
Sacred Heart University
DigitalCommons@SHU

School of Computing Faculty Publications School of Computing

1-1995

Learning via Queries with Teams and Anomalies
William I. Gasarch

Efim Kinber
Sacred Heart University, kinbere@sacredheart.edu

Mark G. Pleszkoch

Carl H. Smith

Thomas Zeugmann

Follow this and additional works at: http://digitalcommons.sacredheart.edu/computersci_fac

Part of the Computer Sciences Commons

This Peer-Reviewed Article is brought to you for free and open access by the School of Computing at DigitalCommons@SHU. It has been accepted for
inclusion in School of Computing Faculty Publications by an authorized administrator of DigitalCommons@SHU. For more information, please
contact ferribyp@sacredheart.edu.

Recommended Citation
Gasarch, William I. et al. "Learning via Queries with Teams and Anomalies." Fundamenta Informaticae 23.1 (1995): 67-89.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sacred Heart University: DigitalCommons@SHU

https://core.ac.uk/display/231062706?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.sacredheart.edu/?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.sacredheart.edu/?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.sacredheart.edu?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.sacredheart.edu/computersci_fac?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.sacredheart.edu/computersci?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.sacredheart.edu/computersci_fac?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ferribyp@sacredheart.edu


Learning via Queries

with Teams and Anomalies

by

William I. Gasarch

1

Department of Computer Science

Institute for Advanced Computer Studies

The University of Maryland

College Park Maryland, 20742 USA

E�m B. Kinber

Computing Centre

Latvian State University

Riga, USSR

Mark G. Pleszkoch

Department of Computer Science

The University of Maryland

College Park Maryland, 20742 USA

and

IBM Application Solutions Division

Gaithersburg Maryland, USA

Carl H. Smith

2

Department of Computer Science

Institute for Advanced Computer Studies

The University of Maryland

College Park Maryland, 20742 USA

Thomas Zeugmann

Department of Mathematics

Humboldt University

Berlin GDR

1

Supported, in part, by National Science Foundation Grant CCR 8803641.

2

Supported, in part, by National Science Foundation Grant CCR 8701104.



I. Introduction

Most work in the �eld of inductive inference regards the learning machine to be a

passive recipient of data [5,6]. In [13] the passive approach was compared to an active

form of learning where the machine is allowed to ask questions. In this paper we continue

the study of machines that ask questions by comparing such machines to teams of passive

machines [26]. This yields, via work of Pitt and Smith [19], a comparison of active learning

with probabilistic learning [18]. Also considered are query inference machines that learn

an approximation of what is desired. The approximation di�ers from the desired result

in �nitely many anomalous places. Passive approximate inductive inference has been

extensively investigated [8,10,11,21,27].

The basic paradigm of asking questions has been applied to DNF formulas [1], CNF

formulas [4], � formulas [15], context-free grammars [2], deterministic one-counter au-

tomata [7], deterministic bottom up tree automata [23], deterministic skeletal automata

[22], deterministic languages [16], and prolog programs [24]. Valiant also considered the

issue briey. [28]. For a nice summary of these results see [3].

Several intuitions about the use of queries for learning are implied by our results.

Firstly, active learning machines can be simulated by a team of passive learning machines,

but (often) not conversely. Secondly, the power of queries seems to be incomparable to that

of allowing anomalies or BC-learning. Thirdly, there is often an in�nite hierarchy of active

learning based on mind changes, and another in�nite hierarchy based on anomalies. Several

of our results pertain to the quanti�er structure of questions asked by learning machines.

One of our results indicates that asking questions with more alternations of quanti�ers

leads to an increase in learning potential. Furthermore, the number of quanti�ers is an

important factor.

II. Notation and De�nitions

Throughout this paper, '

0

, '

1

, '

2

, : : : denotes an acceptable programming system

[17], also known as a G�odel numbering of the partial recursive functions [20]. We will

1



say that program i computes the function '

i

. An (standard, passive) inductive inference

machine (IIM) is a total algorithmic device that takes as input the graph of a recursive

function (an ordered pair at a time) and outputs (from time to time) programs intended to

compute the function whose graph serves as input [8,14]. (see Figure 1) An IIM M learns

a recursive function f , if, when M is given the graph of f as input, the resultant sequence

of outputs converges (after some point there are no more mind changes) to a program that

computes f . In this case we write f 2 EX(M). The class EX is the collection of all sets

EX(M) (or subsets thereof) of functions learned by an IIM. If convergence is achieved

after only c changes of conjecture we write f 2 EX

c

(M), for c 2 N, where N denotes the

natural numbers. The class of sets of functions identi�able by IIMs restricted to c mind

changes is denoted by EX

c

.

f(0); f(1); f (2) : : : �!

IIM

�! p

0

; p

1

; p

2

; : : :

Figure 1.

The convergence criterion discussed above was syntactic in that convergence to a

particular program was required. There is also a semantic convergence criterion whereby

convergence is to a function. Speci�cally, we say that an IIM semantically converges i�

almost all of the programs output compute the same function. In other words, convergence

is to a sequence of (possibly syntactically di�erent) programs all computing the same

function. The resulting notion of learning is called BC for behaviorally correct.

In some cases, convergence (in either sense) to a program computing the input function

exactly may not be required. Perhaps an approximation will do. If an IIM M , on input

f , converges to a program that computes f everywhere, except on perhaps at most a

anomalous inputs, we say that f 2 EX

a

(M). The class EX

a

is de�ned analogously to the

de�nition of the class EX. A comparison of the classes EX

a

c

arising from the consideration

of various values for a and c appears in [10].

2



A collection, or team, of inductive inference machines, M

1

, M

2

, : : :, M

n

, infers a

function f i� there is an i with 1 � i � n such that f 2 EX(M

i

). In this case we write

f 2 EX(M

1

; : : : ;M

n

). A set S of recursive functions is learned by the team i� each f 2 S

is learned by some member of the team. Di�erent member of the team will learn di�erent

members of S. If the team M

1

, M

2

, : : :, M

n

learns the set S, we write S 2 [1; n]EX. The

class [1; n]EX is the collection of sets S that are inferrible by some team of n inductive

inference machines. The de�nition of [m;n]EX, where m out of the n inference machines

succeed can be found in [19]. The de�nition of the classes [m;n]EX

c

is analogous.

A query inference machine (QIM) is an algorithmic device that asks a teacher questions

about some unknown function, and while doing so, outputs programs. The questions are

formulated in some language L. Formally, a QIM is a total algorithmic device which, if

the input is a string of bits

~

b, corresponding to the answers to previous queries, outputs

an ordered pair consisting of a (possibly null) program e, called a guess, and a question  .

(See Figure 2) De�ne two functions g (guess) and q (query) such that ifM(

~

b) = (p;  ) then

g(M(

~

b)) = p and q(M(

~

b)) =  . Without loss of generality, we adopt the conventions that

all questions are assumed to be in prenex normal form (quanti�ers followed by a quanti�er-

free formula, called the matrix of the formula) and that questions containing quanti�ers

are assumed to begin with an existential quanti�er. A QIM M learns a recursive function

f if, when the teacher answers M 's questions about f truthfully, the sequence of output

programs converges to a program that computes f . In this case, we write f 2 QEX[L](M).

For a �xed language L, the classQEX[L] is the collection of all sets QEX[L](M) for a QIM

M . QEX

c

[L], QEX

?

[L] and QEX

?

c

[L] are de�ned similarly. Teams of query machines

are de�ned analogously.

QIM

L

�!  

1

;  

2

; : : : (questions formulated in L)

 � b

1

; b

2

; : : : (answers)

�! p

1

; p

2

; : : : (guesses)

Figure 2.

3



All the query languages that we will consider allow the use of quanti�ers. Restricting

the applications of quanti�ers is a technique that we will use to regulate the expressive

power of a query language. Of concern to us is the alternations between blocks of existential

and universal quanti�ers, as well as the total number of quanti�ers. Suppose that f 2

QEX[L](M) for someM and L. If M only asks quanti�er-free questions, then we will say

that f 2 Q

0

EX[L](M). If M only asks questions with existential quanti�ers, then we will

say that f 2 Q

1

EX[L](M). In general, ifM 's questions begin with an existential quanti�er

and involve d � 0 alternations between blocks of universal and existential quanti�ers, then

we say that f 2 Q

d+1

EX[L](M). Furthermore, if there are at most k quanti�ers total

in all blocks we say that f 2 Q

k

d+1

EX[L](M). The classes Q

k

d

EX[L] and Q

k

d

EX

c

[L] are

de�ned analogously.

Now we introduce the languages that will be used. Every language allows the use

of ^, :, =, 8, 9, symbols for the natural numbers (members of N), variables that range

over N, and a single function symbol F which will be used to represent the function being

learned. Inclusion of these symbols in every language will be implicit. The base language

L contains only these symbols. If L has auxiliary symbols, then L is denoted just by these

symbols. For example, the language that has auxiliary symbols for plus and less than is

denoted by [+; <]. The language that has auxiliary symbols for plus and times is denoted

by [+;�]. The language with extra symbols for successor and less than is denoted by

[S;<], where S indicates the symbol for the successor operation. Such languages have \�"

as a symbol for \element of." The symbol \?" will be used to denote an arbitrary language

that includes all the symbols common to all the languages we consider and some (possibly

empty) subset of recursive operators, e.g. +, <, � and S. Such a language will be called

reasonable.

The following de�nitions are necessitated by our proof techniques. Suppose f is a

function and n is a positive integer. For j < n, the j

th

n-ply is the function �x[f(n �x+ j)].

Clearly, any function can be determined from its n-plys. For any function f , let I(f)

4



denote the set of values y for which there are in�nitely many x's with f(x) = y. For two

functions f and g, we write f =

?

g to mean that f(x) = g(x) for all but �nitely many

x's. If f(x) = g(x) except for at most a values of x, then we write f =

a

g. If f(x) = g(x)

except for exactly a values of x, then we write f =

=a

g.

III. Queries versus Teams

In this section we examine the simulation of active learning machines by teams of

passive learning machines. Pitt [18] found an equvalence between teams of passive learning

machines and probabilistic learning machines. Various trade o�s with probability and other

parameters of learning were investigated in [19].

Theorem 1. Q

d+1

EX

0

[?] � Q

d

EX[?].

Proof: The d = 0 case is proven in [13]. Suppose S 2 Q

d+1

EX

0

[?] as witnessed by the QIM

M . We describe the operation of a QIM M

0

showing S 2 Q

d

EX[?]. M

0

simulates M as

follows. IfM asks a question with at most d blocks of quanti�ers,M

0

ask the same question

and gives the answer to M . M

0

also outputs any conjecture produced by M during the

simulation. After M produces its only conjecture, M

0

can stop the simulation. Suppose

M asks a question  with d+1 blocks of quanti�ers. To reduce notational complexity, we

assume that the leftmost quanti�er block contains a single quanti�er. (The general case

is similar.) Hence,  looks like 9x8 : : : �(x; y

1

; : : : ; y

n

) for some n and quanti�er free �.

Consider the following questions (with d blocks of quanti�ers).

 

0

= �(0; y

1

; : : : ; y

n

)

 

1

= �(1; y

1

; : : : ; y

n

)

.

.

.

If the correct answer to  is \NO", then the correct answer to each of  

0

,  

1

, : : : is also

\NO". However, if the correct answer of  is \YES," then there will be a j such that the

correct answer to  

j

is \YES." In simulatingM , M

0

answers  as NO and simultaneously

5



continues the simulation and while doing so asks  

0

,  

1

, : : : until, if ever a j is found such

that  

j

is answered \YES." If such a j is found, the simulation of M is restarted from the

beginning, only this time when M asks  , M

0

provides the answer \YES."

During the course of M

0

's operation, it may be working on several questions  at one

time. The number of such questions will be �nite asM can only ask �nitely many questions

before outputting its only conjecture. Hence, M

0

's simulation of M can be restarted only

�nitely often. In the case  starts with a block of universal quanti�ers, the roles of \YES"

and \NO" are reversed. Blocks of more than one quanti�er are handled by considering

vectors of values instead of x in the  

i

's.

X

Theorem 2. 8c; d 2 N, Q

d+1

EX

c

[?] � [1; c+ 1]Q

d

EX[?].

Proof: Let c and d be given. Suppose M is a QIM making at most c mindchanges that

witnesses S 2 Q

d+1

EX

c

[?]. M is simulated by a team M

0

, : : :, M

c

where M

i

(0 � i �

c) simulates M asking the same questions and providing M with the correct answers.

However, instead of faithfully reproducing M 's conjectures, M

i

ignores all but the i+ 1

st

conjecture which is used as M

i

's only output.

X

The question of whether or not the inclusion of Theorem 2 is proper naturally arises.

The answer depends on the query language.

Theorem 3. For all c 2 N, Q

1

EX

c

[S;<] � [1; c+ 1]EX.

Proof: By the d = 0 case of Theorem 2, Q

1

EX

c

[S;<] � [1; c+ 1]EX and by Theorem 10

of [13] EX �QEX

c

[S;<] 6= ;. Hence, the theorem follows.

X

Next, we examine the language [+; <]. Not only do we compare the appropriate query

inference classes with team inference classes, we are also able to answer a problem left open

in [13]. The solution to this problem yields another level in a suspected in�nite hierarchy

based on alternation of quanti�ers in the query language.

6



Theorem 4. There is a T 2 (EX

1

0

\ Q

2

EX

1

[<])�Q

1

EX[+; <].

Proof: Recall that I(f) denotes the set of values that appear in�nitely often in the range

of f . Let T be de�ned as follows:

T =ff '

f(0)

= f and I(f) = ;g[

ff '

f(0)

=

=1

f; I(f) = feg; and

8x > �z[f(z) = e]; '

f(0)

(x) = f(x) and

8x; y > �z[f(z) = e]; (f(x) 6= e and x 6= y)) f(x) 6= f(y)g:

T 2 EX

1

0

is witnessed by the IIM that always outputs as its only conjecture the value

f(0). The QIM that witnesses that T 2 Q

2

EX

1

[<] �rst �nds the value of f(0) by asking

F(0) = 0? F(0) = 1? � � �. The QIM then outputs f(0). Then ask the following questions

until (if ever) the unique e 2 I(f) is found:

8x9y[y > x and F(y) = 0]?

8x9y[y > x and F(y) = 1]?

.

.

.

A \YES" answer indicates that I(f) is not empty and an appropriate patched version of

program f(0) is output.

The proof that T 62 Q

1

EX[+; <] is a highly nontrivial modi�cation of the proof that

the set of recursive functions is not in Q

1

EX[+; <] from [13] (Theorem 13). Let M be a

QIM that asks questions using the query language [+; <] restricted to sentences with only

existential quanti�ers. We construct a recursive function f 2 T in e�ective stages of �nite

extension. The function f will be computed by program e described below, e.g. f = '

e

.

The �nite amount of f determined prior to stage s is denoted by f

s

. The least number

not in the domain of f

s

is denoted by x

s

. By way of initialization, by implicit use of the

recursion theorem, f

0

= f(0; e)g. The function f is determined by the execution of the

following stages in their natural order.

7



Begin stage s. Suppose that so far in the construction M has asked m questions and

received answers b

1

, b

2

, : : :, b

m

. Let j = g(M(b

1

b

2

: : : b

m

)), M 's most recent guess. As

in other diagonalization arguments in inductive inference, we simultaneously look to make

the current guess wrong or force a mind change. In addition we extend the function except

at the point we are trying to diagonalize against. If stage s does not terminate, then f

will be de�ned everywhere except on a single point. In this case, a patched version of f

will su�ce to obtain the desired result.

The search for an extension forcing a mind change will involve M asking more ques-

tions. Several questions may have to be answered during stage s before an extension

forcing a mind change will be found. This will also involve �xing certain extensions to f

s

that must be used in the event that the mind change is not found before a diagonalization

point is found. Let

~

b = hb

1

; : : : ; b

m

i. This vector of responses will be lengthened during

stage s. To reduce notation, the various, larger and larger, vectors will not be indexed.

Consequently,

~

b always denotes the current vector. Similarly, let � denote the current

�xed portion of f . Initialize � = f

s

so that it will always be the case that f

s

� � � f

s+1

.

Simultaneously execute the following two substages.

Substage 1. Diagonalize against the current guess. If '

j

(x

s

) converges before a

mind change is found in substage 2, then set f

s+1

= � [ f(x

s

; 1

:

'

j

(x

s

))g and

go to stage s+ 1.

Substage 2. Force a mind change or extend f

s

. Let y be the least number not in

the range �. In trying to answer questions, we will assume f(x

s

) = y, although

f(x

s

) will remain unde�ned. Let  = q(M(

~

b)), M 's most recent query. De�ne

 

0

=  and  

1

= : . For i 2 f0; 1g, use Lemma 4 of [13] to e�ectively �nd out

if there is a �nite sequence �

i

(with no repeated values) extending � [ f(x

s

; y)g

such that any function extending �

i

will make  

i

true. By Lemma 3 of [13], for

some i 2 f0; 1g, �

i

exists.

If there exists i 2 f0; 1g such that g(M(

~

bi)) 6= j and �

i

exists

8



then choose the least such i and the least such �

i

and set f

s+1

= �

i

,

~

b =

~

bi,

and go to stage s+ 1, (this forces M to change its mind at stage s + 1)

else let i be the least number such that �

i

exists, set

~

b =

~

bi, � = � [ �

i

[

f(z; y)g � f(x

s

; y)g, for z the least number not in the domain of �

i

, and

repeat substage 2 for these new values of � and

~

b.

End stage s.

If every stage of the construction terminates, then f(x) is de�ned for all x and I(f) =

;, hence '

f(0)

= f , so f 2 T . If M converges to j when trying to infer f , then, by the

failure of substage 2 to extend f past some point, '

e

(since it is extended by substage 1

in�nitely often) is wrong on in�nitely many arguments. Hence, f 62 Q

1

EX[+; <](M).

If some stage s never terminates, then substage 2 is executed in�nitely often. Con-

sequently, f eventually becomes de�ned on every argument except x

s

. We show that M

does not infer h = f [ f(x

s

; y)g. Let

~

b denote the value of

~

b on entry into stage s and let

j = g(M(

~

b)). By the failure of substage 2 to terminate stage s, when M tries to infer h, it

will converge to j. By the failure of substage 1 to terminate stage s, '

j

(x

s

) is unde�ned.

Hence, h 62 Q

1

EX[+; <](M).

X

The class EX

1

0

is very restrictive. As a consequence of known inclusions [10,26], the

set T from Theorem 4 is also contained in the class [1; 2]EX, and all its supersets. A

question that naturally arises is whether or not Theorem 4 can be modi�ed to consider the

class Q

2

EX[ ] instead of Q

2

EX

1

[<].

Theorem 5. Q

2

EX[ ]�Q

1

EX[+; <] 6= ;.

Proof: Let

S =ff '

f(0)

= f and :(9k; l8x > l 9y

1

; : : : ; y

k

)f(x) = f(y

1

) = : : : = f(y

k

)g

[ ff '

f(0)

= f and (9k; l8x > l 9y

1

; : : : ; y

k

)f(x) = f(y

1

) = : : : = f(y

k

) and '

l

= f for l leastg

The theorem follows using techniques similar to the proof of Theorem 4.

X

9



Corollary 6. For all c 2 N, Q

1

EX

c

[+; <] � [1; c+ 1]EX.

Proof: By Theorem 2 with d = 0 and ? =\+; <," Q

1

EX

c

[+; <] � [1; c+1]EX. By Theorem

4, EX

1

0

�Q

1

EX[+; <] 6= ;. Since EX

1

0

� EX � [1; c+1]EX [26] the corollary follows.

X

Corollary 7. Q

1

EX[+; <] � Q

2

EX[+; <].

Proof: The inclusion holds by de�nition. We show that the inclusion is proper. By

Theorem 4, Q

2

EX

1

[<]�Q

1

EX[+; <] 6= ;. Since Q

2

EX

1

[<] � Q

2

EX[+; <], the corollary

follows.

X

IV. Queries versus BC

In this section we compare active learning with BC learning. As a corollary to the

main theorem in this section we obtain an in�nite hierarchy based on mind changes.

Theorem 8. For all c 2 N� f0g, Q

1

EX

c

[S]� [1; c]BC 6= ;.

Proof: For n a positive integer, j < n, and f a function, let f

n

j

denote the j

th

n-ply of f .

10



Let c be given. Let S

c

be de�ned as follows:

S

c

=

[

1�i�c�1

ff 9e

1

; e

2

; : : : ; e

i

f

c+1

0

= �x[e

1

]

f

c+1

1

=

?

�x[e

2

]

.

.

.

f

c+1

i�1

=

?

�x[e

i

]

f

c+1

j

6=

?

�x[k]; k 2 N; i � j � c

f

c+1

j

(x) 6= e

i

; 1 � j � c; x 2 N

f = '

e

i

g

[ ff 9e

1

; e

2

; : : : ; e

c

f

c+1

0

= �x[e

1

]

f

c+1

1

=

?

�x[e

2

]

.

.

.

f

c+1

c�1

=

?

�x[e

c

]

f = '

e

c

or f

c+1

c

=

?

�x[e

c

]g

A QIM that witnesses S

c

2 Q

1

EX

c

[S] behaves as follows. The value of e

1

can easily

be found. Output this value. To �nd e

2

(if it exists) ask the following question for all

values of a and b:

8y[(y 6= 0 and y 6= 1 and : : : and y 6= a) ) (F(y) = e

1

) F(y + 1) = b)]?

When a \YES" answer is received, then e

2

= b. Output e

2

, if it exists. By a similar process,

�nd and output e

3

, e

4

, : : :, e

c

. If e

c

is output, we must also check to see if f

c+1

c

=

?

�x[e

c

].

The proof is completed by showing that S 62 [1; c]BC. Suppose M

1

, : : :, M

c

are

IIMs. Using the operator recursion theorem [9] an in�nite monotone increasing sequence

of programs, p(0), p(1), : : : is constructed, in stages, such that '

p(i)

will be in S�(BC(M

1

)[

11



� � � [ BC(M

c

)), for some i. Program p(0) will start with M

1

, : : :, M

c

on a queue in that

order. The program proceeds by trying to diagonalize, using standard techniques, against

the IIM at the front of the queue. If successful, program p(0) moves the IIM at the front

of the queue to the rear and goes to the next stage. Continuing in this fashion, p(0) will

diagonalize against each of M

1

, : : :, M

c

in�nitely often in a round robin manner. If the

IIM at the front of the queue has converged on the segment of '

p(0)

determined so far

to a program for a �nite function, then p(0)'s search for a diagonalization point will fail.

Another one of the p(i)'s will continue at that point, in an identical fashion, except that

the IIM at the front of p(0)'s queue will have been permanently removed. We say that

program p(0) is at level 1 and that the p(i) with only c � 1 IIMs on its queue is at level

2. The program called p(i) may also be unable to �nd a diagonalization point for similar

reasons. Consequently, there will be other programs in the sequence at levels 3, 4, : : :,

c+ 1. The program operating at level k will have (c+ 1) � k IIMs on its queue.

It is possible that the program at level k will succeed only ofter the program at level

k+1 has been successful in �nding extensions. In this case, a new programmust be started

at level k + 1, extending the recently revised program at level k. This new program will

be the \next" p(i), i.e. p(i) where i is least such that p(i) has not yet been mentioned,

explicitly or implicitly, in the construction. Programs at level k will be explicitly activated

and deactivated by programs at levels 1, : : :, k � 1. e

k

(1 � k � c + 1) will denote the

currently active program (one of the p(i)'s) at level k. The construction will insure that

'

e

1

� '

e

2

� : : : � '

e

c+1

. The �nite initial segment of '

e

k

determined prior to stage s of

the construction of the current e

k

will be denoted by �

s

k

.

The initial con�guration of the construction is as follows. For 1 � k � c, e

k

= p(k�1)

with queue M

k

, : : : M

c

. e

c+1

= p(c) with an empty queue. For 1 � k � c + 1, �

0

k

= ;.

Program e

c+1

will be determined in its entirely at its activation. Program e

1

(p(0)) can

never be deactivated. In order to avoid a notational nightmare, we present the construction

for the c = 2 case only. This construction has three levels. We will be concerned with

the zeroth, �rst and second 3 plies of the functions we constructed. To simplify notation,

these will be referred to as the 0

th

, 1

st

and 2

nd

plies, respectively.

12



Stage s in the simultaneous construction of e

1

, e

2

and e

3

.

Suppose the queue is M , M

0

in front to rear order. Simultaneously perform the

following 2 steps.

Step 1: Make another one of M 's guesses wrong.

Look for a � and a � such that

T1.1 � � � � �

s

1

such that:

T1.2 If x is in domain (� � �

s

1

) and x is on the 0

th

ply of � then � (x) = e

1

, and

T1.3 If x is in domain (� � �

s

1

) and x is on the 1

st

or 2

nd

ply of � then � (x) 2

fe

2

; e

2

+ 1g, and

T1.4 Domain of � and � are initial segments of the integers, and

T1.5 '

M(�)

(x) 6= � (x) for some x in domain (� � �

s

1

).

If such a � is found then perform the following actions:

A1.1 Stop work on Step 2, and

A1.2 Set �

s+1

1

= � , and

A1.3 Move M to the rear of the queue, and

A1.4 Deactivate e

2

and e

3

, and

A1.5 Activate a new e

2

with �

s+1

2

= � , and

A1.6 Go to stage s+ 1.

Step 2: Give up on M , try M

0

.

Execute the following Substages in their natural order. �

s;t

2

denotes the �nite

initial segment of '

e

2

(for the current e

2

) determined prior to Substage t. �

s;0

2

= �

s

1

.

Begin Substage t. Activate a new e

3

and de�ne:

'

e

3

(x) =

8

<

:

�

s;t

2

(x) if x 2 domain �

s;t

2

,

e

1

if x is on the 1

th

ply and x 62 domain �

s;t

2

,

e

2

otherwise.

Try and make another one of M

0

's guesses wrong by searching for

a � and a � such that:

13



T2.1 � � � � �

s;t

2

T2.2 If x is in domain (� � �

s;t

2

) and x is on the 0

th

ply of

� then � (x) = e

1

, and

T2.3 If x is in domain (� � �

s;t

2

) and x is on the 1

st

ply of

� then � (x) = e

2

, and

T2.4 If x is in domain (� ��

s;t

2

) and x is on the 2

nd

ply of

� then � (x) 2 fe

2

; e

2

+ 1g, and

T2.5 There are x and y in domain (� � �

s;t

2

) such that

� (x) = e

2

and � (y) = e

2

+ 1, and

T2.6 Domain of � and � are initial segments of the integers,

and

T2.7 '

M

0

(�)

(x) 6= � (x) for some x in domain (� � �

s;t

2

).

If such a � is found then perform the following actions:

A3.1 Set �

s;t+1

2

= � , and

A3.2 Deactivate e

3

, and

A3.3 Go to Substage t+ 1.

End Substage t.

End Stage s.

Case 1. Every stage s terminates. Since e

1

is never deactivated, e

1

= p(0) throughout

the construction. Let f = '

e

1

. f is a recursive function since every stage de�nes f on a

larger initial segment of its domain. By T1.2, f

3

0

= �x[e

1

]. By actions A1.4, and A1.5, e

2

is deactivated and reactivated with a new index at every stage. By T1.3, neither the �rst

nor second plies of f are �nite variants of constant functions. Only values of various e

2

's

and their successors are placed in the range of f along the second and third plies. By the

monotinicity condition of the operator recursion theorem, all these values will be larger

than e

1

. Hence, f 2 S

2

by the i = 1 case of the �rst clause of the de�nition of S

2

.

Choose M 2 fM

1

;M

2

g. M is at the front of the queue at the beginning of in�nitely

many stages. Actually, for the c = 2 case that we are doing, M will be at the front of

14



queue at every other stage. At each such stage there is a di�erent � and an x such that

� � f and '

M(�)

(x) 6= f(x). Hence, in�nitely often, M , on input f , outputs an incorrect

program. Consequently, f 62 BC(M). SinceM was chosen arbitrarily, f 2 (S

2

� [1; 2]BC).

Case 2. Some stage s never terminates. Let s be the least such stage. Suppose the

queue at the beginning of stage s is M , M

0

in front to rear order. Program e

2

is not

deactivated at or past stage s since if action A1.4 is executed, so will action A1.6 and

stage s will terminate. Every � � �

s

1

that is an initial segment of '

e

2

or of '

e

3

for any

e

3

active during stage s will be considered in T1.1 through T1.4. ProgramM(� ), for each

such � , computes a �nite function, as otherwise a � and a � satisfying T1.1 through T1.5

would be found and stage s would terminate.

Case 2.1. Every substage t terminates. Let f = '

e

2

. f is a recursive function since

every substage de�nes f on a larger initial segment of its domain. By T2.2, f

3

0

= �x[e

1

].

By T2.3, f

3

2

(x) = e

1

, for all x 62 domain �

s

1

. T2.5 insures that the third ply of f is not

a �nite variant of a constant function. Only values e

2

and e

2

+ 1 are placed in the range

of f along the third ply. By the monotinicity condition of the operator recursion theorem

these values will be larger than e

1

. Hence, f 2 S

2

by the second clause of the de�nition of

S

2

.

By the remarks in the beginning of Case 2,M fails to BC identify f . At each substage

t there is a di�erent � and an x such that � � f and '

M

0

(�)

(x) 6= f(x). Hence, in�nitely

often, M

0

, on input f , outputs an incorrect program. Consequently, f 62 BC(M

0

). Since

M and M

0

we chosen arbitrarily, f 2 (S

2

� [1; 2]BC).

Case 2.2. Some substage t never terminates. Let t be the least such stage. Let f = '

e

3

as de�ned at the beginning of substage t. Since f

3

2

=

?

�x[e

2

], f 2 S

2

by the second clause

of the de�nition of S

2

. Every � that is an initial segment of f will be considered in T2.1

through T2.6. ProgramM

0

(� ), for each such � , computes a �nite function, as otherwise a

� and a � satisfying T2.1 through T2.6 would be found and substage t would terminate.

Hence, M

0

cannot BC identify f . By the remarks in the beginning of Case 2, M fails to

BC identify f . Since M and M

0

we chosen arbitrarily, f 2 (S

2

� [1; 2]BC).

X

The above argument can be modi�ed to show the following.

15



Theorem 9. For all c 2 N, Q

1

EX

c

[S]� [

a2N

[1; c]BC

a

6= ;.

Proof: Choose a 2 N. Modify the proof of Theorem 8 as follows. Instead of looking for an

x in T1.5 and T2.7 look for a+1 distinct such x's. In Case 1 and 2.1, instead of obtaining

M (orM

0

) in�nitely often outputting a wrong program, we now haveM (orM

0

) in�nitely

often outputting a program that is wrong in at least a + 1 places.

X

Corollary 10. BC and Q

1

EX

1

[S;<] are incomparable.

Proof: By Theorem 8, Q

1

EX

?

1

[S;<]�BC 6= ;. In [13] it is shown that EX �Q

1

EX

1

[S;<

] 6= ;.

X

The following corollary of Theorem 8 yields a multitude of in�nite hierarchies based

on the number of mind changes allowed a QIM asking questions involving a single type of

quanti�er. There is a hierarchy for each language.

Corollary 11. Let L be any language that contains a symbol S for successor. Then

for each c 2 N, Q

1

EX

c

[L] � Q

1

EX

c+1

[L].

Proof: The inclusion holds by de�nition, we show that it is proper. Let c 2 N be given. By

the d = 0 case of Theorem 2, Q

1

EX

c

[L] � [1; c+ 1]Q

0

EX[L]. Since each QIM that asks

quanti�erless questions can be replaced by an equipowerful IIM [13], [1; c+ 1]Q

0

EX[L] =

[1; c+ 1]EX. >From the results in [26] it follows that [1; c+ 1]EX � [1; c+ 1]BC. Hence,

Q

1

EX

c

[L] � [1; c+ 1]BC. By Theorem 8, there is an element of Q

1

EX

c+1

[L] that is not

in [1; c+ 1]BC. The corollary follows.

X

16



Theorem 12. Q

2

EX

0

[S;<] and [

1

c=1

[1; c]BC are incomparable.

Proof: The set of primitive recursive functions is in EX, and consequently, in BC. In [13]

it was shown that the primitive recursive functions were not in Q

2

EX

0

[S;<]. To complete

the proof, it su�ces to �nd a set T such that T 2 Q

2

EX

0

[S;<]� [

1

c=1

[1; c]BC. Let

T =

1

[

c=1

S

c

where S

c

is as de�ned in the proof of Theorem 8. By Theorem 8, T 62 [

1

c=1

[1; c]BC.

A QIM that witnesses T 2 Q

2

EX

0

[S;<] behaves as follows. First �nd a c > 0 such

that f(0) = f(c). Then the function serving as input is from S

c

. Furthermore, the value

of f(0) is e

1

. To �nd out if e

2

exists, ask:

9y; z8x[x > y and F(x) = e

1

) F(x + 1) = z]?

If e

2

exists, z is its value. Continue in this fashion to �nd e

3

(if it exists) by asking:

9y; z8x[x > y and F(x) = e

2

) F(x + 1) = z]?

X

V. Queries versus Anomalies

A further analysis of the proof of the result thatQ

0

EX[?] = EX from [13] immediately

yields the following.

Theorem 13. For all a 2 N [ f?g, for all c 2 N, Q

0

EX

a

c

[?] = EX

a

c

.

The next result shows a completely di�erent outcome when questions using a single

quanti�er are allowed.

17



Theorem 14. For all a 2 N [ f?g, Q

1

1

EX

0

[ ]� [

c�0

EX

a

c

6= ;.

Proof: Pick a 2 N [ f?g. First we de�ne T to be the set of step functions. T contains all

and only the functions f such that either f = �x[0] or there are constants c

1

, : : :, c

n

, for

some n 2 N such that:

f(x) =

8

>

>

<

>

>

:

0 if x < c

1

,

1 if c

1

� x < c

2

,

.

.

.

c

n

if c

n

� x.

In [10] it is shown that T is not contained in [

c�0

EX

a

c

. The proof is completed by

presenting a QIMM that Q

1

1

EX

0

infers T using a query language without special symbols.

First, M determines if the input function is the everywhere zero function by asking:

8x[F(x) = 0]?

If the answer is \YES" then M outputs a program for the constant zero function and

stops. If the answer is \NO" M continues by trying to �nd c

1

by asking:

F(0) = 1?

F(0) = 0 ^ F(1) = 1?

F(0) = 0 ^ F(1) = 0 ^ F(2) = 1?

F(0) = 0 ^ F(1) = 0 ^ F(2) = 0 ^ F(3) = 0?

If f 2 T , then eventually a \YES" answer will be the response to one of the above questions.

When the \YES" answer arrives, the value of c

1

is known. M then asks:

8x[(x < c

1

) F(x) = 0) ^ x � c

1

) F(x) = 1)]?

If the answer is \YES" then M outputs a program for the following function g:

g(x) =

n

0 if x < c

1

,

1 otherwise.

If the answer is \NO" M searches for c

2

in a manner similar to the method for �nding c

1

.

Again, the search will succeed i� f 2 T . The process continues until M has found all the

18



relevant constants c

1

, : : :, c

n

. Any function in T will have such constants for some n. The

questions using the universal quanti�er are used to determine if the last such constant has

just been found. With the appropriate constants in hand, M easily outputs the correct

program. A program is output only when all the proper constants have been found. M

outputs at most one program.

X

This last theorem shows that Q

1

1

EX[?] � EX

c

6= ;, for all c. Hence the result

Q

1

EX

0

[?] � EX from [13] cannot be improved by substituting EX

c

for EX. It is also

possible to prove Theorem 14 using, instead of T , a set S of recursive functions that are

almost every where f0; 1g valued and have the property that the largest value that does not

map to a 0 or a 1 is an index for the function. The proof becomes more involved with the

use of a more complicated set. Wiehagen [29] has shown that this set S cannot be inferred

by any consistent inductive inference machine (i.e., machines that only output conjectures

that agree with all the data seen so far), thereby ruling out a potential strengthening of the

result that Q

1

EX

0

[?] � EX to a more restrictive class than EX. An inductive inference

machine is consistent if all its conjectures are consistent with all the data used to make the

conjecture. This contrasts with the fact that any class in EX

0

can be inferred consistently.

Moreover, the class S contains arbitrarily complex functions since suitable �nite variants

of arbitrarily complex functions are in S and some these are also arbitrarily complex [25].

Hence, a QIM that asks only single quanti�er questions can learn a set of arbitrarily com-

plex functions that no passive IIM can learn when restricted to a �xed �nite number of

mind changes. Finally, the class S cannot be reliable [8] identi�ed. For reliable inference,

convergence is synonymous with identi�cation. Hence, another possible strengthening of

our results is ruled out.

Now we consider whether or not asking questions enables the precise (no anomalies)

learning of functions that, without queries, can only be learned by IIMs that tolerate

anomalies. As we shall see, not even a single error can always be corrected. A strengthening

of Theorem 4 is easily obtainable.

19



Theorem 15. For all a 2 N, there is a set T

a

2 (EX

a+1

0

\Q

2

EX

1

[<])�Q

1

EX

a

[+; <].

Proof: De�ne T

a

as follows:

T

a

= ff '

f(0)

= f and I(f) = ;g[

ff '

f(0)

=

a+1

f; I(f) = feg; and

8x > �z[f(z) = e]; '

f(0)

(x) = f(x) and

8x; y > �z[f(z) = e]; x 6= y and f(x) 6= e) f(x) 6= f(y)g:

An easy modi�cation of the proof of Theorem 4 , and a proof that T

a

2 Q

2

EX

1

[<]

now su�ces.

X

Corollary 16. For all a 2 N, EX

a+1

0

�Q

1

EX

a

[+; <] 6= ;.

Proof: Immediate from Theorem 15.

X

This result yields the following hierarchy:

Q

1

EX[+; <] � Q

1

EX

1

[+; <] � � � � � Q

1

EX

a

[+; <] � Q

1

EX

a+1

[+; <] � � � �

Corollary 17. For all a 2 N, the classes EX

a+1

and Q

1

EX

a

[+; <] are incomparable.

Proof: By Corollary 16, it su�ces to show that Q

1

EX

a

[+; <]�EX

a+1

6= ;. SinceEX

a+1

�

BC [10] it su�ces to show that Q

1

EX[+; <] � BC 6= ;. This is just the c = 0 case of

Theorem 8.

X

VI. Blocks of Quanti�ers

In this section we establish a hierarchy based on the total number of quanti�ers a

QIM is allowed to use in phrasing its questions. Many results is logic and theoretical

computer science suggest that increasing the number of alternations of quanti�ers (number

of blocks) would increase the capabilities of the resultant QIM. This expectation is reected

20



in Corollary 7. Below we present a �ner approach. We establish hierarchies based on the

total number of quanti�ers all of the same type.

In order to carry out our next construction, we need to examine the expressive power

of statements with k existential quanti�ers in [+; <]. The following mathematical lemma

concerns the expressive power of k existential quanti�ers in [+;�; <]. Although we do not

need the additional strerngth of the lemma, it is no more di�cult to prove and it may be

useful at some later point. Basically, the following lemma says that k existential quanti�ers

are not su�cient to ask the question, \Is there some value in the range of F that occurs

at least k + 1 times?"

Lemma 18. Let � be a query in [+;�; <] with at most k existential quanti�ers, let

m 2 N, and let � be a �nite function with domain an initial segment of N such that any

recursive function f extending � satisfying the following two properties makes � false.

1. if x is in the domain of the f and not in the domain of � then f(x) �m.

2. no value appears in range(f)� range(�) more than k times.

Then there exists an m

0

� m and a �nite function � such that the domains of � and � are

disjoint and some value occurs in the range of � at least k + 1 times, and any function f

extending � [ � using values �m

0

at most k times makes � false.

Proof: Let � = 9x

1

� � � 9x

k

 (x

1

; : : : ; x

k

). Let G

0

be the terms in  (x

1

; : : : ; x

k

) which occur

as arguments to the function symbol F . For example, if � is

9x9y (F(3) = F((x �F(y)) + F(18))) ^ (x > 4) ^ (F((x � y) + x + x) = 52);

then

G

0

= f3; (x �F(y)) + F(18); y; 18; (x � y) + x + xg:

21



For a given �nite function �, let G

�

be the collections of terms formed by taking elements

of G

0

and substituting (in all possible ways) members of the range of � for the value of F .

For example, given G

0

as above and � = f(0; 5); (1; 7)g,

G

�

=f3; (x � 5) + 5; (x � 5) + 7; (x � 7) + 5; (x � 7) + 7; y; 18; (x � y) + x+ xg

= f3; 5x+ 5; 5x+ 7; 7x + 5; 7x+ 7; y; 18; xy + 2xg:

Note that the terms of G

�

are essentially polynomials in x

1

; : : : ; x

k

. Let g

�

denote the

number of terms in G

�

. The polynomials in G

�

describe the points in the domain of F

that may be accessed by the query  (x

1

; : : : ; x

k

) (except terms which have nested F 's; we

will use m

0

to handle them later). The main idea will be to �nd a set of k+ 1 points that

can not all be referred to in any instantiation of �.

We view G

�

as a mapping of N

k

to subsets of N. of size � g

�

. For example, for the G

�

above, G

�

(2; 3) = f3; 15; 17; 19; 18; 10g. Henceforth, we will denote G

�

by G

�

(x

1

; : : : ; x

k

).

We construct the extension � to � as follows. We claim that there exists points,

p

1

; : : : ; p

k+1

, not in the domain of � such that (8x

1

) � � � (8x

k

)

fp

1

; : : : ; p

k+1

g 6� G

�

(x

1

; : : : ; x

k

):

In other words, for all values x

1

, : : :, x

k

, the points p

1

; : : : ; p

k+1

cannot be simultaneously

referred to in the query  (x

1

; : : : ; x

k

).

To see that this is true let n be chosen such that

�

g

�

k+1

�

< n. and consider the e�ect

of G

�

(as a mapping) modulo n. Formally de�ne G

n

�

to be the function that on input

(x

1

; : : : ; x

k

) 2 f0; 1; : : : ; n � 1g

k

produces the multiset (repeated elements are allowed)

obtained by taking every element in G

n

�

and reducing them mod n. (For example, for

the above G

�

, G

5

�

(2; 3) = f3; 0; 2; 4; 3; 0g.) For every (x

1

; : : : ; x

k

) 2 f0; 1; : : : ; n � 1g

k

,

G

n

�

(x

1

; : : : ; x

k

) � g

�

; hence the number of k + 1 element subsets of G

n

�

(x

1

; : : : ; x

k

) is

�

�

g

k+1

�

. (By convention, a subset of a multiset may also be a multiset. For example, for

the G

�

above, f3; 3; 0g is a subset of G

5

�

(2; 3).) Since there are n

k

elements in the domain

of G

n

�

the number of k + 1 element multisets fr

1

; : : : ; r

k+1

g that can be a subset of some

22



G

n

�

(x

1

; : : : ; x

k

) is � n

k

�

�

g

k+1

�

< n

k

�n = n

k+1

. Since the number of possible k+1 element

multisets that are subsets of f0; 1; : : : ; n�1g is n

k+1

, there exists a multiset fr

1

; : : : ; r

k+1

g

that is not a subset of any G

n

�

(x

1

; : : : ; x

k

). Thus, for any set fp

1

; : : : ; p

k+1

g such that for

all i � k + 1, p

i

� r

i

(mod n),

(8x

1

; : : : ; x

k

2 N)fp

1

; : : : ; p

k+1

g 6� G

�

(x

1

; : : : ; x

k

):

We use p

1

; : : : ; p

k+1

in our construction of � . Let m

0

be larger than max

i

fp

i

g. Let

� be such that the positions p

1

; : : : ; p

k+1

all have the same value � m

0

, and all other

values are unique and � m

0

. To see that this will work, assume by way of contradiction

that there is some extension f of � [ � such that f makes � true. In this case, there

must then be values a

1

; : : : ; a

k

such that f makes  (a

1

; : : : ; a

k

) true. But we know that

fp

1

; : : : ; p

k+1

g 6� G

0

(a

1

; : : : ; a

k

), so there must be some position p

i

62 G

�

(a

1

; : : : ; a

k

). We

claim that p

i

is not referenced as an argument to F in the statement  (a

1

; : : : ; a

k

). If

it were, then it must be equal in value to some term of G

0

, say t. If t does not involve

F , then t 2 G

�

, a contradiction. If t does involve F , then those occurrences of F must

either take on values in the range of � or values � m

0

. If any value � m

0

is used in a

place not eventually multiplied by zero, then the value of t will be � m

0

, contradicting

p

i

< m

0

. If all values not eventually multiplied by zero are in the range of �, then t 2 G

�

,

a contradiction. Let f

0

be f with the position of p

i

modi�ed to contain a unique value.

(If necessary, all unreferenced positions can be modi�ed to permit this). Then f

0

will also

make  (a

1

; : : : ; a

k

) true, since  (a

1

; : : : ; a

k

) does not reference the positions which have

been changed. Thus, f

0

makes � true, in contradiction to the assumption in the statement

of this lemma.

X

We note that Lemma 18 can easily be extended to the language [+;�; <] (and there-

fore [+; <]) as well. In fact, Lemma 18 can be extended to any language of the form

[+;�; P

1

; P

2

; : : : ; P

s

], where P

1

; P

2

; : : : ; P

s

are any predicates whatsoever. This is because

the term structure of the language still consists of multi-variate polynomials. In other

23



words, the additional predicates do not a�ect which positions of F can be examined at the

same time. In addition, Lemma 18 can be extended to any language where all the function

symbols �(x

1

; : : : ; x

m

) have the property that, for all n,

(�(x

1

; : : : ; x

m

) mod n) = (�(x

1

mod n; : : : ; x

m

(mod n)) mod n):

We will not need this general version of Lemma 18 for this paper, but it may be useful in

subsequent work.

Theorem 19. For any k > 0, we have Q

k+1

1

EX

0

[ ]�

S

1

c=0

Q

k

1

EX

c

[+; <] 6= ;.

Proof:

For a function f , let

R(f; k) = f(x

0

; x

1

; : : : ; x

k

)

^

i 6=j

x

i

6= x

j

^ f(x

0

) = f(x

1

) = � � � = f(x

k

)g:

Let

T = ff '

f(0)

=

1

f; and R(f; k) is �nite, and

'

f(0)

(z) = f(z) for all x � maxfminy 2 U U 2 R(f; k)g:

We show that T 2 Q

k+1

1

EX

0

[ ], by means of a QIM M as follows. Suppose f 2 T .

M asks the questions:

(9x

0

)(9x

1

) � � � (9x

k

)

2

4

(

^

i

x

i

6= 0) ^ (

^

i 6=j

x

i

6= x

j

)F(x

0

) = F(x

1

) = � � � = F(x

k

)

3

5

;

(9x

0

)(9x

1

) � � � (9x

k

)

2

4

(

^

i

x

i

6= 0) ^ (

^

i

x

i

6= 1) ^ (

^

i 6=j

x

i

6= x

j

)F(x

0

) = F(x

1

) = � � � = F(x

k

)

3

5

;

.

.

.

(9x

0

)(9x

1

) � � � (9x

k

)

2

4

(

^

i

x

i

6= 0) ^ : : : ^ (

^

i

x

i

6= n) ^ (

^

i 6=j

x

i

6= x

j

)F(x

0

) = F(x

1

) = � � � = F(x

k

)

3

5

until a response of NO is obtained. Then,M determines the actual values of f(0); f(1); : : :,

f(n), and outputs an appropriately patched version of the program f(0) as its only guess.

24



For all c � 0, we show that T =2 Q

k

1

EX

c

[+; <]. Suppose that M is a QIM that asks

questions using the query language [+; <] restricted to sentences with only k existential

quanti�ers. We construct a recursive function f 2 T that M does not infer within c

mind changes. The construction proceeds in e�ective stages of �nite extention. The initial

segment of f constructed prior to stage s is denoted f

s

. By implicit use of the recursion

theorem, initialize f

0

= f(0; e)g. At each stage, we will haveM 's current query, which will

be denoted (ambiguously) by  . In addition, we will have �, which will be the disjunction

of previous queries to which we have responded NO. (We keep � to insure that the future

construction remains consistent with the previous responses.) The value of this �, on entry

into stage s, will be denoted by �

s

.

As was the case in the proof of Theorem 4 the extensions considered during stage

s below will cause M to ask questions which must be answered. The answering of the

questions will necessitate �xing portions of the extension. The variable � will be used to

denote the (partial) extension to f

s

currently determined. It will turn out that f

s

� � �

f

s+1

. Similarly, let

~

b denote the answers to the questions that have been answered.

Begin stage s. Let m be the largest value in the range of f

s

. Set � = �

s

. Apply Lemma 18

to m and �nite initial segment f

s

to get an extension � of f

s

and y � m occurring k + 1

times in the range of � . Choose x least such that f(x) = y. Let � = f

s

[ � � f(x; y)g.

Next, we perform the following two substages in parallel, until one terminates. If neither

substage terminates, then f will be de�ned everywhere except at x.

Substage 1. Let j = g(M(

~

b)). Run '

j

(x). If it converges before substage (2) is

complete, then choose z least such that z � m, x 62 range � and z 6= '

j

(x) and

set

� = � [ f(x; z)g

and execute the query answer procedure.

25



Query Answer Procedure. Let  be M 's current query. There are two

cases to consider. We can determine which of these cases holds by using

a slight modi�cation of the technique from Lemma 3 in to deal with the

restriction on using values at most k times.

Case 1. If there is a �nite extension � � � such that the range of �

contains only values � m and no value appears in the range of

� more than k times and � [ � makes  true, then set � = � [ �

and answer the query YES.

Case 2. Otherwise, let z be the least value > x not in the domain of �,

set � = � [ f(z;m)g (an arbitrary extension), set � = � _ and

answer the query NO.

End Query Answer Procedure.

Set f

s+1

= �, �

s+1

= �

s

and go to stage s + 1.

Substage 2. Answer the current query using the query answer procedure above.

Obtain future queries from M and continue to answer them in this manner. If

we encounter a mind change during this process, before substage (1) terminates

then one of two cases applies. Suppose this mind change is the d

th

one.

Case 1. d < c+ 1. Set f

s+1

= �, �

s+1

= � and go to stage s+ 1.

Case 2. d = c+ 1. De�ne f :

f(z) =

(

�(z) if z 2 domain �,

unde�ned if z = x,

z +m otherwise.

and terminate stage s and do not execute any stages s

0

> s.

End stage s.

If all stages of the construction are executed, then eitherM makes c+1 mind changes

while inferring f , or M 's �nal guess is wrong in�nitely often. If the construction stalls at

some stage, then f is unde�ned at some point x. However, the function f

0

= f [ f(x; y)g

is in T , and M 's �nal guess on inferring f

0

is not a total function.

X

26



Corollary 20. For any k > 0, we have Q

k+1

1

EX

0

[<]�

S

1

c=0

Q

k

1

EX

c

[+; <] 6= ;.

Corollary 21. For all c 2 N

1. Q

k

1

EX

c

[S;<] � Q

k+1

1

EX

c

[S;<].

2. Q

k

1

EX

c

[+; <] � Q

k+1

1

EX

c

[+; <].

Theorem 22. For any reasonable language L, for any k > 0 and any c � 0, we have

Q

k

1

EX

c+1

[L]�Q

k

1

EX

c

[L] 6= ;.

Proof: In [12] it was shown that EX

c+1

� Q

1

EX

c

[L] is nonempty for any reasonable

language L. The result follows.

X

Finally, in light of the de�nitions of this section, a careful examination of the proof of

Theorem 8 reveils a proof of a stronger result. We conclude with a statment of this result.

Theorem 23. Q

1

1

EX

c

[ ]� [1; c]BC 6= ;.

VII. Conclusions

The results of [13] have been extended in several directions. Inference by asking

questions has been related to team learning. The quanti�er structure of queries has been

used as a measure of articulation. Not surprisingly, more articulate query machines are

more capable learners. What is perhaps surprising are the preliminary results indicating

that the number of quanti�ers may be important. Our most general results are graphically

summerized below.

27



SUMMARY

By Corollary 11 and results from [13]

EX � [1; 2]EX � [1; 3]EX � : : :

[ [ [

Q

1

EX

0

[S;<] � Q

1

EX

1

[S;<] � Q

1

EX

2

[S;<] � : : :

By Corollary 11 and results from [12,26]

EX � [1; 2]EX � [1; 3]EX � : : :

[ [ [

Q

1

EX

0

[+; <] � Q

1

EX

1

[+; <] � Q

1

EX

2

[+; <] � : : :

By Theorem 2, Corollary 11, and results from [12,26]

EX � [1; 2]EX � [1; 3]EX � : : :

[ [ [

Q

1

EX

0

[+;�] � Q

1

EX

1

[+;�] � Q

1

EX

2

[+;�] � : : :

All inclusions not shown in the above diagrams represent known incomparabilites,

except for the diagram concerning the query language [+;�]. Recall that [1; n]EX is

precisely the same collection of sets of functions that can be probabilistically inferred by

an inference machine with probability 1=n [18].

VIII. Acknowledgements

Computer time was provided by the Department of Computer Science at the Univer-

sity of Maryland. The National Science Foundation supported two of the authors. Peter

Montgomery supplied a crucial trick that was used in the proof of Lemma 18.

References

1. ANGLUIN, D. Learning k-term DNF formulas using queries and counter-examples.

Department of Computer Science TR-559, Yale University, New Haven, CT, 1987.

2. ANGLUIN, D. Learning k bounded context-free grammars. Department of Computer

Science TR-557, Yale University, New Haven, CT, 1987.

3. ANGLUIN, D. Queries and concept learning. Machine Learning 2 (1988), 319{342.

28



4. ANGLUIN, D. Equivalence queries and approximate �ngerprints. In Proceedings of

the 1989 Workshop on Computational Learning Theory, M. Warmuth, Ed., Morgan

Kaufmann, San Mateo, CA., 1989.

5. ANGLUIN, D. AND SMITH, C. H. Inductive inference: theory and methods. Computing

Surveys 15 (1983), 237{269.

6. ANGLUIN, D. AND SMITH, C. H. Inductive inference. In Encyclopedia of Arti�cial

Intelligence, S. Shapiro, Ed., John Wiley and Sons Inc., 1987.

7. BERMAN, P. AND ROOS, R. Learning one{counter languages in polynomial time. 28

th

Annual FOCS conference (1987), 61{67.

8. BLUM, L. AND BLUM, M. Toward a mathematical theory of inductive inference. In-

formation and Control 28 (1975), 125{155.

9. CASE, J. Periodicity in generations of automata. Mathematical Systems Theory 8

(1974), 15{32.

10. CASE, J. AND SMITH, C. Comparison of identi�cation criteria for machine inductive

inference. Theoretical Computer Science 25, 2 (1983), 193{220.

11. FREIVALDS, R., SMITH, C., AND VELAUTHAPILLAI, M. Trade{o�s amongst parameters

e�ecting the inductive inferribility of classes of recursive functions. Information and

Computation 82, 3 (1989), 323{349.

12. GASARCH, W., PLESZKOCH, M., AND SOLOVAY, R. Learning via queries with plus and

times. manuscript.

13. GASARCH, W. AND SMITH, C. Learning via Queries. Journal of the ACM (1991).

acceptance indicated.

14. GOLD, E. M. Language identi�cation in the limit. Information and Control 10 (1967),

447{474.

15. HELLERSTEIN, L. AND KARPINSKI, M. Learning read-once formulas using membership

queries. In Proceedings of the 1989 Workshop on Computational Learning Theory,

M. Warmuth, Ed., Morgan Kaufmann, San Mateo, CA., 1989.

16. ISHIZAKA, H. Learning simple deterministic languages. In Proceedings of the 1989

Workshop on Computational Learning Theory, M. Warmuth, Ed., Morgan Kaufmann,

San Mateo, CA., 1989.

17. MACHTEY, M. AND YOUNG, P. An Introduction to the General Theory of Algorithms.

North-Holland, New York, New York, 1978.

18. PITT, L. A Characterization of Probabilistic Inference. Journal of the ACM 36, 2

(1989), 383{433.

19. PITT, L. AND SMITH, C. Probability and plurality for aggregations of learning ma-

chines. Information and Computation 77 (1988), 77{92.

20. ROGERS, H. JR. G�odel numberings of partial recursive functions. Journal of Symbolic

Logic 23 (1958), 331{341.

21. ROYER, J. S. Inductive inference of approximations. Information and Control 70, 2/3

(1986), 156{178.

29



22. SAKAKIBARA, Y. Inferring parsers of context-free languages from structural examples.

Fujitsu International Institute for Advanced Study of Social Information Science, Nu-

mazu, Japan, 1981.

23. SAKAKIBARA, Y. Inductive inference of logic programs based on algebraic semantics.

Technical Report 79, Fujitsu International Institute for Advanced Study of Social

Information Science, Numazu, Japan, 1987.

24. SHAPIRO, E. Algorithmic programming debugging. MIT Press, Cambridge, MA, 1983.

25. SMITH, C. A note on arbitrarily complex recursive functions. Notre Dame Journal of

Formal Logic 29, 2 (1988), 198{207.

26. SMITH, C. H. The power of pluralism for automatic program synthesis. Journal of

the ACM 29, 4 (1982), 1144{1165.

27. SMITH, C. H. AND VELAUTHAPILLAI, M. On the inference of approximate explanations.

Theoretical Computer Science. To appear.

28. VALIANT, L. G. A theory of the learnable. Communications of the ACM 27, 11 (1984),

1134{1142.

29. WIEHAGEN, R. Limes-erkennung rekursiver funktionen durch spezielle strategien.

Elektronische Informationsverarbeitung und Kybernetik 12 (1976), 93{99.

30


	Sacred Heart University
	DigitalCommons@SHU
	1-1995

	Learning via Queries with Teams and Anomalies
	William I. Gasarch
	Efim Kinber
	Mark G. Pleszkoch
	Carl H. Smith
	Thomas Zeugmann
	Recommended Citation


	papersend.dvi

