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Abstract 

 Two laboratory experiments documented the effects of mesograzer feeding (i.e., the 

gastropod Crepidula ustulatulina and the isopod Paracerceis caudata) on phenolic acid and 

condensed tannin production in two regionally abundant seagrasses (Thalassia testudinum 

(turtlegrass) and Halodule wrightii (shoalgrass)). Subsequent paired choice experiments tested 

the hypothesis that phenolic acids and condensed tannins produced by these seagrasses deter 

mesograzer feeding. At the scale of the shoot, grazing by gastropods and isopods led to ~40-50% 

decreases in concentrations of some phenolic acids and ~20% decreases in condensed tannins in 

turtlegrass leaves. At a more refined spatial scale, concentrations of two of these compounds 

increased by 25-85% in areas near tissues damaged by C. ustulatulina and P. caudata in 

turtlegrass. In contrast, isopod feeding increased concentrations of some shoalgrass phenolic 

acids by about 30-50%, while gastropod grazing led to approximately 25-50% higher 

concentrations of condensed tannins in shoalgrass leaves, suggesting that grazer identity and 

seagrass species play important roles in seagrass deterrent production. Amphipods (Batea 

catharinensis) consistently preferred agar food made from seagrass leaves with low phenolic 

concentrations in choice feeding experiments, indicating that phenolics can act as feeding 

deterrents to these mesograzers.   

Keywords:   Thalassia testudinum, Halodule wrightii, condensed tannins, phenolics, grazer  

Introduction 
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While the ability of inducibly produced chemical compounds to deter attacks by 

herbivores is well known for terrestrial food webs (Agrawal 1999), the efficacy of such 

episodically produced compounds in deterring attacks by marine herbivores remains 

inadequately understood. Historically, marine studies have focused on documenting the ability of 

these compounds to alter herbivore feeding preferences and determine the persistence of 

macroalgae in areas of intense grazing (e.g., Hay 1996, Targett and Arnold 1998). Notably, most 

studies detected the presence of induced feeding deterrents, suggesting that this defense strategy 

is widespread among marine macroalgae (but see Steinberg 1994 and Long and Trussell 2007). 

In some cases, the presence of chemical deterrents in macroalgae is highly localized, 

concentrated in tissues perceived to be valued by the plant (Steinberg 1984, Macaya et al. 2005, 

Lima et al. 2008, Pansch et al. 2008, Rhode and Wahl 2008). In other cases, the production of 

these deterrents is spatially limited to areas near grazing injuries (Järemo et al. 1999, Hemmi et 

al. 2004), which is hypothesized to lead to the dispersion of damage caused by mesograzers to 

other parts of the plant, indirectly reducing breakage that would occur if these grazers continued 

to feed in the damaged area (Hemmi et al. 2004).  

A growing body of literature supports the hypothesis that chemical feeding deterrents are 

similarly inducibly produced by multiple seagrass species from several locations (Aragones et al. 

2006, Moran and Bjorndal 2007, Arnold et al. 2008). In most cases, though, seagrass responses 

resulted from mechanical simulations of vertebrate grazing, with few studies utilizing either live 

animals or invertebrate herbivores. It is unclear if observed differences in compound 

concentrations in these studies were due to experimental artifacts attributable to the mechanical 

damage of the leaves (Baldwin 1990) or due to seagrasses using different defense strategies to 

deter future grazer damage.  
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All of the studies testing herbivore-induced production of chemical feeding deterrents in 

seagrasses to date have used macrograzers. The ability of smaller mesograzers to induce the 

production of these feeding deterrents remains unknown, despite an accumulating body of 

evidence showing that mesograzers can heavily damage marine angiosperms (Unabia 1980, 

Zimmerman et al. 1996, 2001, Boström and Matila 2005, Rueda et al. 2009). As such, it stands to 

reason, when coupled with our previous study using an urchin macrograzer, that seagrasses 

might use inducibly produced chemical compounds to deter grazing by these small herbivores 

(cf., Hay 1996, Steele and Valentine 2012). 

While there have been several evaluations of the ability of grazers, or simulated grazing, 

to induce chemical responses in seagrasses (Aragones et al. 2006, Moran and Bjorndal 2007, 

Arnold et al. 2008), to date, few studies have assessed of the efficacy of these compounds as 

feeding deterrents. Extracts from Zostera marina leaves thought to contain phenolic acids have 

been shown to deter amphipod feeding (Harrison 1982). Verges et al. (2007) documented the 

deterrent properties of Posidonia oceanica extracts, which contained both lipophilic metabolites 

and hydrophilic metabolites (e.g., phenolics), against attacks by herbivorous fish, sea urchins, 

and a gastropod. In the latter study P. oceanica extracts were found to deter feeding by some 

consumers but not others. These studies show that chemical compounds can act as deterrents to 

feeding by some seagrass herbivores. 

Although it seems that chemical deterrents can reduce seagrass losses to herbivory, it 

should be noted that elevated nitrogen, which co-varies with some phenolics (Cronin 2001), can 

trigger grazing by vertebrates. McGlathery (1995) and Goecker et al. (2005) independently found 

that bucktooth parrotfish preferentially consumed nitrogen-rich turtlegrass leaves. Goecker et al. 

(2005) also reported low phenolic concentrations in turtlegrass leaves high in nitrogen, 
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alternatively suggesting that phenolics may have played a contributory role in determining 

parrotfish feeding preferences. In addition, turtles have been found to preferentially feed on 

nitrogen-rich turtlegrass leaves (Bjorndal 1985). Notably, no studies have assessed the effects of 

nitrogen on mesograzer feeding preferences in seagrasses. 

 In some cases, grazer identity, in addition to grazer density, can also determine plant 

production of feeding deterrents.  Grazer-specific changes in the production of deterrent 

compounds have been documented in a number of terrestrial plants (Valkama et al. 2005, Van 

Zandt and Agrawal 2004, Stout et al. 1998, Traw and Dawson 2002). Gastropod (Littorina 

obtusata) grazing can similarly induce the production of chemical feeding deterrents in brown 

algae (Ascophyllun nodosum), while isopod (Idotea granulosa) grazing cannot (Pavia and Toth 

2000). In the only seagrass example that we know of, Arnold et al. (2008) found that turtlegrass 

responded differently to simulated parrotfish grazing and live sea urchin grazing. Given the 

prevalence of grazer-specific responses in other plant species, it seems likely that many 

seagrasses would also exhibit such responses to herbivory. 

This study examined the extent to which mesograzer identity, using two mesograzers (the 

gastropod Crepidula ustulatulina and the isopod Paracerceis caudata), can affect seagrass 

production of phenolic acids and condensed tannins. Although gastropods of the genus 

Crepidula are assumed to be filter feeders (Hoagland 1979), C. convexa individuals, only 

recently distinguished from C. ustulatulina (Collin 2002), are known to feed on algae using the 

radula as juveniles (Hoagland 1979). A well-developed radula is retained by C. convexa into 

adulthood (Hoagland 1979), suggesting that this gastropod is capable of feeding directly on plant 

tissue even as an adult. Radula scars were apparent on seagrass leaves occupied by C. 

ustulatulina in the field, as well as on leaves harvested during laboratory experiments where no 
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other grazers were present. Coupled with the fact that these animals were found on the inner 

leaves of turtlegrass, where there are few epiphytes, this evidence indicates C. ustulatulina does 

consume seagrass tissue. 

  We also sought to determine the generality of any responses to grazing using two 

seagrass species (turtlegrass Thalassia testudinum and shoalgrass Halodule wrightii) common to 

the northern Gulf of Mexico. Additionally, this study aimed to determine if differences in leaf 

damage (by C. ustulatulina and P. caudata) also triggers differences in the production of these 

compounds (i.e., systemically (across all leaves on a grazed shoot) or locally (higher 

concentrations near mesograzer damage)). Leaves of seagrasses at our study site were previously 

documented to contain low levels of phenolic acids and condensed tannins (Steele et al. 

unpublished data), so an induced response should have been detectable, if in fact, seagrasses 

produce these compounds to deter attacks by mesograzers. Lastly, we tested the hypothesis that 

co-varying concentrations of phenolic acids and leaf nitrogen in the leaves of these two 

seagrasses can, cumulatively or interactively, determine feeding preferences of two locally 

abundant crustacean mesograzers (P. caudata and the amphipod Batea catharinensis). 

Materials & Methods 

Study Species Collection 

Because it was nearly impossible to create a true mesograzer-free control treatment in the 

field (c.f. Carpenter 1986), two separate laboratory experiments were conducted to answer the 

questions posed above. Mesograzers and plants were collected from the Gulf Islands National 

Seashore in Perdido Key, FL. Isopods and amphipods were collected by anchoring pre-rinsed, 

cut-to-fit, air conditioner filters within mixed turtlegrass and shoalgrass meadows, using rebar, 

(Rabalais et al. 1995) for three to five days. Upon retrieval, filters were immediately rinsed over 
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large plastic containers filled with ambient seawater. After rinsing, the retained organisms and 

seawater were poured over a 500 µm sieve, and a pipette was used to transfer isopods and 

amphipods captured on the sieve to aerated buckets filled with seawater. 

 Gastropods, Crepidula ustulatulina, were collected from the surfaces of turtlegrass leaves 

by hand. Gastropods were placed in an aerated bucket containing seawater as well, then 

transported to the laboratory, where animals were acclimated to laboratory conditions and 

starved for 24 hours prior to the start of each experiment.   

Approximately 250 turtlegrass shoots with intact roots/rhizomes were collected from the 

same site as the mesograzers and transported to the lab in aerated buckets, and animals were 

removed from each shoot by hand. Shoots were then rinsed with fresh water for five minutes to 

remove remaining undetected animals, then returned to aerated containers holding clean seawater 

(free of the detritus from previously held shoots). First and second rank leaves (youngest and 

next youngest leaves) were chosen for chemical analysis because they are considered to be of 

greater photosynthetic value to the plant than older outer leaves (Durako and Kunzelman 2002), 

and we predicted that, if seagrasses produce chemical deterrents in response to grazing, the 

responses were more likely to be detected in these leaves. For this reason, older leaves were 

removed prior to placement of each shoot in laboratory mesocosms. Approximately 800 

Halodule wrightii shoots, also with intact roots/rhizomes, were collected for the second 

experiment. Animals and leaves older than first and second rank were removed from shoots, as 

described above, prior to placement of each shoot in laboratory mesocosms. All plants were 

acclimated to laboratory conditions for 18-24 hours prior to use in experiments. 

Laboratory Induction Experiments 
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Two separate laboratory induction experiments were designed for each of the seagrass 

species to test three competing hypotheses: 1) grazing induces production of phenolic acids and 

condensed tannins on both leaves of a seagrass shoot, 2) grazers induce production of phenolic 

acids and condensed tannins only in damaged leaves and not in ungrazed leaves on grazed 

shoots, and 3) grazing induces production of phenolic acids and condensed tannins only in areas 

in close proximity to the wounded area of a grazed leaf.   

Ten of the harvested turtlegrass shoots were haphazardly selected for placement into each 

of 18 cylindrical 38 L tanks containing filtered seawater obtained from the U.S. Environmental 

Protection Agency Laboratory in Gulf Breeze, Florida (USA). To ensure that the selected plants 

were healthy, and to evaluate the possibility that production of chemical deterrents is costly for 

seagrasses, the leaves of an additional two shoots/tank (n = 36 shoots) were marked by 

puncturing the base of the leaves with a hypodermic needle and placed in each tank to document 

treatment effects on growth during each experiment (Valentine and Heck, 2001).   

Three grazer treatments, consisting of a control (no grazers), gastropods, or isopods, each 

stocked at field densities, were randomly assigned to each tank.  Each treatment was replicated 

six times (n=18 tanks). No grazers were added to the six control tanks, which were examined 

periodically to ensure that controls were grazer free. In the gastropod treatment, replicate tanks 

were stocked with 12 individuals (one/shoot), similar to densities observed in the field. Each 

isopod replicate was stocked with four individuals, similar to densities reported by Valentine and 

Heck (1993). To avoid pseudo-replication (sensu Hurlbert 1984), tanks were aerated individually 

rather than using a recirculating seawater system. Salinity and temperature were held constant at 

30 psu and 28-30 °C, respectively, to mimic field conditions at the time of collection, and lights 

operated on a 12 hour light: 12 hour dark cycle. Grazers were allowed to feed for 15 days. 
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Seagrass shoots were held in bare-root culture (no sediment in the tanks) for the 

experiment’s duration. This method has been successfully used in short-term turtlegrass culture 

experiments to assess phenolic induction (Steele et al. 2005, Arnold et al. 2008). Two 2.0 ml 

microcentrifuge tubes filled with sterilized playground sand were attached to the base of each 

shoot with plastic cable ties to weight the shoots. Again each tank was considered to be a 

replicate.   

 Turtlegrass leaves were harvested after 15 days. Leaves within each replicate tank were 

pooled according to rank to ensure sufficient tissue was available for chemical analysis. To test 

the hypothesis that production of deterrents is limited to grazed areas of leaves, rather than being 

induced throughout all of the leaves on a shoot, grazed turtlegrass leaves taken from replicate 

grazing treatments were further subdivided and assigned to one of four categories according to 

distance from the wound (cf. Ralph and Short 2002, Steele et al. 2005): the damaged (grazed) 

area of leaf tissue, leaf tissue 2 cm above the damaged tissue, 2 cm below grazer damage, and 

remaining tissue (>2 cm above and below grazing scars). Tissues > 2 cm above grazer damage 

and > 2 cm below grazer damage were pooled to ensure sufficient tissue for analysis. These 

tissue categories were chosen based on previous studies which showed that seagrass 

physiological responses can vary with proximity to damage (Ralph and Short 2002, Steele et al. 

2005). Ungrazed leaves from control treatments and ungrazed leaves from shoots in which at 

least one leaf was grazed were harvested separately and formed two additional turtlegrass tissue 

categories.   

Ungrazed leaves from shoots on which at least one leaf was grazed were separated into 

another category to test the hypothesis that production of chemical deterrents by seagrasses is 

systemic. If true, grazing on older leaves should lead to an increase in production of phenolic 



 9 

acids and condensed tannins in ungrazed younger leaves on the same shoot, which would not be 

expected if chemical responses to grazing are highly localized. Tissues from damaged leaves 

were pooled to address the hypothesis that grazing induces production of phenolic acids and 

condensed tannins on all leaves of a grazed seagrass shoot. 

Because H. wrightii shoots are much smaller and thinner than T. testudinum shoots, ten 

haphazardly selected groups of five shoots were placed in each replicate tank and anchored using 

sand-filled microcentrifuge tubes in the second experiment as previously described. Otherwise, 

this experiment was identical to the T. testudinum experiment. Two additional groups of five 

shoots were marked for growth measurements and placed in each tank as well. Because damage 

was observed along much of the length of all shoalgrass leaves from tanks with grazers, 

shoalgrass leaves could not subdivided according to distance from a wound. 

In both experiments, leaf samples were flash frozen in liquid nitrogen immediately after 

harvesting and stored in a -80 °C freezer to prevent oxidation of phenolics in the leaves. In 

preparation for chemical analysis, samples were freeze-dried then ground in liquid nitrogen. 

Ground samples were returned to the -80 °C freezer until chemical analysis. 

Chemical Analyses 

High performance liquid chromatography (HPLC) was used to quantify the 

concentrations of each of the phenolic acids identified in turtlegrass and shoalgrass leaf tissues 

following Ravn et al. (1994). HPLC was performed using a C-18 column and an isocratic solvent 

system (1:1:7 methanol: 2-propanol: 2% acetic acid) with a flow rate of 0.8 ml/min and a 

wavelength of 254 nm. Tissue samples were co-injected with nine of the most common of the 

phenolic acids reported in seagrasses (Zapata and McMillan 1979), one phenolic acid at a time, 

to identify peaks. Six of the nine targeted phenolic acids were detected in turtlegrass leaves:  
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gallic acid, 3,4-dihydroxybenzoic acid, vanillic acid, p-hydroxybenzoic acid, ferulic acid, and p-

coumaric acid. Concentrations of these six phenolic acids were summed to calculate combined 

phenolic acids in turtlegrass. Seven phenolic acids were identified in shoalgrass:  gallic acid, 3,4-

dihydroxybenzoic acid, syringic acid, gentisic acid, p-hydroxybenzoic acid, ferulic acid, and p-

coumaric acid. Since gentisic acid was present in only a few samples, and these few samples 

encompassed all three treatments, it was excluded from statistical analyses and calculations of 

combined phenolic acids. Thus, six phenolic acids, excluding gentisic acid, were summed to 

calculate combined phenolic acids in shoalgrass. A number of peaks present in the HPLC 

chromatographs remained unidentified; therefore, it is likely that additional phenolic acids were 

present in both turtlegrass and shoalgrass.   

The colorimetric assay described by Arnold and Schultz (2002) was used to quantify 

condensed tannin concentrations in the samples. Because a commercially available quebracho 

tannin standard was used for this analysis rather than a standard made from seagrass tannins, 

values generated should not be considered absolute concentrations. However, these values did 

provide the basis to make comparisons of treatment effects on the production of feeding 

deterrents in the leaves of Thalassia testudinum and Halodule wrightii. 

Feeding Preference Experiments 

 Because assessments of plants’ ability to inducibly produce feeding deterrents cannot be 

done via simple comparisons of compound concentrations in damaged and undamaged tissues 

(Hay 1996), we also assessed the impacts of phenolic acid concentrations on mesograzer feeding 

preferences. Eight paired choice feeding experiments were conducted using two common 

mesograzers (four experiments with each grazer, see Table 1): the isopod Paracerceis caudata 

and the amphipod Batea catharinensis. The gastropod Crepidula convexa was not used in the 
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agar-based feeding experiments due to the nature of its grazing in the laboratory induction 

experiments. In this treatment, Crepidula removed only thin layers of epidermal tissue, 

suggesting that it would not consume detectable quantities of the agar food during the feeding 

trials.  

Because consistent treatment effects on the production of feeding deterrents were not 

detected (see Results), we collected seagrass leaves from areas with naturally varying nitrogen 

and phenolic content to test their relative effects on mesograzer feeding preferences. Variation in 

leaf phenolic and nitrogen concentrations in turtlegrass and shoalgrass leaves was documented at 

these two sites in the Florida panhandle (St. Joseph’s Bay and Perdido Bay) during a separate 

survey (Steele et al. unpublished data), allowing us to use seagrass leaves from these two sites as 

high and low phenolic and nitrogen treatments in our feeding experiments (Table 1). The paired 

choices presented in Table 1 were offered to mesograzers in eight separate laboratory feeding 

experiments (four experiments per mesograzer). Leaf pairs with comparable nitrogen 

concentrations (Experiment 2, see Table 1) were included to control for preferences based on 

nitrogen, rather than phenolics. Leaf pairs with similar phenolic and nitrogen concentrations 

(Experiment 3) were used to consider the possibility that other factors determined mesograzer 

feeding preferences, which would be indicated if a preference for one treatment or the other were 

detected in Experiment 3 (see Table 1). Each of these four experiments was conducted first using 

isopods then repeated with amphipods, for a total of eight choice feeding experiments. 

In order to quantify leaf consumption, while controlling for possible structural differences 

within leaves between sites and species on mesograzer feeding preferences, seagrass tissue was 

ground into a powder as previously described, then embedded in an agar matrix following Hay 

(1984) and Goecker et al. (2005). A mixture of 20 ml distilled water and 0.3 g agar was heated 
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then allowed to cool for approximately five minutes before adding 0.4 g (shoalgrass) or 0.6 g 

(turtlegrass) of ground seagrass tissue (amount of tissue in a seagrass leaf of equivalent length 

and width) to the mixture. This mixture was poured over pre-cut window screen (20 strips cut to 

5 mm x 17 cm), with the bottom 2 cm of screen covered with tape to allow for the attachment of 

two vinyl-covered paperclips to anchor the “leaves” in experimental tanks. An acrylic sheet 

covered the strips until the agar solidified to ensure a uniform “leaf” thickness.   

Mesograzer consumption was quantified by counting the number of empty squares 

present on the window screen at the end of each trial (after 24 hours). Trials in which no 

evidence of grazing was detected were omitted from subsequent statistical analyses, as they 

provided no information on mesograzer feeding preferences. Autogenic controls (leaf pairs 

without mesograzers) were included in each experiment to account for agar loss due to handling. 

It should be noted that agar loss was not observed in any of the autogenic control trials. Since the 

isopods failed to consume quantifiable amounts of agar food after 24 hours, the experimental 

duration was lengthened to 5 days for this comparison. 

Chemical extraction and analysis were performed on agar leaves after soaking in 

seawater for 24 hours using methods described above to ensure that the process of making the 

agar food did not degrade phenolic acids in seagrass tissue embedded in agar and that phenolics 

were not leached completely from the agar during the experiments. Phenolic acid concentrations 

in agar leaves were approximately 50-60% of concentrations observed in a previous survey 

(Steele et al. unpublished data), so the likelihood of our making a type one error seems small. 

Paracerceis caudata (used in the initial choice experiments) and Batea catharinensis 

(used in the subsequent choice experiments) were collected and processed as described above.   

Identical methods were used for choice tests using P. caudata and B. catharinensis. Individual 
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grazers were not re-used in these experiments. Prior to an experiment’s start, 3 individuals of 

approximately the same size were placed in 15 replicate 1 L glass jars, each equipped with an air 

stone (n=3 mesograzers/jar, n=15 replicate jars/experiment) and held for 24 hours without food. 

After 24 hours, one of the agar leaf pairs described above (e.g., one leaf made with turtlegrass 

tissue from St. Joseph’s Bay and one leaf made with turtlegrass tissue from Perdido Bay) was 

placed in each of the 15 treatment jars.  Additional leaf pairs were placed in three other jars 

without mesograzers to serve as autogenic controls. High- and low-phenolic agar treatments 

were differentiated from each other using different colored paperclips, which also anchored the 

base of the strips to the bottom of experimental jars. After 24 hours, agar leaves were removed 

from the jars, and the number of empty squares was recorded (evidence of feeding). 

Statistical Analysis 

To test the hypothesis that grazing by gastropods and isopods triggers increased 

production of phenolic compounds in turtlegrass and shoalgrass leaves, leaf chemical 

concentrations were compared among treatments using a 2-way Analysis of Variance (ANOVA) 

with leaf rank and grazing treatment (control, gastropod, and isopod) as factors. Leaf rank was 

included to determine if the plants limited production of these potential feeding deterrents to 

younger, more valuable leaves. When significant treatment effects were detected (p < 0.05), 

posthoc Tukey multiple comparison tests were used to identify where significant treatment 

impacts existed. To ensure that the data satisfied the assumptions of ANOVA, a normality test 

was conducted prior to all statistical tests. Levene’s homogeneity of variance tests were also 

conducted to test for equal variance among treatments in all tests (Zar 1999). Data were arcsine 

transformed prior to statistical analysis (Sokal and Rohlf 1995). In all cases, the results of 

statistical comparisons were considered significant when p < 0.05. Separate statistical 
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comparisons were conducted for each of the phenolic acids detected in turtlegrass (n=6) and 

shoalgrass leaves (n=6), for combined phenolic acids, and for condensed tannins. Although 

multivariate analysis of variance (MANOVA) would be the most appropriate analysis if our 

phenolic acid concentrations co-varied (Quinn and Keough 2002), initial correlation matrices 

detected little covariation among phenolic acids in our dataset; thus, univariate ANOVAs on 

each compound were used.  

To test the competing hypothesis that grazing triggered localized production of potential 

feeding deterrents in turtlegrass, separate one-way ANOVA’s were also conducted on each of the 

phenolic acids and the condensed tannin concentrations with tissue location (ungrazed leaves, 

grazed area, 2 cm above grazer damage, 2 cm below grazer damage, and remaining tissue from 

grazed leaves) serving as a treatment in the turtlegrass experiment. Separate ANOVA’s were 

conducted for each grazer, compound, and leaf rank in the turtlegrass experiment. One-way 

ANOVA’s were used rather than a single 3-way ANOVA due to insufficient degrees of freedom 

when leaf rank and grazer were included as factors in the test. 

Paired t-tests were used to compare agar consumption in the feeding experiments.  

Because isopods did not visibly consume agar food in any experiment, statistical analyses were 

only performed on data collected during the amphipod feeding experiments. Since there were no 

changes in autogenic controls, these data were not included in subsequent analyses. Agar leaf 

consumption was log transformed (y + 1) to normalize the data. Results were considered 

significant at p < 0.05. Four separate t-tests were performed, one for each of the amphipod 

feeding experiments.   

Results 

Turtlegrass Experiment 
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 Unexpectedly, the 2-way ANOVA’s showed that grazer identity had significant negative 

impacts on the production of condensed tannins and several, but not all, of the identified 

phenolic acids in turtlegrass leaves (Figure 1). When significant differences were detected 

among grazer treatments, pairwise comparisons showed that concentrations of these potential 

feeding deterrents tended to be lower in leaves taken from tanks containing gastropods or 

isopods than in ungrazed control treatments (Figure 1), contrary to our hypothesis. These 

responses were comparable in first and second rank leaves, although fewer compounds in the 

older leaves differed among grazer treatments. Turtlegrass’ response to isopod feeding was 

stronger than it was to gastropod feeding (Figure 1). Leaf rank affected concentrations of only 

two phenolic acids, p-hydroxybenzoic acid (F1, 93 = 8.03; p = 0.006) and vanillic acid (F1, 81 = 

54.77; p < 0.001). In both cases, concentrations were higher in first rank leaves than in second 

rank leaves. No interaction between grazer and leaf rank was detected in any of the 2-way 

ANOVA’s. 

 Because we found no evidence that mesograzer feeding induced production of phenolic 

compounds in turtlegrass at the shoot level, we considered the possibility that grazing triggered 

production of phenolic compounds only in damaged leaves and that, more specifically, induction 

occurred only in areas in close proximity to the grazing wound but was masked by declines in 

phenolic concentrations in areas away from the wound. This was true only for vanillic acid in 

first rank turtlegrass leaves in the gastropod treatment, which increased in tissue directly above 

gastropod damage than in any other tissue location on first rank leaves (F5, 28 = 6.13, p = 0.001; 

Figure 1), consistent with our hypothesis. In contrast, concentrations of ferulic acid and 

condensed tannin concentrations of damaged first rank turtlegrass leaves decreased significantly 

in areas near grazing wounds (F5, 27 = 4.51; p = 0.006 for ferulic acid; F5, 26 = 4.04; F5, 24= 8.45, p 
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< 0.001 for condensed tannins; Figure 1), contrary to our predictions but consistent with results 

at the shoot level. No significant differences in the concentration of any phenolic acid, total 

phenolic acids, or condensed tannins were detected in the one-way ANOVA’s conducted on 

damaged second rank turtlegrass leaves. 

Grazing by isopods locally affected the concentrations of only one compound in second 

rank turtlegrass leaves (Figure 1). In contrast to the gastropod treatments, concentrations of 

individual phenolic acids and total phenolic acids did not vary with distance from damage in first 

rank turtlegrass leaves grazed by the isopod P. caudata (Figure 1). Localized impacts of isopod 

grazing led higher concentrations of p-coumaric acid in the grazed area than in all other tissues 

except tissue directly above grazer damage (F4, 19 = 7.71, p = 0.001; Figure 1).  

 Turtlegrass growth did not vary significantly among treatments (F2, 17 = 0.09, p = 0.910). 

Shoalgrass Experiment 

 Unlike the turtlegrass experiment, results of the shoalgrass experiment were largely 

consistent with the hypothesis that mesograzer feeding induces production of some phenolic 

compounds in shoalgrass. Two-way ANOVA’s showed that grazer treatment had significant 

effects on shoalgrass production of condensed tannins, p-hydroxybenzoic acid, and combined 

phenolic acids, but not the other five compounds measured (Figure 2). Leaf rank did not have a 

significant effect on the concentrations of any of the individual compounds measured. A 

significant interaction between grazer and leaf rank was detected, however, in the ANOVA 

conducted on combined phenolic acid concentrations (F1, 34 = 3.32, p = 0.05), but no significant 

interactions were detected in any of the other 2-way ANOVA’s. Grazing by gastropods and 

isopods affected the production of different compounds. Both first and second rank shoalgrass 

leaves from the treatments stocked with gastropods contained more condensed tannins than did 
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leaves taken from the control treatments (F2, 28 = 13.26, p < 0.001, Figure 2). Concentrations of 

p-hydroxybenzoic acid (F2, 16 = 5.88, p = 0.014) and combined phenolic acids (F2, 16 = 5.92, p = 

0.014) were higher in first rank leaves from isopod treatments than in first rank leaves from 

control treatments (Figure 2). 

Shoalgrass growth did not vary significantly among treatments (F2, 17 = 1.05, p = 0.375). 

Feeding Preference Experiments 

 In all choice feeding experiments, amphipods consumed significantly more of the low-

phenolic seagrass treatment. When given a choice between agar containing Thalassia testudinum 

tissue collected from Perdido Bay (low phenolics, low N) and agar containing T. testudinum 

collected from St. Joseph’s Bay (high phenolics, high N), amphipods consumed significantly 

more of the agar made with turtlegrass from Perdido Bay (t = 2.76, p = 0.017, Figure 3A). 

Similarly, when given a choice between agar containing Halodule wrightii tissue collected from 

Perdido Bay (low phenolics, no difference in N) and agar containing H. wrightii collected from 

St. Joseph’s Bay (high phenolics, no difference in N), amphipods again consumed significantly 

more of the agar made from shoalgrass collected from Perdido Bay (t = 1.95, p = 0.038, Figure 

3B).  Importantly, amphipods consumed similar amounts of each treatment (t = -0.30, p = 0.385, 

Figure 3C) when offered agar made from turtlegrass collected from Perdido Bay and agar food 

made from shoalgrass collected from Perdido Bay (no difference in phenolics or N).  When 

offered agar food made from turtlegrass collected from St. Joseph’s Bay (high phenolics, high N) 

and agar food made from shoalgrass collected from St. Joseph’s Bay (low phenolics, low N), 

amphipods consumed significantly more of the agar made from shoalgrass (t = -3.15, p = 0.010, 

Figure 3D). 

Discussion 
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We predicted that mesograzer feeding would lead to elevated phenolic concentrations in 

the leaves of both Thalassia and Halodule and that phenolics may act as feeding deterrents 

against these small grazers. This was true to some extent in experiments using Halodule (Figure 

2), but not Thalassia (Figure 1), and seagrass responses varied with grazer identity. In Halodule, 

feeding by gastropods led to increased levels of condensed tannins in grazed first and second 

rank leaves, while feeding by isopods led to increases in p-hydroxybenzoic acid and combined 

phenolic acids only in the youngest leaves (Figure 2). Concentrations of phenolic compounds 

were generally lower in turtlegrass leaves taken from the grazer treatments than in leaves taken 

from grazer-free controls (Figure 1). This suggests that the plant perceives production of 

phenolic compounds to be costly in some undetected way, as we found no evidence of an impact 

on shoot-specific growth. These results are consistent with those of Darnell and Heck (2013), 

who found that turtlegrass leaves grazed by parrotfish contained lower total phenolic 

concentrations than ungrazed leaves.   

Grazer identity seems to play an important role in determining when a plant will produce 

potential chemical deterrents, with different grazers eliciting unique plant responses. Our results 

support the idea that mesograzer identity may be important in determining the effects of grazing 

on production of chemical deterrents by some seagrasses, since grazing by both Paracerceis 

caudata and Crepidula ustulatulina resulted in unique changes (either increases or decreases) in 

Thalassia testudinum and Halodule wrightii leaf phenolic concentrations, with different 

responses exhibited by the two seagrass species (Figures 1 & 2). The different seagrass responses 

to different grazers observed here are consistent with results from macroalgae.  Pavia and Toth 

(2000) showed that gastropod grazing induced production of chemical feeding deterrents in 

brown algae, but isopod grazing did not. Other studies have also shown that variance in grazer 
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composition elicits different chemical responses in turtlegrass (Moran and Bjorndal 2007, Arnold 

et al. 2008). 

 Changes in plant chemical composition alone are not sufficient to infer that those 

compounds act as an inducible defense; impacts of differences in deterrent compound production 

on herbivore feeding preferences must also be assessed (Hay 1996). In addition, compounds that 

deter feeding by one herbivore may not deter feeding by another (Hay 1996), and plants can 

respond differently to feeding by different grazer species (Pavia and Toth 2000). Because of this, 

we tested the palatability of seagrasses with differing phenolic concentrations to two 

mesograzers (the isopod Paracerceis caudata and the amphipod Batea catharinensis). Although 

P. caudata feeding resulted in changes in phenolic concentrations in the leaves of both Thalassia 

and Halodule in the laboratory induction experiments, this isopod failed to consume quantifiable 

amounts of seagrass leaves embedded in the agar used in the feeding preference experiments. We 

cannot, therefore, make a statement as to how phenolics affect seagrass palatability for this 

isopod.  When amphipods were presented with a choice between seagrasses containing either 

high or low phenolic concentrations, they always fed more heavily on the phenolic-poor food, 

even when it contained lower levels of nitrogen than the phenolic-rich food (Figure 3). Because 

phenolics deterred feeding by amphipods and grazing led to elevated concentrations of phenolics 

in Halodule wrightii leaves in the induction experiments, phenolics may act as a chemical 

defense against mesograzers in this seagrass species. 

 It should be noted that the use of agar rather than whole seagrass leaves may have 

introduced unidentified artifacts into the feeding preference experiments (cf. Peterson and Black 

1994). Since agar was used in all treatments in the feeding experiments, artifacts should have 

been the same across all treatments and experiments. The amphipod Batea catharinensis fed well 
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on the agar offered in the feeding preference experiments, but the isopod Paracerceis caudata 

failed to feed on the agar, despite having fed on live seagrass tissue in the induction experiments. 

This indicates that agar was not suitable for assessing this isopod’s feeding preferences.   

Nitrogen content in seagrass leaves is thought to be a key determinant of which leaves 

will be grazed. McGlathery (1995) and Goecker et al. (2005) both found that, when presented 

with a choice, bucktooth parrotfish preferentially consumed turtlegrass leaves rich in nitrogen. 

Turtles also preferentially feed on nitrogen-rich turtlegrass leaves (Bjorndal, 1985). However, 

Goecker et al. (2005) also reported that turtlegrass leaves that were high in nitrogen were low in 

phenolics, suggesting that parrotfish might have preferred leaves with low levels of phenols, as 

well as high nitrogen. Sea urchins, on the other hand, are known to exhibit compensatory feeding 

when offered seagrass with low nitrogen content rather than preferentially consuming nitrogen-

rich tissue (Valentine et al. 2001). The relationship between nitrogen in seagrass leaves and 

herbivore feeding rates has not been fully investigated, but the results of this study suggest that 

phenolics may be more important, and leaf nitrogen content less important, in determining 

seagrass grazing risk than previously thought. 

Though it is clear from this study that differences in phenolic concentrations can 

influence herbivore feeding preferences, given the somewhat idiosyncratic changes in the 

concentrations of these compounds in turtlegrass when exposed to grazers, regardless of size, it 

is possible that these compounds have alternative roles in seagrasses. Studies have found that 

phenolic compounds (and crude extracts containing phenolics) from multiple seagrasses can 

reduce the incidence of infection by marine bacteria and fungi (Harrison 1982, Jensen et al. 

1998, Ross et al. 2008). Caffeic acid, which is found in eelgrass, can inhibit the growth of the 

wasting disease pathogen Labyrinthula spp. in culture (Vergeer and Develi 1997). Phenolics are 
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also known to act as antioxidants, protecting against damage from ultraviolet radiation in 

terrestrial plants (Close and McArthur 2002). They may have a similar function in algae, since 

Pavia et al. (1997) found that increasing UV-B radiation increased phlorotannins levels in 

Ascophyllum nodosum. Considering that seagrasses often occur in shallow waters with high light 

exposure, we cannot discount the confounding role that ultraviolet radiation may have played in 

our study. Since our palatability experiments suggest that phenolics can act as feeding deterrents 

in seagrasses, rather than serving only one purpose, these compounds may act as a generalized 

defense against a host of attackers. 

Although production of inducible chemical defenses is believed to be metabolically 

costly (Cipollini et al. 2003), we found no evidence of a cost, in terms of growth, to producing 

phenolics in either Thalassia testudinum or Halodule wrightii. Costs associated with producing 

phenolics may, however, have been evident in another way, such as shifting carbohydrate 

resources out of the rhizomes, where carbohydrates are stored in seagrasses. This should be 

addressed in future studies to determine if production of phenolics is costly to seagrasses. 

Similarly, since no differences in growth were detected among grazing treatments in shoalgrass 

(in which grazing led to increased phenolic concentrations), it seems that increasing phenolic 

concentrations does not improve seagrass fitness. Thus, it cannot be inferred from this study that 

phenolics act as an inducible defense in this seagrass, although these compounds did deter 

feeding by amphipods. 
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Figure 1.  Condensed tannin (CT), gallic acid (GA), 3,4-dihydroxybenzoic acid (3,4-di), vanillic acid 

(VA), p-hydroxybenzoic acid (p-hyd), ferulic acid (Fer), p-coumaric acid (p-cou), and combined phenolic 

acid (Combined) content in first and second rank Thalassia testudinum leaves taken from either gastropod 

or isopod grazing treatments. Phenolic content is expressed relative to the concentration of each 

compound in control leaves (proportion of the amount in control leaves + 1 standard error). Dashed lines 

denote the control value of 1. Values above the dashed line indicate higher concentrations of the 

compound in those tissues than in the control, and vice versa. Asterisks indicate a significant difference in 

levels of each compound between the grazer treatment (gastropod or isopod) and the control. Lowercase 

letters over the bars indicate significant differences among tissues (p < 0.05). Where ANOVA found no 

effect of tissue on compound concentration, no letters are included over the bars. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Condensed tannin (CT), gallic acid (GA), syringic acid (Syr), p-hydroxybenzoic acid 

(p-hyd), ferulic acid (Fer), p-coumaric acid (p-cou), and combined phenolic acid (Combined) 

content in first and second rank Halodule wrightii leaves taken from either gastropod or isopod 

grazing treatments. Phenolic content is expressed relative to the concentration of each compound 

in control leaves (proportion of the amount in control leaves + 1 standard error). Dashed lines 

denote the control value of 1. Values above the dashed line indicate higher concentrations of the 

compound in those tissues than in the control, and vice versa. Asterisks indicate a significant 

difference in levels of each compound between the grazer treatment (gastropod or isopod) and 

the control. 
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Figure 3.  Amount of agar food made with seagrass tissue consumed by the amphipod Batea 

catharinensis when offered the following agar leaf pairs:  A) Thalassia from Perdido Bay (low 

phenolics, low N) and St. Joseph’s Bay (high phenolics, high N), B) Halodule from Perdido Bay 

(low phenolics) and St. Joseph’s Bay (high phenolics; no difference in N), C) Thalassia and 

Halodule from Perdido Bay (no difference in phenolics or N), and D) Thalassia (high phenolics, 

high N) and Halodule (low phenolics, low N) from St. Joseph’s Bay.   
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Table 1.  Table of paired choices used in mesograzer feeding preference tests. 

 
  Choice 1 Choice 2 

Experiment 1 Thalassia from Perdido Bay 
(low phenolics, low N) 

Thalassia from St. Joseph’s Bay 
(high phenolics, high N) 
 

Experiment 2 Halodule from Perdido Bay 
(low phenolics, similar N) 

Halodule from St. Joseph’s Bay 
(high phenolics, similar N) 
 

Experiment 3 Thalassia from Perdido Bay 
(similar phenolics and N) 

Halodule from Perdido Bay 
(similar phenolics and N) 
 

Experiment 4 Thalassia from St. Joseph’s 
Bay (high phenolics, high N) 

Halodule from St. Joseph’s Bay 
(low phenolics, low N) 
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