be completed.

Continue around the circuit in this matter until you return to the starting point

and thus will result in an even number of layers at the intersecting line L.

We will now look at the angle’s between each of the creases. Figure 13 shows

the example from Figure 4 with the measurement of each angle calculated simply

by using a protractor to measure each angle. Any paper that is flat foldable with

a single vertex if the alternating sums of the angles is equal to zero.

12
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Figure 13: Unfolded with degree measurements

To better see how the alternating sums of the angles is equal to zero let’s look

at a simpler example. Figure 14 shows an unfolded view of a di↵erent flat foldable

crease pattern.

Figure 14: Unfolded with degree measurements
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Each angle appears in a pair. Thus if we alternate the sum of the angles we

get 82� - 82� + 69� - 69� + 29� - 29� = 0� . This example makes it very easy to

see how when alternating the sums of the angles we will get zero since each angle

gets canceled out by its pair

We may be led to believe that all folds will result in pairs of angles that will

clearly cancel each other out resulting in zero but let’s look back at our original

example in Figure 13. There is only one pair of similar angles in Figure 13. The

other 4 angles do not have pairs.

We will now modify the circuit in Figure 6 to show the angular distance between

each crease. This is shown in Figure 15.

Figure 15: Circuit with angles

From this circuit we can see how our movement this time around the circuit

does not just focus on what direction we are moving but how far we are moving.

The distance between each curve is the measurement of the angle. From this

example we get: 44� - 44� + 66� - 49� + 70� - 87� = 0�

Our base case has two angles both 180�. Thus 180� - 180� = 0
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Theorem 3.4 (Kawasaki-Justin). A set of an even number of creases meeting

at a vertex folds flat if, and only if, the alternating sum of the angles is zero:

✓1 � ✓2 + ✓3 � ✓4 + ...+ ✓n-1 � ✓n = 0 [2]

Proof. Consider a single vertex flat fold with consecutive angles ↵1...↵n Using the

circuit start at a crease and without loss of generality begin moving to the right

paying attention to the angular distance traveled. Each crease that is encountered

results in a reversal in direction leading to alternating sums of the angular distance

traveled. If you continue around the circuit in this manner you will end up back

where you started. Thus each angle will either be added or subtracted.

Working the other way we now assume that the alternating sum of the deter-

mined angles is zero. In order to show that the paper can fold flat we must create

a mountain-valley crease pattern. Working from one cut end work around the

paper and draw alternating mountain and valley creases until the other cut end

is reached. Then beginning at the first cut end begin to fold the paper according

to the creases assigned. This would be like folding the paper accordian style until

you reach the other cut end. Once the paper is folded the two cut ends will line

up to be glued back together assigning a mountain or valley crease to the two cut

ends that now make one crease and results in a paper that is folded flat.

An alternate proof for the Kawasaki-Justin Theorem can be found in Project

Origami [1]. Figures 16 and 17 show how the second part of the Kawasaki-Justin

15

16

Academic Festival, Event 19 [2017]

https://digitalcommons.sacredheart.edu/acadfest/2017/all/19



Theorem works. Figure 16 shows the cut that should be made from the edge of the

paper to the vertex. We can then see the alternating mountain and valley crease

assignment

Figure 16: Unfolded crease pattern with one cut crease

If we then fold the paper according to the alternating crease assignment we

will get the folded paper in Figure 17. Here, we can see how the two cut edges

seamlessly match up on the right side of the folded paper creating a last mountain

crease and folding completely flat.

16

17

Barberi: Single Vertex Flat Foldability

Published by DigitalCommons@SHU, 2017



Figure 17: Folded crease pattern with one cut crease

A fold that could potentially present a counterexample to the Kawasaki-Justin

Theorem is shown in Figure 17.
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Figure 18: Four mountain crease fold

This Figure shows a crease pattern that contains four mountain creases and

four 90� angles. Thus 90� - 90� + 90� - 90� = 0. However, this crease pattern does

not allow the paper to fold flat. We would want to conclude in this case that this is

a counterexample proving the Kawasaki-Justin Theorem inaccurate but this fold

in fact cannot be used as a counterexample. The Kawasaki-Justin Theorem states

that if the alternating sum of the angles is equal to zero than there is a set of

an even number of creases meeting at a vertex folds flat. Since the theorem does

not claim that if the alternating sum of the angles is equal to zero than all crease

patterns will fold flat we cannot use this example as a counterexample.
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