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Application and Interpretation of Simple 
Odds Ratios in Physical Therapy-Related 
Research 
Pamela K. levangie, P7; DSc 

Over the past several decades, physical therapists have demonstrated an increasing 
responsiveness to the profession's obligation to generate objective evidence for examination 
and intervention strategies employed in physical therapy practice. This trend is evident, not 
only in the increasing number of journals that are publishing physical therapy research, but 
in the growing sophistication of research design and analytic options used by investigators. 
At the same time, physical therapists are held increasingly accountable for adopting an 
evidence-based approach to practice. The result for many of us is a growing concern about 
our ability to interpret study findings. The ability to independently weigh the importance to 
our own practice of evidence reported in a study requires that we understand the strengths 
and potential weaknesses of the sample, design, and analyses being used. The odds ratio 
(OR) is one of the analytic measures that has only recently appeared in the physical therapy 
literature. Because the OR may be unfamiliar to physical therapists, the goal of this paper is 
to provide a description of the simple OR and a discussion of its uses, interpretation, and 
potential limitations. / Orthop Sports Phys Ther 20013 1:496-503. 

Key Words: confidence intervals, odds ratios, relative risk analysis, statistical 
analysis 

MEASURES OF ASSOCIATION 

In their simplest form, most clinical questions are related to 1 of 2 
issues: whether a particular outcome differs between groups who re- 
ceive different interventions or whether the outcome is associated with 
some other factor. The research designs and analytic methods used to 
assess differences between groups receiving different interventions may 
be relatively familiar to physical therapists; those used to identify the as- 
sociation between 2 factors and to ascertain the probability that the as- 
sociation is likely to have occurred by chance alone may be less familiar 
to therapists. If, for example, one is interested in the association be- 
tween the time it takes to climb 10 stairs and isokinetic knee extensor 
strength in some patient population, the magnitude of the relationship 
can be determined using statistical procedures, such as the Pearson 
product moment correlation coefficient or the coefficient of determina- 
tion (9). However, these statistics are based on the assumption that the 
outcome variable (eg, the time it takes to climb 10 stairs) is a continu- 
ous variable and that the data meet certain assumptions (ie, normal dis- 
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tribution and equal variance be- 
tween groups). If the variable is 
not a continuous variable but is 
measured on at least an ordinal 
level, the Spearman rank-order 
correlation coefficient can be 
used. Frequently, however, we are 
interested in ascertaining the asso- 
ciation between 2 variables that 
are measured on a nominal scale 
consisting of only 2 levels (re- 
ferred to as dichotomous vari- 
ables). For example, we may be 
interested in whether a risk factor 
is associated with the presence or 
absence of low back pain or 
whether the use of a new mobility 
aid is associated with an increased 
likelihood that a patient will be 
discharged to home as opposed to 
discharged to a supervised care fa- 
cility. For these types of questions, 
the chi-square (x2) statistic is com- 
monly used. 

The probability associated with 
the x2 statistic reflects the likeli- 
hood that the association between 
2 dichotomous (categorical) vari- 
ables is due to chance. When a x2 
value is statistically significant at a 
criterion alpha level of 0.05, we 
can be at least 95% sure that the 
observed association did not occur 
by chance alone. Neither the val- 
ue of the x2 nor the probability 
level, however, estimate the magni- 
tude of association between the 2 
variables. The magnitude of an as- 
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sociation is a key element in understanding the clini- 
cal relevance of the relationship between 2 variables. 
Just as we would be remiss if we simply determined 
that some treatment is statistically better than anoth- 
er without also asking "How much better?" we would 
also be remiss if we only tested whether or not 2 vari- 
ables were related without also asking, "To what de- 
gree?" One measure that permits estimation of the 
magnitude of association between 2 dichotomous 
variables is the odds ratio (OR). 

Estimating Magnitudes of Association Between 
Dichotomous Variables 

The OR and the relative risk (RR) analysis from 
which it evolved are used in epidemiology to assess 
the magnitude of association between a negative ex- 
posure (risk factor) and a disease. We can apply the 
same concept to physical therapy research questions 
when we explore relations, such as the association of 
a risk factor (poor balance) to a "disease" (a fall or 
a hip fracture). The common usage in epidemiology 
and the example just given assume that the outcome 
is a negative (unwanted) event and that the exposure 
may increase the likelihood of the negative event. 
The conceptual framework, however, has broader a p  
plicability. One can also estimate the magnitude of 
association: (1) when the "disease" is a negative out- 
come but the "exposure" is thought to decrease the 
likelihood of that negative outcome, and (2) when 
the "disease" is a positive rather than a negative out- 
come, and the "exposure" is intended to increase 
the likelihood of that outcome. Consider 2 examples: 

EXAMPLE 1. You wish to estimate the association 
of an ergonomically sound workspace (subjects 
have that positive exposure or do not), and what 
you hope to find is a decreased likelihood of a 
negative outcome like carpal tunnel syndrome 
(CTS). Here, CTS (the disease) is a negative out- 
come, but it is anticipated that exposure to an er- 
gonomically sound workspace will decrease the 
likelihood of the disease. 
EXAMPLE 2. You wish to estimate the magnitude 
of the association between a new intervention for 
athletes with anterior cruciate reconstruction 
(treated or untreated) and the likelihood that the 
athlete will "return-to-sport" or not. Here, the pos- 
itive outcome of interest that takes the place of 
disease is return-to-sport (or some other measure 
of success). The exposure that we believe will posi- 
tively influence the outcome of return-to-sport is 
the new intervention component. 

While OR and RR analyses have broad and flexi- 
ble applicability to physical therapy research, an 
understanding of ORs is best developed if we first 

Disease 

C a s e s  (diseased) Controls (not d iseased)  I 

A/A+B (A)(D) 
RR = 6~ = 

CIC+D ( E m  

FIGURE 1. Both an odds ratio ( 6 ~ )  and a relative risk (RR) are calculated 
from values in a 2 x 2 contingency table. A, B, C and D represent the 
number of subjects that fall into each cell. 

Not e x p o s e d  

examine the exposure/disease concept and RR 
analysis from which ORs emerged. We will then 
turn to the physical therapy-related examples and 
research literature to apply that understanding. 

Relative Risk 

C 

Relative risk is a measure of association between 
the presence or absence of disease and the presence 
or absence of exposure to a potential risk factor. 
One typically finds a RR analysis in a cohort study, 
where the exposure for all members of the cohort is 
ascertained, and the cohort is followed forward in 
time to ascertain later disease status. The RR is calcu- 
lated by counting the number of individuals in the 
cohort with and without the exposure and counting 
the number of individuals who develop the disease 
(cases) and who do not develop the disease (noncas- 
es). The resulting frequency data typically are pre- 
sented in a 2 X 2 contingency table as shown in Fig- 
ure 1. Referring to the counts in Figure 1, the RR 
may be computed as: 

D 

Incidence of disease among exposed 
individuals (or A/A < B) 

RR= 
Incidence of disease among unexposed 

individuals (or C / C  D) - 

If the exposure does not affect disease occurrence, 
the incidence of disease will be similar for both ex- 
posed and unexposed individuals; that is, the RR will 
be 1.0 under the null hypothesis of no association 
between exposure and disease. If exposure does in- 
crease the incidence of disease, the RR will be great- 
er than 1.0 because the numerator will be larger 
than the denominator. If the exposure provides some 
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protection from disease, the RR will be less than 1.0 
because the denominator will be less than the nu- 
merator. 

Limitations and Alternatives 

In physical therapy research, as in epidemiologic 
research, it is both timeconsuming and expensive to 
ascertain the exposure in an entire population ( c u  
hort) of interest and then follow that cohort forward 
in time to monitor outcome status. A simpler and 
less expensive alternative is to obtain a sample of 
persons, some with disease (cases) and some without 
disease (controls), and then determine their expu  
sure status either concomitantly or retrospectively. In 
these casecontrol designs, the actual incidence of 
disease cannot be calculated because an entire popu- 
lation of interest (intact cohort) is not available and 
because subjects are selected on the basis of their 
disease status. While the RR cannot be calculated, 
the OR can be calculated and can serve as an esti- 
mate of the RR. A casecontrol design and OR analy- 
sis are particularly useful in providing preliminary ev- 
idence of an association before undertaking a more 
expensive and lengthier cohort or experimental 
study. However, due to differences in the way sub- 
jects are identified for the casecontrol design (ie, 
disease status) compared to the prospective cohort 
design (ie, exposure status), you will see in the next 
section that the wording of the expressions is slightly 
different for the RR than for the OR. 

Odds Ratio 

The OR is a ratio of the odds of exposure in cases 
(those with the disease) and the odds of exposure in 
controls (those without the disease). The 'odds' for 
each group (cases or  controls) is the proportion of 
individuals in the group who had been exposed, di- 
vided by the proportion of those from that group 
who had not been exposed. Referring again to the 2 
x 2 contingency table in Figure 1, the OR mathe- 
matically simplifies as follows: 

A/(A + c)) odds  of exposure among cases 
C/(A + C) 

B'(B + odds  of exposure among controls 
D/(B + D) 

As long as cases and controls have been chosen in- 
dppenctat of exposure status, the OR calculation has 
been shown to be conceptually and mathematically 
similar to the RR1a4 and conceptually can be consid- 
ered equivalent to: 

OR = (Odds of exposure among individuals with 
disease) 

+ (Odds of exposure among individuals 
without disease) 

From this formula, we can see that the OR will be 
1.0 if the odds of exposure are similar among s u b  
jects with and without disease. An OR > 1.0 indi- 
cates an increased likelihood of exposure among dis- 
eased subjects (a positive association between expo- 
sure and disease), while an OR < 1.0 indicates a de- 
creased likelihood of exposure among diseased 
individuals (a negative association between exposure 
and disease). 

It should be noted that the value of the OR o b  
tained from the 2 X 2 contingency table will be 
mathematically the same whether you are estimating 
the risk of exposure given disease or estimating the 
risk of disease given exposure. Conceptually, howev- 
er, the interpretation of the OR should be based on 
study design. In a casecontrol study where ORs must 
be used because a RR cannot be computed, subjects 
are entered into the study based on disease status; 
consequently, the OR estimates the likelihood of ex- 
posure givm disease. If one uses an OR in a prospec- 
tive follow-up study (where either a RR or an OR can 
also be used), subjects are entered into the study 
based on exposure status; consequently, the OR esti- 
mates the likelihood of disease gzvm e~posure.~'.'~ 
The previous examples can be used to illustrate the 
different interpretations. 

EXAMPLE 1. In this example, subjects are chosen 
on the basis of whether they have CTS or not (dis- 
ease), and then their ergonomic environment (ex- 
posure) is ascertained. Consequently, the OR 
would be computed as below and interpreted as 
the likelihood that subjects were exposed to an er- 
gonomically sound workspace given they have CTS. 

Odds of exposure to ergonomically 

OR = sound workspace given CTS 

Odds of exposure to ergonomically 
sound workspace given no CTS 

EXAMPLE 2. In this example, subjects are chosen 
on the basis of whether they received the interven- 
tion or  not (exposure), and then return-tusport 
(disease) status is ascertained. Consequently, the 
OR would be computed as below and interpreted 
as the likelihood that subjects returned to sport 
given they received the intervention. 

Odds of return-to-sport among those 

OR = receiving the new intervention 

Odds of return-to-sport among those 
not receiving the new intervention 

When reading a paper using an OR as a measure 
of association, you must first determine which factor 
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the authors labeled as the disease and which factor 
they labeled as the exposure. This is not always im- 
mediately evident. If the 2 factors are arranged in 
the 2 X 2 format as depicted in the Figure 1, you 
can begin describing the OR in the context of the 
upper left cell, referred to as Cell A. Using Figure 1, 
now consider how our 2 clinical examples would be 
depicted and interpreted. In Example 1, Cell A 
would contain the number of individuals who re- 
ceived the ergonomic intervention and who had 
CTS. In this case, we would hope that the OR would 
be < 1.0 because this would indicate that having 
CTS decreased the likelihood that subjects were in 
an ergonomically sound workspace (noting that s u b  
jects were selected based on CTS status, with expo- 
sure subsequently identified). In Example 2, Cell A 
would contain the number of individuals who re- 
ceived the intervention (the exposure) and who also 
returned to sport (the disease). Consequently, we 
would hope that the OR would be > 1.0 because this 
would indicate that exposure to the new intervention 
increased the likelihood of returning to sport (not- 
ing that subjects were assigned to the intervention or 
no intervention groups and the outcome subsequent- 
ly ascertained). 

Using data from an actual casecontrol study as an- 
other example, the estimated OR for the association 
between low back pain and smoking among patients 
receiving physical therapy was 2.21." Cell A in the 2 
X 2 contingency table in this example would include 
the number of subjects who had low back pain and 
were smokers. Given the hypothesis that smoking 
and low back pain are positively related, an OR > 
1.0 was expected. Because subjects were recruited 
based on low back pain status and smoking status 
was ascertained afterwards, the OR indicates that 
those with low back pain were 2.21 times more likely 
to be smokers than those without low back pain. An- 
other way to express the magnitude of effect is that 
there is a 1.21 or  121% inmeused risk of smoking 
among those with low back pain (2.21 minus the 
null value of 1.0) compared to those without low 
back pain. 

Another finding from the same study was an esti- 
mated OR of 0.89 for the association between men 
with low back pain and daily lifting of r 35 pounds6 
Because Cell A in the 2 X 2 contingency table in- 
cluded men who had low back pain and lifted r 35 
pounds regularly, an OR of < 1.0 indicates an invme 
association between these factors. That is, those with 
low back pain were 0.89 times as likely to regularly 
lift 10-20 pounds compared to subjects who routine- 
ly lifted little or no weight. Alternatively, we could 
state that those with low back pain were 11% less 
likely to regularly lift 2 35 pounds than to regularly 
lift little or no weight (0.81 minus the null value of 
1 .O) . 

95% Confidence Intervals and Odds Ratios 

When an estimated OR (designated by OR) is de- 
rived from a sample, rather than from population 
data, the value is expected to have some degree of 
error associated with it. If the estimate is going to be 
applied to appropriate groups outside the study (ie, 
generalized), the amount of error in the estimate 
must be characterized. One common way to charac- 
terize the amount of error that may exist around the 
OR is to compute a 95% confidence interval (CI) for 
the value. The 95% CI identifies the range of values 
within which the 'true' OR will lie 95% of the time 
given the laws of probability. 

Calculation of 95% Confidence Intervals 

For those who wish to understand confidence in- 
tervals quantitatively, it is easiest to begin with a ge- 
neric formula, such as: X + l .96 (SD,), where X is 
the point estimate (eg, a mean or an OR), SDx is the 
standard deviation of the point estimate, and 1.96 is 
the z score associated with 95% of a normal curve.R 
The SD is an index of the variability (also referred to 
as error) of the point estimate. Because the SD r e p  
resents how "scattered" values are around the point 
estimate, the more scatter there is, the larger the SD 
is. A z score of 1.96 represents slightly less than 2 
SDs from the point estimate, assuming there is a nor- 
mal distribution. Consequently, the 95% CI repre- 
sents values that range from approximately 2 SD less 
than and 2 SD more than the point estimate. The 
larger the SD, the wider the 95% CI and the less 
precisely the OR represents the true population val- 
ue of the RR. 

The computation of a 95% CI for an OR differs 
slightly from the generic formula because the OR is 
based on dichotomous (categorical) disease and ex- 
posure variables and does not meet the assumptions 
upon which the generic 95% CI formula is based (ie, 
an SD cannot be computed for dichotomous vari- 
ables).'" The formula for computing the 95% CI for 
the OR is: 

e x p { l n O ~  + I . ~ ~ ( s D  [ I ~ O R ]  ) ) 

While a complete explanation of the basis of the 
computation is beyond the scope of this paper, the 
calculation of the 95% CI for the OR is based on a 
normalization of the data using a logarithmic (natu- 
ral log or In) transformation. While the log transfor- 
mation (In) and exponentiation (exp) make the for- 
mula look more complicated, the general form of 
95% CI = X + 1.96 (SDx) is retained. 

Interpretation of Odds Ratio and 95% Confidence 
Interval 

In our previous example of the association be- 
tween low back pain and smoking, consider how the 
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95% CI values aid our interpretation of the OR. The 
OR of 2.21 had a corresponding 95% CI of 1.09- 
4.46.'j Typically, the values are reported as using the 
format of OR = 2.21(1.09, 4.46) or OR = 2.21(1.09- 
4.46). The literal interpretation of the results can be 
expressed as follows: the best estimate from these 
data is that those with low back pain were 2.21 times 
more likely to be smokers than those without low 
back pain; however, we can be 95% confident that 
the true likelihood of being a smoker, if not 2.21 
times greater, is at least 1.09 times greater and may 
be as much as 4.46 times greater in those with low 
back pain than in those without low back pain. The 
practical interpretation of these findings might be 
phrased somewhat differently. Specifically, from these 
data low back pain appears to double the likelihood 
of being a smoker; however, it is possible that there 
is no actual increase in likelihood (OR ..L 1.0) or 
that there may be a three-and-a-half-fold increase in 
likelihood of smoking among those with low back 
pain. 

Moreland and Thomson7 used ORs in their meta- 
analysis to summarize the outcomes of several studies 
that assessed the likelihood of improvement on a 
functional test (disease) given exposure to a biofeed- 
back intervention among patients with stroke. The 
summary OR of 2.16 across analyzed studies had a 
95% CI of 0.85-5.79. The OR indicates that patients 
receiving biofeedback were more than twice as likely 
to improve on the functional test, whereas the CI in- 
dicates that we can be 95% sure that the actual value 
may be as low as 0.85 (indicating a 15% reduction in 
success with biofeedback) or as high as a nearly five- 
fold increase in success with biofeedback. While it is 
generally acceptable to say that we are "95% sure 
that the true value lies in the CI," it should be point- 
ed out that it is most correct to say that the true val- 
ue will lie in the calculated interval in 95 out of 100 
repetitions of the study. The 95% CI of 0.85-5.79 is 
fairly wide, indicating that the OR of 2.16 is not very 
precise. As the data in any 2 X 2 contingency table 
(Figure 1) become sparser (1 or more of the fre- 
quencies within the cells have small numbers), the 
OR will have more error because it is based on less 
data and, consequently, the data are likely to be 
more variable under repeated sampling. As the 
amount of error in the OR increases, the CI must be 
widened to ensure with 95% certainty that the true 
value lies in the interval 95% of the time. Conversely, 
a narrower 95% CI indicates a more precise OR be- 
cause we are more certain that the true OR lies ei- 
ther at or close to the estimated OR. 

Odds Ratios, 95% Confidence Interval, and 
Hypothesis Testing 

The 95% CI also can be used to estimate statistical 
probability for hypothesis testing. For the purpose of 

hypothesis testing, the value of 1.0 is the value of the 
OR that is considered to be consistent with the null 
hypothesis. Therefore, if the value of 1.0 for the OR 
lies within the 95% CI, the corresponding Pvalue 
for the OR will be greater than 0.05, and the null hy- 
pothesis of no association must be accepted. To fur- 
ther clarify, if 1.0 falls within the CI, then 1.0 is one 
of the possible estimates that the true value may take 
on with repeated testing, and we cannot be at least 
95% sure that the true value is different than 1.0. 
For example, Moreland and Thomson7 calculated an 
OR and 95% CI of 2.16 (0.82, 5.79). Thus, we can 
be 95% sure that the true value lies within the inter- 
val, but because the interval includes the possibility 
of no association, we cannot be sure that the true 
value is something other than 1.0. When Moreland 
and Thomson tested for significance, they deter- 
mined the corresponding Pvalue for the OR to be 
0.07. Because 0.07 is not less than or equal to the 
criterion level of 0.05 that is always implicit in a 95% 
CI, the null hypothesis (no association) must be ac- 
cepted. We cannot be 95% confident that biofeed- 
back resulted in improvement as measured on func- 
tional tests. 

Gadsby and Flowerdew2 conducted a Cochrane- 
type review of the available evidence on transcuta- 
neous electrical nerve stimulation and acupuncture- 
like transcutaneous electrical nerve stimulation (AL 
TENS) for subjects with chronic back pain using im- 
provement in pain as the outcome. Because ALTENS 
was the exposure and improvement in pain was the 
"disease," an OR > 1.0 was anticipated. They calcu- 
lated an OR and 95% CI of 7.22 (2.60, 20.01). Given 
the data and the fact that outcome ascertainment fol- 
lowed exposure ascertainment, the interpretation is 
that ALTENS is 7.22 times more likely than a place- 
bo to result in an improvement in pain. In addition, 
we can be 95% certain that the true effect of A L  
TENS is no less than 2.6 times more likely to im- 
prove pain or may be as much as 20 times more like- 
ly to improve pain than a placebo. Although the 
95% CI is quite wide (indicating an imprecise OR), 
the 1.0 value does not lie within the 95% CI for the 
OR. Thus, the corresponding Pvalue will be less 
than 0.05, and the null hypothesis can be rejected. 

If you assessed the OR based exclusively on wheth- 
er the null value were in the 95% CI, there would be 
no benefit to 95% CIS over Pvalues alone. You 
would simply accept or reject the OR. The added val- 
ue of the 95% CI is in the information gained about 
the precision of the estimated OR, especially when 
the estimate is not statistically significant ( P  > 0.05) 
but is of potential clinical importance. In Moreland 
and Thomson's study,7 the OR of 2.16 may indicate a 
clinically relevant advantage to biofeedback over con- 
ventional therapy alone. While that interpretation 
must be weighted by other considerations in that 
study (and in the contributing studies), it might be 
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short-sighted to rule out biofeedback as an adjunct 
treatment for stroke patients because the finding was 
not "statistically significant" (the null value was in 
the 95% CI of 0.82-5.79). By using the 95% CI, with- 
out regard to accepting or  rejecting the null, we can 
say that the worst case in repeated testing would 
mean an 18% reduction (1.0 - 0.82 = 0.18) in suc- 
cessful outcome with use of biofeedback. Alternative- 
ly, it is possible that the actual answer will be as 
much as a 479% increase in successful outcomes 
among those using biofeedback (5.79 - 1.0) convert- 
ed to percent. Understanding this range of outcomes 
seems preferable to dismissing biofeedback based on 
significance testing alone. 

Limitations to Use of Simple Odds Ratios 

The OR is one of a very limited number of o p  
tions that will allow assessment of a magnitude of as- 
sociation when either the outcome of interest is (or 
must be treated as) a dichotomous variable. The out- 
come may be naturally dichotomous (eg, discharged 
to home or not), but it may also make conceptual 
sense to dichotomize a continuous (eg, improved or  
not based on a 0-100 visual pain scale) or ordinal 
variable (eg, improved or not based on a functional 
score). As we saw for the outcome, the exposure may 
be naturally dichotomous (eg, delivery of an inter- 
vention or not). Often, however, the exposure can be 
measured as continuous or ordinal data. Logistic re- 
gression can be used to obtain an OR and a 95% CI 
to estimate the magnitude of association between a 
continuous exposure and a dichotomous outcome. 
However, this analytic method is unfamiliar, concep 
tually complex, and includes an assumption that the 
continuous exposure variable is exponentially related 
to the odds of the disease or outcome (which is fre- 
quently not the case).I0 In this article, we will contin- 
ue to emphasize calculation of simple ORs because 
of their relative simplicity; however, use of simple 
ORs requires that exposure data measured on a con- 
tinuous scale be reduced to dichotomous data to 
meet the requirements of the 2 X 2 contingency ta- 
ble. In other words, there are trade-offs to consider 
in using both a logistic regression approach and a 
contingency table approach to calculating ORs when 
exposure data are continuous. While the issues with 
logistic regression are beyond the scope of this pa- 
per, we will look more closely at the issues involved 
in reducing continuous exposure variables too di- 
chotomous to fit a 2 X 2 contingency table. 

Reducing Continuous Variables to Dichotomous 
Variables 

When either the outcome or the exposure data 
are reduced from categorical or  continuous levels to 
dichotomous data so they fit in a 2 X 2 contingency 

table as a preliminary step to computing a simple 
OR, some potential problems emerge. First, the cut- 
point for dichotomizing the variable is generally 
somewhat arbitrary (and arguable). Second, informa- 
tion is lost (is less precise) when the natural variabil- 
ity of the data is reduced into simple categories of 
positive or negative outcome and exposed or not ex- 
posed. The OR model implies an abrupt change in 
risk at the estimated cut-point, with the risk being 
constant within the defined categories.'* This, of 
course, is rarely true. 

Several approaches have been proposed that at- 
tempt to minimize the loss of information and bias 
toward the null that occur with dichotomizing an ex- 
posure variable in an OR analysis. However, once the 
decision is made to dichotomize data, the loss of in- 
formation that occurs must be acknowledged as a 
limitation of the analysis because it cannot be direct- 
ly controlled or offset. The strategy used to reduce a 
variable to a dichotomy is important to both the out- 
come of the analysis and to the reader when attempt- 
ing to independently evaluate the clinical meaning- 
fulness of the ORs estimated in the study. 

Categorization of Exposure Variables 

One of the simplest strategies used to minimize 
the loss of information that accompanies dichotomi- 
zation of a continuous exposure variable is categori- 
zation of the exposure variable into more than 2 lev- 
els (or categories) of exposure. Rather than having 
just 2 categories, such as exposed or not exposed, we 
could have a set of categories, such as unexposed, 
moderately exposed, and very exposed. This strategy 
essentially reduces the continuous variable to an or- 
dinal rather than a dichotomous variable. We would 
expect the approach to yield more homogeneity 
within each category than would be likely if only 2 
categories of the exposure were used. The strategy 
works particularly well if the sample size supports 
enough categories to produce narrow exposure rang- 
es of biologically homogenous response  group^.^ As 
the number of categories is increased, the number of 
subjects in each category tends to decrease. As a re- 
sult of the smaller number of subjects in each cate- 
gory, there will be tendency for the 95% CIS around 
the 0Rs to become wider because the error of the 
estimate is larger for smaller sample sizes. 

When data from an exposure variable is catege 
rized into multiple levels, several 0 R s  are calculated 
to assess the association of the exposure with the out- 
come. The lowest category of exposure is typically 
used as the referent category. The referent category 
may be absence of exposure (eg, nonsmokers or 
those with no intervention). The referent may also 
be the lowest category of the exposure in situations 
where absence of exposure is conceptually impossible 
(eg, age or activity level). Two or more 0Rs are then 
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exposure exposure exposure 

Minimal 
exposure 1 

FIGURE 2. Categorization of a continuous exposure variable into several 
levels allows estimation of an odds ratio between exposure and disease 
for each higher level of exposure with the lowest level of exposure (ref- 
erent). 

calculated by comparing each of the higher catego- 
ries of exposure to the referent category (Figure 2). 

When 2 or more 0Rs are calculated for increasing 
levels of exposure, you can look for trends in the cat- 
egory-specific 0Rs (oR,-~R, in Figure 2) that would 
indicate a dose-response relation between the out- 
come and the exposure (eg, there is an increasing 
likelihood of the expected outcome with increased 
exposure). Unlike ORs resulting from logistic model- 
ing of a continuous exposure variable, this approach 
can be used to examine the linearity of the associa- 
tion across levels of exposure. For example, if, in- 
stead of increasing across all levels of exposure, the 
association increases across 2 levels of exposure but 
plateaus or  decreases across others, the association is 
described as nonlinear rather than linear. 

As is true for dichotomizing data, categorizing the 
exposure variable still requires specification of values 
for cut-points, and those values are likely to be some- 
what arbitrary and arguable. A common strategy is to 
use quartiles or quintiles as the cut-points between 
categories.I4 If 4 exposure categories are developed 
based on quartiles, 3 0Rs will result because the low- 
est quartile will be the referent for each of the 3 
higher levels of exposure. While use of strategies like 
quartiles or quintiles reduces some of the arbitrari- 
ness of determining cut-points for the exposure data, 
subjects in the study must be sufficient in number 
and distribution to have subjects in each cell of each 
of the 2 X 2 tables, or the OR and 95% CI computa- 
tions cannot be done. Again, it is particularly impor- 
tant that the rationale for any cut-point(s) be speci- 

fied by the authors so that the reader can evaluate 
the strategy. 

For an example of how an exposure variable can 
be categorized, let's consider estimation of the associ- 
ation between body mass index (BMI) as the expo- 
sure and low back pain as the outcome.Vf we di- 
chotomized BMI, Cell A in the 2 X 2 contingency ta- 
ble would indicate the number of individuals with 
high BMI and low back pain. Consequently, an OR 
> 1.0 would indicate that low back pain is associated 
with an increased likelihood of high BMI. We would 
ascertain the self-reported height and weight in a 
sample of physical therapy patients being treated ei- 
ther for low back pain or for an upper extremity 
problem."MI would be calculated for each subject, 
but we would be concerned that dichotomizing the 
data would "wash out" a possible positive association 
between BMI and low back pain because there would 
be a fairly broad range of BMIs represented in both 
the 'low' and 'high' BMI group. While logistic regres- 
sion is an option, we would have to assume that 
there is an exponential relationship between BMI 
and the odds of low back pain, an assumption that 
we would not be comfortable making. Consequently, 
we would ascertain the quartile distribution for BMI 
values for patients with and without low back pain as 
a preliminary step to computing simple ORs within 
levels of BMI. Each of the categories would include 
individuals who are relatively similar in BMI, or at 
least more similar than if the data had been dichoto- 
mized. The category with the lowest values is used as 
the referent because this is the group that is kmt 
likely to be an increased risk for low back pain based 
on BMI. The referent BMI values are indicated at 
the bottom row in each of the 2 X 2 contingency ta- 
bles in Figure 3. The ranges for the moderate, high, 
and highest levels of BMI are found in the upper 
row of each of the 3 tables. The 0Rs and 95% CIS 
comparing each of the upper quartiles (with increas- 
ing magnitudes of overweight) to the lowest quartile 
are calculated and reported in Figure 3. Because the 
upper 3 quartiles are compared to the referent sepa- 
rately, the estimates are less likely to be biased by 
mixing people with different levels of overweight 
and different potential risks. The 3 estimates also al- 
low assessment of the association between BMI and 

E LBP NoLBP LBP No  LBP LBP NoLBP 

X 
al u 
t 

C 2 l . S  

9 

FIGURE 3. Association of low back pain (LBP) with levels of self-reported body mass index: frequencies and estimated odds ratios ( 6 ~ s )  with 95% 
confidence intervals. 
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low back pain across increasing levels of exposure 
without making any assumptions about their relation- 
ship to each other. As can be seen, the ORS show 
some evidence of a linear trend for increased risk of 
low back pain with increasing levels of BMI. Howev- 
er, the 95% CIS are wide (the estimates are not very 
precise), and each of the CIS includes the null value 
of 1.0 (the estimates are not significant at the P < 
0.05 level). These data are not, therefore, conclusive 
of an association between BMI and low back pain, al- 
though the importance of the trend can be left to in- 
dividual judgment based on what the reader believes 
to be the strengths and weaknesses of the analyses. 
There are other strategies beyond the scope of this 
paper that permit further analysis of the association 
between an outcome and an exposure when ORs are 
used. These include methods for assessing effect 
modification (where the OR differs across categories 
of a covariate) and for assessing confounding (where 
the potential effects of a confounding covariate on 
the OR can be ascertained), either by performing 
stratified analyses or by using logistic regression. The 
interested reader may pursue these more complex 
methods and the use of logistic regression in text- 
books of epidemi~logy."~- l~*~~ 

CONCLUSION 

Simple ORs and 95% CIS can be used when you 
wish to find an estimate of the magnitude of associa- 
tion between a dichotomous outcome variable and a 
dichotomous exposure variable. Given the range of 
applications for the OR, physical therapists can antic- 
ipate seeing such analyses increasingly in the physical 
therapy research literature. It is important, therefore, 
that the practitioners develop sufficient understand- 
ing of the application, interpretation, and limitations 
of the method so that they have some ability to inde- 

pendently assess the weight of evidence presented in 
such research. 
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