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Abstract 

The mixed microbial communities that occur naturally on lignocellulosic feedstocks can provide 

feedstock-specific enzyme mixtures to saccharify lignocelluloses. Bacterial-fungal communities 

were enriched from switchgrass bales to deconstruct ammonia-pretreated switchgrass (DSG).  

Correlation analysis was carried out to elucidate the relationship between microbial 

decomposition of DSG by these communities, enzymatic activities produced and enzymatic 

saccharification of DSG using these enzyme mixtures. Results of the analysis showed that β-

glucosidase activities and xylosidase activities limited the extent of microbial deconstruction and 

enzymatic saccharification of DSG. The results also underlined the importance of ligninase 

activity for the enzymatic saccharification of pretreated lignocellulosic feedstock. The bacterial-

fungal communities developed in this research can be used to produce enzyme mixtures to 

deconstruct DSG, and the results from the correlation analysis can be used to optimize these 

enzyme mixtures for efficient saccharification of DSG to produce second-generation biofuels. 
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1. Introduction 

Switchgrass, Panicum virgatum, is generally stored as bales on an agricultural field after 

harvesting where it undergoes various degrees of decomposition by the naturally-occurring 

microorganisms present either from the field soils or on the switchgrass itself. The 

microorganisms involved with the decomposition of baled switchgrass biomass include members 

of both Bacteria and Eukarya domains. These bacteria and fungi can be utilized as a source for 

lignocellulolytic enzymes to convert the lignocellulosic switchgrass to soluble carbohydrates on 

the hypothesis that they have adapted to decompose switchgrass on the fields.  

Switchgrass bales typically contain little free water when they are stored on the 

agricultural field. In essence, therefore, the microorganisms decompose the switchgrass in the 

switchgrass bales under solid-state culture conditions. An objective of this study is to enrich for 

switchgrass-degrading microbial consortia from switchgrass bales and assess their potential to 

produce lignocellulolytic enzymes. Therefore, it becomes important to develop and study the 

microbial enrichments under solid-state culture conditions to mimic their natural environment. 

This strategy should provide a more accurate insight into the functioning of the microbial 

consortia as they degrade switchgrass on the field.  

Furthermore, the use of solid-state cultivation for production of enzymes has several 

advantages for scaling up of the industrial process. Solid-state cultivation studies have shown 

higher volumetric production of enzymes when compared to submerged-state cultivation (Hölker 

and Lenz, 2005; Krishna, 2005; Pandey et al., 2000; Robinson et al., 2001).  The enzymes 

produced during solid-state cultivation were also shown to be more stable to changes in pH and 

temperature along with reduced risk of enzyme inhibition and protease degradation (Hölker and 
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Lenz, 2005; Krishna, 2005; Robinson et al., 2001). Another advantage of solid-state cultivation 

is the reduction in water usage resulting in smaller volume bioreactors further reducing cost for 

construction materials and operations.  Furthermore, downstream processing of products will be 

easier requiring less energy because of the reduced requirements to extract valuable products 

from reduced quantities of water (Krishna, 2005; Robinson et al., 2001; Singhania et al., 2009).  

The conversion of plant biomass, like switchgrass, requires a variety of enzymes. The 

major enzymes required to decompose plant biomass include cellulases, hemicellulases and 

ligninases (Lynd et al., 2002) that act upon the three major components of any plant biomass, 

cellulose, hemicellulose and lignin, respectively. In addition, a wide range of auxillary enzymes, 

such as esterases and pectinases, are also required to efficiently decompose the plant biomass. 

The complex structure of lignocellulosic biomass, however, may not allow all the enzymes 

present in a mixture access to their respective substrates. Lignin can serve especially as a barrier 

for the cellulolytic enzymes to bind to cellulose and hemicellulose (Kumar and Wyman, 2009) 

thus decreasing the saccharification efficiency of plant biomass to soluble carbohydrates. Plant 

biomass, therefore, is initially pretreated to remove lignin.  By reducing the amount of lignin 

present, the cellulases and hemicellulases are provided more access to their respective substrates 

(Kumar and Wyman, 2009). One such pretreatment technology used to remove lignin is 

ammonia soaking pretreatment (Sherman et al., 2012). While pretreatment technologies are able 

to remove lignin from plant biomass, a significant amount may remain after pretreatment.  

An optimized enzyme mixture for saccharification of plant biomass requires a better 

understanding of the relationships between the various enzyme activities and the hydrolysis of 

the pretreated biomass. This study reports the results from the enrichment of switchgrass-

degrading bacterial-fungal consortia collected from switchgrass bales stored under field 
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conditions.  These consortia were the source of enzyme mixtures that were employed to convert 

delignified switchgrass to soluble sugars. Correlation analyses were performed between the 

enzyme activities and microbial decomposition of switchgrass, as well as between enzyme 

activities and enzymatic saccharification.  Results of these correlation analyses contribute to 

better understand the process of converting pretreated switchgrass by microbial consortia and 

their enzyme mixtures.  

2. Materials and methods 

2.1. Collection of switchgrass samples  

Switchgrass samples were collected in February 2011 from several switchgrass bales that 

had been harvested and baled in 2009, 2010 and 2011 at Clemson University’s Pee Dee Research 

and Education Center (Florence, SC, USA). Samples were returned to the Clemson University 

laboratory and stored at room temperature. A total of 12 switchgrass samples were collected 

from switchgrass bales.   

2.2. Enrichment of bacterial-fungal consortia  

Switchgrass samples were used as inocula for enrichment of naturally occurring 

microbial consortia. Duplicate enrichments were initiated at both mesophilic and thermophilic 

temperature of 25 °C and 50 °C, respectively, resulting in 24 enrichments at each temperature. 

Enrichments were established under solid-state conditions to mimic natural conditions by 

inoculating 0.1 g (wet weight) of a switchgrass sample onto 1 g of autoclaved delignified 

switchgrass (DSG) moistened with 2 mL of sterile medium at an initial pH of 6.5 in sterile Petri 

plates. Modified Czapek Dox medium was used and is composed of the following (g/L deionized 

water): NH4NO3, 2; K2HPO4, 1; MgSO4·7H2O, 0.5; KCL, 0.5; and FeSO4, 0.01. DSG was 
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prepared as a growth substrate by pretreating switchgrass with ammonia to reduce the lignin 

content as previously described (Jain et al. 2013). The pretreated switchgrass was then stored at 4 

°C until use. The delignified switchgrass (DSG) obtained using this method contained 36.5% 

glucan and 20.5% xylan, respectively (Jain et al., 2013). Studies were performed in absence of 

light. 

After incubation for 10 days, the Petri plates showing visual microbial growth were 

selected for further enrichment by aseptically transferring the DSG covered with 

microorganisms. Before every transfer, the DSG on each Petri plate was thoroughly mixed using 

a sterile spatula to reduce microbial heterogeneity. The procedure was repeated after each 10-day 

incubation period for 10 transfers at which time the enrichment cultures were deemed to be 

stable. The enriched consortia were then screened for their capability to use DSG as the sole 

carbon source by measuring the dry weight loss of DSG after a period of incubation. Aliquots of 

0.1 g of the enrichment cultures were used to inoculate the 10 mL screw-cap tubes containing 1 g 

of autoclaved DSG moistened with 2 mL of sterile medium at an initial pH of 6.5. Additional 

screw-cap tubes were inoculated with autoclaved 0.1 g of DSG, instead of enrichment cultures, 

as control tubes to account for abiotic dry weight loss of DSG during the incubation period. The 

tubes were incubated at either 25 °C or 50 °C for 10 days. DSG dry weight loss was measured by 

washing the DSG remaining after growth with distilled water and centrifuging at 1500 rpm for 

15 min. This procedure was repeated three times after which the pellet was dried at 80 °C for 48 

hours before being weighed. The dry weight loss of DSG caused by different enrichments was 

calculated as relative dry weight loss with respect to the abiotic dry weight loss. 
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2.3. Extraction of enzymes 

The enzymes were extracted from the tubes inoculated with different enrichments using the 

procedure of Reddy et al. (2011).  Each tube was added with 10 mL of extraction mixture 

containing 49% ethylene glycol (weight/weight), 1% sodium chloride (weight/weight), 0.01% 

Tween-80 (weight/weight) and 50% of distilled water. The tubes were thoroughly mixed and 

incubated at 25 °C for an hour. After incubation, the enzyme solution was centrifuged at 10,620 

× g for 5 min.  Supernatant was aseptically filtered through a sterile 0.45 µm nylon filter and the 

filtrate was collected. The buffer components in the filtrate were exchanged with sodium citrate 

buffer (0.05M, pH 5) using VivaSpin columns with 5 KDa molecular weight cut off (VivaSpin 

20 MWCO 5000, GE Healthcare Life Sciences) and the enzyme mixture thus obtained was used 

for evaluation of the different enzyme activities.  

2.4. Enzyme Activity Assays 

Exoglucanase activity was evaluated as Avicelase activity whereas endoglucanase 

activity was evaluated as carboxymethyl cellulase (CMCase) activity. Hemicellulase activity was 

evaluated as xylanase activity. Pectinase activity was measured as polygalacturonidase activity. 

CMCase and xylanase activity were measured using the method described by Reddy et al. 

(2011).  Briefly, to evaluate CMCase activity 40 µL of the supernatant was added to 40 µL of 2% 

carboxymethyl cellulose in citrate buffer (0.05 M, pH 5) on PCR plates, sealed and incubated at 

50 °C for 30 min in a thermocycler (Eppendorf, Mastercycler ep gradient). After incubation, 80 

µL of dinitrosalicylic acid (DNS) reagent (Ghose et al., 1987) was added to the wells and sealed 

before being at incubated at 95 °C for 5 min. The PCR plate was allowed to cool to room 

temperature and 100 µL of solution from each well was transferred to new 96-well plate. The 
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absorbance was measured at 540 nm using a plate reader (EON™, BioTek Instruments, Inc., VT, 

USA,). Xylanase activity was evaluated similarly except that supernatant was added to 1% 

birchwood xylan (Sigma-Aldrich Co., MO, USA) in 0.05 M citrate buffer (pH 5) and incubated 

at 50 °C for 10 min prior to addition of DNS and measuring absorbance as above. Avicelase 

activity was evaluated using the same protocol except that 1% Avicel in citrate buffer (0.05 M, 

pH5) was used as the substrate and the mixture was incubated for 60 min. For the above enzyme 

assays, one unit of enzyme activity is defined as 1 µmol of either glucose or xylose released per 

mL of enzyme per min.  

Pectinase activity was measured using 1% polygalacturonic acid solution as the substrate 

and the mixture was incubated for 30 min using the same protocol as used for CMCase assay. 

The galacturonic acid released was measured using the DNS assay as described above for 

CMCase activity. One unit of pectinase activity is defined as 1 µmol of galacturonic acid 

released per mL of enzyme per min. 

β-glucosidase activity was measured using a protocol adapted from German et al. (2012) 

using a 200 µL reaction containing 128 µL of 0.05 M citrate buffer (pH 5), 32 µL of enzyme 

mixture and 40 µL of 4-methylumbiliferone-β-D-glucopyranoside solution (6.77 mg/100 mL 

distilled water; Sigma-Aldrich) as substrate. The mixture was incubated for 30 min at 50 °C and 

then the fluorescence resulting from the release of 4-methylumbiliferone (MUB) as a result of β-

glucosidase activity was measured using a plate reader (Synergy H1) at excitation wavelength of 

365 nm and emission wavelength of 450 nm. Chitinase and xylosidase activities were evaluated 

using the same protocol except for different substrates. The substrate used for chitinase assay 

was 4-MUB-N-acetyl-β-D-glucosaminide (Sigma-Aldrich), whereas the substrate used for 
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xylosidase assay was 4-MUB-β-D-xylopyranoide (Sigma-Aldrich). One unit of enzyme activity 

is defined as 1 nmol of MUB released per milliliter of enzyme per min.   

Ligninase activities were measured as phenol oxidase and peroxidase activities. Phenol 

oxidase activity and peroxidase activity were measured in a 200 µL reaction in 96 well plates. 

Phenol oxidase activity was measured by mixing 100 µL of 25 mM of L-dihydroxy 

phenylalanine (L-DOPA) with 100 µL of the enzyme mixture that was allowed to incubate for 

four hours after which the absorbance was taken at 460 nm. Peroxidase activity was evaluated 

using the same protocol except that the substrate used consisted of 25 mM L-DOPA with 0.3% 

hydrogen peroxide. Phenol oxidase and peroxidase activity are expressed as the change in 

absorbance at 460 nm per hour.  

Total protein concentration in the supernatant was measured using the Bradford assay 

(Bradford, 1976).  The specific activities for different enzymes were calculated by dividing the 

enzyme activity for each enzyme by the total protein measured in the enzyme solution as 

prepared in Section 2.3. 

2.5. Microbial diversity assessment  

DNA was extracted from the cultures using MoBio soil DNA extraction kit (MoBio). 

PCR-denaturing gradient gel electrophoresis (DGGE) was used to assess the diversity in the 

microbial community present in the different enrichments.  PCR-DGGE analysis was performed 

for bacterial communities by electrophoresing the V3 region of 16S rRNA gene amplified using 

a nested PCR protocol. The first step of the nested PCR was performed using 1492R and 8f 

primers in 50 µL reactions with 1 µL (10 µM) forward and reverse primers, 5 µL of template 

DNA, and 25 µL of GoTaq® Green Master Mix (Promega) using a Mastercycler ep gradient 
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(Eppendorf) with the following protocol: initial denaturation at 95 ºC for 10 min followed by 30 

cycles of denaturation at 95 ºC for 45 sec, annealing at 55 ºC for 45 sec, and extension at 72 ºC 

for 1min followed by a final extension at 72 ºC for 5 min. The PCR product obtained was 

purified using QIAquick PCR purification kit (Qiagen) and used as the template for the second 

step. The second step of the nested PCR was performed to amplify the V3 region of 16S rRNA 

gene using PRBA 338F and PRUN 518R (Ovreås et al., 1997) primers using the following 

protocol: 9 min of initial denaturation at 95 ºC, followed by 30 cycles containing denaturation 

step at 94 ºC for 30 sec, annealing stage at 55 ºC for 30 sec, an extension at 72 ºC for 30 sec and 

a final extension at 72 ºC for 7 min. PCR amplifications were carried out in 50 µL reactions with 

1 µL (10 µM) forward and reverse primers, 5 µL of template DNA, and 25 µL of GoTaq® Green 

Master Mix (Promega). 

PCR-DGGE analysis was performed for fungal communities by electrophoresing the ITS 

region gene that was amplified using a nested PCR protocol. The first step of the PCR 

amplification was performed using ITS1F (Gardes and Bruns, 1993) as the forward primer and 

ITS4 (White et al., 1990) as the reverse primer in a 50 µL reaction using the following protocol: 

initial denaturation at 98 oC for 30 sec followed by 30 cycles of denaturation at 98 oC for 10 sec, 

annealing at 55 oC for 20 sec, and extension at 72 oC for 1 min, with a final extension of 7 min at 

72 oC. PCR amplifications were carried out in 50 µL reactions with 1 µL (10 µM) forward and 

reverse primers, 5 µL of template DNA, and 25 µL of GoTaq® Green Master Mix (Promega). 

The PCR product obtained was purified using QIAquick PCR purification kit (Qiagen). The 

second step of the amplification was carried out using the purified DNA from the first step. The 

second step of the amplification was performed using ITS5 (White et al., 1990) as the forward 

primer and ITS2 (White et al., 1990) as the reverse primer using the following protocol: initial 
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denaturation at 98 oC for 30 sec followed by 30 cycles of denaturation at 98 oC for 10 sec, 

annealing at 55 oC for 20 sec, and extension at 72 oC for 1 min, with a final extension of 7 min at 

72 oC. PCR amplifications were carried out in 50 µL reactions with 1 µL (10 µM) forward and 

reverse primers, 5 µL of template DNA, and 25 µL of GoTaq® Green Master Mix (Promega). 

The PCR product was purified using QIAquick PCR purification kit (Qiagen). DNA 

concentrations were measured using Quant-iT™ PicoGreen® dsDNA reagent kit according to 

the manufacturer’s instructions (Life Technologies, USA) and 250 ng of the PCR product was 

electrophoresed for each community.  

PCR products were resolved (Bio-Rad DCode) using an 8% (w/v) polyacrylamide gel in 

1 X TAE buffer using a 35% to 60% denaturing gradient for bacterial community analysis and 

20% to 60% denaturing gradient for fungal community analysis, where 100% denaturant 

contains 7 M urea and 40% formamide. Electrophoresis was carried out at 20 V for 10 min, then 

50 V for 17 hours. DGGE gels were stained for 60 min with SYBR® Safe DNA gel stain in 1 X 

TAE and viewed under UV transillumination (Life Technologies, USA). 

For the analysis of DGGE gel, the band profile for different enrichments was converted 

into a binary matrix based on presence or absence of the bands. The binary matrix was analyzed 

using BiodiversityR package in R (Kindt and Coe, 2008). 

2.6. Enzymatic saccharification of ammonia pretreated switchgrass 

Enzymatic saccharification of DSG was carried out in 10 mL reactions in 50 mL plastic 

BD Falcon tubes™. The reaction mixture contained 5 mL of the enzyme mixture, 5 mL of 0.05 

M citrate buffer (pH 5) and 0.1 g (dry weight) of DSG. The reaction mixture was incubated at 50 

ºC for 24 hours while shaking at 200 rpm for 24 hours. After incubation, samples were collected 
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and analyzed for the release of respective sugars using high performance liquid chromatography 

(HPLC) (Jain et al. 2014). 

The data including dry weight loss, enzyme activities and amount of sugars produced 

during enzymatic saccharification for the mesophilic and thermophilic microbial enrichments 

were compared in multiple comparisons using two-tailed unpaired Student’s t-test. Pearson’s 

correlation coefficient, r, was calculated to assess the correlations between different parameters 

reported in this study. 

3. Results and discussion 

Fifteen of the initial 48 switchgrass microbial enrichments were able to sustain growth 

after 10 successive transfers. Nine grew at 25 ºC whereas six grew at 50 ºC. Percent dry weight 

loss of DSG was measured after 10 days incubation under solid-state culture conditions with the 

results shown in Fig. 1a for the stable mesophilic enrichments and Fig. 1b for the stable 

thermophilic enrichments.  These data are presented as relative dry weight loss as they were 

calculated with respect to results of abiotic controls. Overall, the mesophilic enrichments 

produced a lower relative dry weight loss when compared to the thermophilic enrichments.  

Mesophilic enrichments MC6 and MC3 showed greater relative dry weight loss amongst 

mesophilic enrichments while thermophilic enrichments TD2 and TB2 showed greater relative 

dry weight loss amongst thermophilic enrichments.   

3.1. PCR-DGGE analysis 

PCR-DGGE analysis performed on the sustained enrichments showed considerable 

differences in the bacterial and fungal communities within mesophilic and thermophilic 

enrichments. Greater diversity was observed among the bacterial communities in the enrichments 
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when compared to the fungal communities, which were observed to be much less diverse. Also, 

there was higher diversity found among bacterial communities in mesophilic enrichments when 

compared to the thermophilic enrichments. The fungal and bacterial communities were clustered 

into separate clades based on temperature, as shown in Fig. 2a and Fig. 2b, with exceptions of 

fungal community present in MC2 that was present in the same clade as the fungal communities 

for thermophilic enrichments. 

3.2. Enzyme activities produced by the mesophilic and thermophilic enrichments during 

microbial deconstruction of DSG 

The stable enrichments were assessed for the production of different enzymes required to 

decompose switchgrass. The enzyme activities assessed include Avicelase (exoglucanase), 

CMCase (endoglucanase), xylanase (hemicellulase), phenol oxidase and peroxidase (ligninase), 

pectinase, β-glucosidase, and xylosidase. Chitinase activities were also measured to evaluate the 

possible effects that bacteria might have on the fungal population. Results of the various enzyme 

activities produced by the mesophilic and the thermophilic enrichments are shown in Fig. 3a 

through 3f. The data from enzyme activities produced by different microbial enrichments were 

grouped into either mesophilic or thermophilic for analysis, based on whether the respective 

microbial enrichment was mesophilic or thermophilic. Thermophilic enrichments produced 

higher β-glucosidase activities (alpha=0.05, p=0.0005) and higher xylosidase activities 

(alpha=0.05, p=0.0006) compared to mesophilic enrichments. The thermophilic enrichments also 

produced almost five times the phenol oxidase activity compared to the mesophilic enrichments. 

There were no statistically significant differences observed between mesophilic and thermophilic 

enrichments for the other enzyme activities measured in this study. Table 1 shows the specific 

enzyme activities (enzyme activity/mg total extracellular protein) for different enrichments. The 
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thermophilic enrichments, TC4 and TA3 produced significantly higher specific activities, except 

the phenol oxidase activity for TC4, as compared to the other enrichments. 

3.3. Correlations between enzyme activities and dry weight loss during microbial degradation of 

DSG 

Correlation coefficients were calculated between the dry weight loss for different 

bacterial-fungal enrichments and their respective enzyme activities (Table 2). The correlation 

coefficients were calculated for mesophilic and thermophilic enrichments separately and for the 

enrichments pooled together. Mesophilic enrichments showed positive correlation, except for 

avicelase and phenol oxidase activities, for different enzyme activities as compared to the 

thermophilic enrichments (Table 2). The mesophilic and thermophilic enrichments grouped 

separately, as well as the enrichments pooled together showed positive correlation with the 

CMCase activity. 

3.4. Enzymatic saccharification of DSG 

DSG was saccharified using the enzyme mixture collected from the solid-state culture of 

bacterial-fungal enrichments. As shown in Fig. 4, enzyme mixtures obtained from thermophilic 

enrichments released a greater amount of sugars from DSG compared to the amount of sugar 

released using mesophilic enrichments enzyme mixtures (alpha=0.05, p=0.00007). The 

mesophilic microbial enrichment MC6 was an exception to this result. Enzyme mixtures from 

thermophilic enrichments released a greater amount of xylose from DSG compared to glucose 

(alpha=0.05, p=0.000002). Enzymes collected from thermophilic enrichments released greater 

amount of xylose from DSG compared to the release of xylose using mesophilic enrichments 

enzyme mixtures (alpha=0.05, p=0.000007).  The mesophilic microbial enrichment MC6 was an 
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exception to this result. No significant difference was observed for the amount of glucose 

released from DSG using enzyme mixtures from mesophilic and thermophilic enrichments. 

3.5. Correlation between dry weight loss during microbial degradation of DSG and sugars 

released during enzymatic saccharification of DSG  

There was a positive correlation (r = 0.55) between the dry weight loss observed for 

bacterial-fungal enrichments and the total amount of sugar released when DSG was saccharified 

using enzymes extracted from these enrichments (Fig. 5). Also, there was a positive correlation 

(r = 0.57) between the dry weight loss observed for bacterial-fungal enrichments and the 

concentration of xylose released from DSG using the respective enzyme mixtures. However, 

there was no correlation (r = 0.05) between the dry weight loss observed for different bacterial-

fungal enrichments and the concentration of glucose released from DSG using the respective 

enzyme mixtures.  

Similar results were obtained when data from mesophilic enrichments and thermophilic 

enrichments were pooled separately. The correlation between dry weight loss and total sugars 

released during enzymatic saccharification, however, was much higher for mesophilic 

enrichments (r = 0.54) compared to that for thermophilic enrichments (r = 0.32). Again, there 

was positive correlation between the dry weight loss and the amount of xylose released for both 

mesophilic (r = 0.63) and thermophilic enrichments (r = 0.45), whereas there was no correlation 

between the dry weight loss and the amount of glucose released for either thermophilic and 

mesophilic enrichments. 
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3.6. Correlation between enzyme activities and sugars released during enzymatic 

saccharification of DSG  

As shown in Table 3, a strong correlation was observed between the total concentrations 

of sugars released from DSG using enzymes mixtures collected from different bacterial-fungal 

enrichments and β-glucosidase activity.  Though there was no correlation between β-glucosidase 

activity and the concentration of glucose released from DSG. Interestingly, there was very strong 

correlation observed between β-glucosidase activity and the concentration of xylose released. A 

strong correlation was observed between the total sugars released from DSG and xylosidase 

activity. Xylosidase activity also showed strong correlation with the concentration of xylose 

released and no correlation with the concentration of glucose released during enzymatic 

saccharification.  The two ligninase activities, phenol oxidase and peroxidase activities also 

showed positive correlations with the total concentration of sugar released and the concentration 

of xylose released from DSG during its enzymatic saccharification. 

The bacterial-fungal microbial communities were developed under solid-state culture 

conditions to mimic the natural environmental conditions under which switchgrass bales are 

decomposed on the field. The study was aimed to understand the enzymatic factors affecting the 

decomposition of switchgrass bales on the field and then to use that knowledge to design enzyme 

mixtures for efficient enzymatic saccharification of switchgrass for production of soluble 

carbohydrates. Selection of the microbial community for the production of enzyme mixtures to 

saccharify the switchgrass, therefore, is an important step in this overall process. No single 

enzyme activity can be used to screen for the microbial community because the lignocelluloses 

are decomposed by a concerted action of a number of different enzymes (Santhanam et al., 

2012).  
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Total dry weight loss of DSG observed by the microbial enrichments was used as the 

parameter to select for the microbial enrichment to produce the mixture of lignocellulolytic 

enzymes.  A positive correlation was observed between total dry weight loss and total sugars 

released from DSG during enzymatic saccharification, which supports that dry weight loss can 

be used as a credible parameter to screen for a microbial enrichment to produce enzyme mixture 

for DSG saccharification. Though the r and r2 values (Fig. 5) obtained show moderate to weak 

relationship between the dry weight loss, during DSG decomposition by microbial enrichments, 

and the amount of sugars released during enzymatic saccharification of DSG. This emphasizes 

that dry weight loss can only be used as a qualitative parameter for initial screening of the 

microbial enrichments, and it cannot be used for the purpose of predictive modeling of 

enzymatic saccharification of DSG by the microbial enrichments. The positive correlation 

between the dry weight loss and the amount of sugars released during enzymatic saccharification 

of DSG was dependent on the amount of xylose released during enzymatic saccharification. For 

mesophilic enrichments, the two enrichments that showed highest dry weight loss, MC6 and 

MC3, also showed significantly higher release of xylose than glucose when enzyme mixtures 

were used for saccharification. The incubation time of ten days used in this study may have 

selected for hemicellulose-degrading microbial communities. A longer incubation time during 

the enrichment process may have selected for the microbial community that can saccharify the 

cellulosic fraction efficiently. Also, a longer incubation time may be required for the same 

microbial community to produce more cellulolytic enzymes. 

The dry weight loss of DSG during microbial degradation and the sugars released during 

enzymatic saccharification of DSG showed higher correlation with the β-glucosidase and 

xylosidase activities when compared to other enzyme activities measured in this study. This 
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result suggests that the product inhibition of cellulases and xylanases may play a major role 

during the decomposition of lignocelluloses in the environment and during enzymatic 

saccharification of lignocelluloses. Cellobiose has been shown to inhibit cellulases (Gruno et al., 

2004), whereas xylose has been shown to inhibit the endoxylanases (Khanna and Gauri, 1993). 

Xylo-oligomers have been shown to be the stronger inhibitors of cellulases than cellobiose 

(Kumar and Wyman, 2009; Quing and Wyman, 2011). β-glucosidase and xylosidase remove 

these feedback inhibitions by converting cellobiose and xylo-oligomers to glucose and xylose, 

respectively. In the environment, microorganisms consume the cellobiose and xylo-oligomers as 

lignocelluloses are decomposed whereas during the enzymatic saccharification of lignocelluloses 

cellobiose and xylo-oligomers accumulate when β-glucosidase and xylosidase activities are 

either low or absent. These observations may explain our findings that the correlation between β-

glucosidase and xylosidase activities and the amount of sugars released during enzymatic 

saccharification was much higher when compared to their correlation with the dry weight loss 

during incubation of DSG with the microbial enrichments.  

The lignin present in the lignocelluloses is believed to reduce the accessibility of 

enzymes to cellulose and xylans, thus reducing the effectiveness of the enzymes because of 

unproductive binding to lignin (Kumar and Wyman, 2009; Chang and Holtzapple, 2000; 

Mansfield et al., 1999).  The thermophilic enrichments showing significantly higher ligninase 

activity than the mesophilic enrichments might explain the higher dry weight loss of DSG by the 

thermophilic enrichments. The importance of ligninase activities during the microbial 

decomposition or enzymatic saccharification of the lignocelluloses is further emphasized by the 

results showing positive correlation between the ligninase activities and the concentration of 

sugars released during the enzymatic saccharification of DSG. 
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4. Conclusions 

The bacterial-fungal microbial communities enriched from switchgrass bales were able to 

produce enzymes mixtures required for microbial deconstruction and enzymatic saccharification 

of DSG to produce second-generation biofuels. The results showed that both the microbial 

decomposition and enzymatic saccharification were limited by β-glucosidase and xylosidase 

activities. The analysis further emphasizes the importance of ligninases during the decomposition 

of pretreated biomass, like DSG, used in this study. This result emphasizes the need to study the 

effect of addition of ligninases in the enzyme mixtures used for saccharification of pretreated 

biomass for production of soluble carbohydrates. 
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Figure Legends 

Fig. 1.  Mean dry weight loss of DSG for bacterial-fungal enrichments after incubation for 10 

days (a) mesophilic enrichments (b) thermophilic enrichments. The error bars are represented by 

standard errors. The microbial enrichments labelled with same letter resulted in statistically 

similar dry weight loss. 

Fig. 2. (a) Principal Coordinate Analysis (PCoA) plot for bacterial communities present in the 

bacterial-fungal enrichments (b) cluster analysis for fungal communities present in the bacterial-

fungal enrichments. 

Fig. 3. Enzyme activities for different bacterial-fungal enrichments (a) Avicelase and CMCase 

(b) xylanase (c) β-glucosidase and xylosidase (d) phenyl oxidase and peroxidase (e) pectinase   

(f) chitinase. Error bars are represented by standard errors. The microbial enrichments labelled 

with same letter produced statistically similar enzyme activity. 

Fig. 4. Concentration of sugars released when DSG was saccharified for 24 hours using enzymes 

collected from the different bacterial-fungal enrichments. The microbial enrichments labelled 

with same letter resulted in statistically similar sugar concentration. 

Fig. 5. Relation between the dry weight loss observed for different bacterial-fungal enrichments 

and the sugars released from DSG using the enzyme mixtures collected from bacterial-fungal 

enrichments. 
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Fig. 1a 

 

Fig.1b 

 

 



  

 24

Fig. 2a 

 

 

Fig.2b 
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Fig. 3a 

  

Fig. 3b 
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Fig. 3c 

 

Fig. 3d 
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Fig. 3e 

 

Fig. 3f 
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Fig. 4 
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Fig.5  
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Table Legends 

Table 1. Specific enzyme activities produced by different bacterial-fungal enrichments. 

Avicelase, CMCase, xylanase and pectinase activities are presented as IU mg-1 protein; β-

glucosidase, xylosidase and chitinase activities are presented as nmole MUBS min-1 mg -1 

protein; phenyl oxidase and peroxidase activities are presented as change in absorbance hour -1 

mg -1 protein. 

Table 2.  Correlation coefficients between different enzyme activities and the dry weight loss for 

the bacterial-fungal enrichments. 

Table 3.  The correlation coefficients between different enzyme activities and the sugars released 

during enzymatic saccharification of DSG using enzyme mixtures collected from different 

bacterial-fungal enrichments.  
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Tables 

Table 1. 

Enzyme TC

4 

MB

4 

MC

3 

MB

5 

MC

6 

MD

1 

MC

2 

MC

4 

MA

1 

TD

2 

MB

3 

TB

5 

TA

3 

TB

6 

TB

2 

                

Avicelase 0.17 0.06 0.03 0.05 0.02 0.05 0.15 0.05 0.05 0.07 0.03 0.04 0.2 0.07 0.02 
                

CMCase 0.35 0.02 0.22 0.03 0.15 0.07 0.20 0.14 0.06 0.20 0.15 0.16 0.34 0.27 0.09 
                
β-

Glucosid

ase 

69.3
7 

2.66 5.07 4.77 8.60 5.83 11.9
4 

5.54 2.02 14.5
1 

3.68 14.6
1 

48 18.1
4 

9.92 

                
Xylanase 6.28 0.02 0.95 1.50 0.80 1.23 3.70 1.26 0.31 1.13 0.93 1.22 3.27 1.72 0.90 

                
Xylosida

se 

28.7
6 

3.01 2.50 3.22 3.12 3.35 8.45 4.34 4.07 6.07 3.51 6.11 19.3
3 

9.36 6.93 

                
Phenol 

Oxidase 

0.04
7 

0.00
2 

0.02
6 

0.02
6 

0 0.01
4 

0.03
6 

0.01
1 

0.01
6 

0.03
4 

0.04
0 

0.08
6 

0.60
4 

0.14
2 

0.15
8 

                
Peroxida

se 

0.06
0 

0 0.02
4 

0.02
3 

0.22
2 

0.00
1 

0.03
9 

0.02
2 

0.00
4 

0.04
1 

0.04
0 

0.09
7 

0.76
4 

0.12
0 

0.15
6 

                
Pectinase 0.78 0.14 1.46 0.16 0.11 0.23 0.29 0.29 0.16 0.11 0.07 0.11 0.43 0.33 0.08 

                
Chitinas

e 

45.5
9 

7.36 7.27 4.29 9.59 5.37 20.8
1 

9.30 8.05 11.6
0 

9.66 9.28 36.1
3 

19.9
1 

10.3
0 
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Table 2. 

 

Enzyme Activity 

Measured 

 

Mesophilic 

Enrichments  

 

Thermophilic 

Enrichments  

 

Pooled Mesophilic 

and Thermophilic 

Enrichments  

Avicelase -0.45 -0.01 -0.17 

CMCase 0.73 0.34 0.30 

β-Glucosidase 0.88 -0.18 0.43 

Xylanase 0.42 -0.26 0.04 

Xylosidase 0.30  0.06 0.46 

Phenol Oxidase -0.04 -0.03 0.31 

Peroxidase 0.69 -0.06 0.27 

Pectinase 0.55  0.11 0.06 

Chitinase 0.56 -0.13 0.26 
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Table 3. 

Enzyme Activity Glucose Released Xylose Released Total Sugars  

Avicelase 0.09 -0.38 -0.34 

CMCase 0.01 0.24 0.22 

β-Glucosidase -0.02 0.88 0.81 

Xylanase 0.42 0.14 0.23 

Xylosidase 0.03 0.79 0.75 

Phenol Oxidase 0.07 0.54 0.52 

Peroxidase -0.07 0.52 0.47 

Pectinase -0.31 -0.16 -0.23 

Chitinase 0.05 0.46 0.45 
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Highlights 

• Bacterial-fungal consortia deconstructing ammonia pretreated switchgrass (DSG). 

• Consortia produced cellulases, xylanases, pectinases, chitinases and ligninases. 

• Correlation analysis conducted on enzyme activities and deconstruction of DSG.  

• β-glucosidase and xylosidase activities limited deconstruction of DSG. 

• Ligniniase activity plays an important role during deconstruction of DSG. 
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