
Sacred Heart University Sacred Heart University

DigitalCommons@SHU DigitalCommons@SHU

School of Computer Science & Engineering
Faculty Publications School of Computer Science and Engineering

11-1995

On the Impact of Forgetting on Learning Machines On the Impact of Forgetting on Learning Machines

Rūsiņš Freivalds
University of Latvia

Efim Kinber
Sacred Heart University

Carl H. Smith
University of Maryland - College Park

Follow this and additional works at: https://digitalcommons.sacredheart.edu/computersci_fac

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Freivalds, R., Kinber, E., & Smith, C. H. (1995). On the impact of forgetting on learning machines. Journal of
the Association for Computing Machinery, 42(6), 1146-1168.

This Peer-Reviewed Article is brought to you for free and open access by the School of Computer Science and
Engineering at DigitalCommons@SHU. It has been accepted for inclusion in School of Computer Science &
Engineering Faculty Publications by an authorized administrator of DigitalCommons@SHU. For more information,
please contact ferribyp@sacredheart.edu, lysobeyb@sacredheart.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sacred Heart University: DigitalCommons@SHU

https://core.ac.uk/display/231045537?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.sacredheart.edu/
http://digitalcommons.sacredheart.edu/
https://digitalcommons.sacredheart.edu/
https://digitalcommons.sacredheart.edu/computersci_fac
https://digitalcommons.sacredheart.edu/computersci_fac
https://digitalcommons.sacredheart.edu/computersci
https://digitalcommons.sacredheart.edu/computersci_fac?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ferribyp@sacredheart.edu,%20lysobeyb@sacredheart.edu

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/259475423

On the Impact of Forgetting on Learning Machines, Journal of ACM, Vol. 42,No.

6,November1995,pp.1146-1168

Article in Journal of the ACM · January 1995

CITATIONS

0
READS

19

3 authors, including:

Some of the authors of this publication are also working on these related projects:

Thesis "Languages accepted by 2-Way Probabilistic Finite Automata" View project

Rūsiņš Freivalds

University of Latvia

366 PUBLICATIONS 1,888 CITATIONS

SEE PROFILE

Efim Kinber

Sacred Heart University

135 PUBLICATIONS 1,151 CITATIONS

SEE PROFILE

All content following this page was uploaded by Rūsiņš Freivalds on 29 December 2013.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/259475423_On_the_Impact_of_Forgetting_on_Learning_Machines_Journal_of_ACM_Vol_42No_6November1995pp1146-1168?enrichId=rgreq-432b5bf622f704695bde33e738ae0b26-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQ3NTQyMztBUzoxMDI3MjgwNzYzNjU4MzBAMTQwMTUwMzY5MDkxMw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/259475423_On_the_Impact_of_Forgetting_on_Learning_Machines_Journal_of_ACM_Vol_42No_6November1995pp1146-1168?enrichId=rgreq-432b5bf622f704695bde33e738ae0b26-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQ3NTQyMztBUzoxMDI3MjgwNzYzNjU4MzBAMTQwMTUwMzY5MDkxMw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Thesis-Languages-accepted-by-2-Way-Probabilistic-Finite-Automata?enrichId=rgreq-432b5bf622f704695bde33e738ae0b26-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQ3NTQyMztBUzoxMDI3MjgwNzYzNjU4MzBAMTQwMTUwMzY5MDkxMw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-432b5bf622f704695bde33e738ae0b26-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQ3NTQyMztBUzoxMDI3MjgwNzYzNjU4MzBAMTQwMTUwMzY5MDkxMw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rusins-Freivalds?enrichId=rgreq-432b5bf622f704695bde33e738ae0b26-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQ3NTQyMztBUzoxMDI3MjgwNzYzNjU4MzBAMTQwMTUwMzY5MDkxMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rusins-Freivalds?enrichId=rgreq-432b5bf622f704695bde33e738ae0b26-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQ3NTQyMztBUzoxMDI3MjgwNzYzNjU4MzBAMTQwMTUwMzY5MDkxMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Latvia?enrichId=rgreq-432b5bf622f704695bde33e738ae0b26-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQ3NTQyMztBUzoxMDI3MjgwNzYzNjU4MzBAMTQwMTUwMzY5MDkxMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rusins-Freivalds?enrichId=rgreq-432b5bf622f704695bde33e738ae0b26-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQ3NTQyMztBUzoxMDI3MjgwNzYzNjU4MzBAMTQwMTUwMzY5MDkxMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Efim_Kinber?enrichId=rgreq-432b5bf622f704695bde33e738ae0b26-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQ3NTQyMztBUzoxMDI3MjgwNzYzNjU4MzBAMTQwMTUwMzY5MDkxMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Efim_Kinber?enrichId=rgreq-432b5bf622f704695bde33e738ae0b26-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQ3NTQyMztBUzoxMDI3MjgwNzYzNjU4MzBAMTQwMTUwMzY5MDkxMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Sacred-Heart-University?enrichId=rgreq-432b5bf622f704695bde33e738ae0b26-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQ3NTQyMztBUzoxMDI3MjgwNzYzNjU4MzBAMTQwMTUwMzY5MDkxMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Efim_Kinber?enrichId=rgreq-432b5bf622f704695bde33e738ae0b26-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQ3NTQyMztBUzoxMDI3MjgwNzYzNjU4MzBAMTQwMTUwMzY5MDkxMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rusins-Freivalds?enrichId=rgreq-432b5bf622f704695bde33e738ae0b26-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQ3NTQyMztBUzoxMDI3MjgwNzYzNjU4MzBAMTQwMTUwMzY5MDkxMw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

On the Impact of Forgetting on Learning Machines

R~SI@ FREIVALDS

University of Latvia, Rigs, Latuia

EFIM KINBER

Sacred Heart Uniuersi~, Fairfield, Connecticut

AND

CARL H. SMITH

University of Maryland, College Park, Maryland

Abstract. People tend not to have perfect memories when it comes to learning, or to anything else
for that matter. Most formal studies of learning, however, assume a perfect memory. Some
approaches have restricted the number of items that could be retained. We introduce a

This work was facilitated by an international agreement under National Science Foundation
(NSF) Grant 91-19540.

Results collected in this paper were published in the proceedings of the following workshops and
symposia: FREIVALDS,R., KfNBER,E., AND SMITH,C. 1993a. Learning with a limited memory. In
Notes of the AAAI Spring Symposium on Training Issues in Incremental Learning; FREIVALDS,R.,
KtNBER, E., AND SMITH, C. 1993b. On the impact of forgetting on learning machine. In
Proceedings of the 6th Annual Workshop on Computational Learning Theoiy. ACM, New York, pp.
165-174; FREIVALDS,R., IQNBER,E., AND SMITH, C. 1993c. Probabilistic versus deterministic
memory limited learning. In Record of the Workshop on Algorithmic Learning for Knowledge
Processing; FREIVALDS,R., KINBER,E., AND SMITH,C. 1994. Quantifying the amount of relevant
information. In Notes of the AAAI Spring Symposium on Releuance; and FREIVALDS,R,, ANDSMITH
C. 1992. Memory limited inductive inference machines. In Lecture Notes in Computer Science, vol.
621. Springer-Verlag, New York, pp. 14-29.

The work of R. Freivalds was supported by the Latvian Council of Science grants No. 90.619 and
93.599.

The work of C. H. Smith was supported by NSF grants 90-20079 and 93-01339.

Authors’ addresses: R, Freivalds, Institute of Mathematics and Computer Science, University of
Latvia, Raina bulv~ris 29, LV-1459, Riga, Latvia; E. Kinber, Department of Computer Science,
Sacred Heart University, 5151 Poule Ave., Fairfield, CT 06432-1000; C. H. Smith, Department of
Computer Science, University of Maryland, College Park, MD 20912.

Permission to make digital\hard copy of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is
given that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
@ 1995 ACM 0004-5411/95/1100-1146 $03.50

JOumdof the Asscciatianfor ComputingMachinery,Vol. 42,No. 6,November1995,pp.1146-1168

Impact of Forgetting on Learning Machines 1[47

complexity theoretic accounting of memory utilization by learning machines. In our new model,
memc~~ is measured in bits as a function of the size of the input. There is a hierarchy of
learnability based on increasing memory allotment. The lower bound results are proved using an
unusual combination of pumping and mutual recursion theorem arguments. For technical
reasons, it was necessary to consider two types of memory: long and short term.

Categories and Subject Descriptors: F.1.1 [Computation by Abstract Devices]: Models of Compu-
tation—automata, relations among models, unbounded-action devices; F. 1.2 [Computation by
Abstract Devices]: Modes of Computation—probabilistic cornputadon; F. 1.3 [Computation by
Abstract Devices]: Complexity Classes—con@exi@ hierarchies; F.4.1 [Mathematical Logic and

Formal Languages]: Mathematical Logic—recursiue jitnction theo~; 1.2.6 [Artificial Intelligence]:

Learning—induction, concept learning

General Terms: machine learning, memory limited learning, inductive inference, Kolomogo,rov
complexity

Additional Key Words and Phrases: probabilistic automata, pumping lemma, recursion theorem

1. Introduction

Various aspects of machine learning have been under empirical investigation

for qpite some time [Michalski et al. 1983; Shapiro 1987]. More recently,

theoretical studies have become popular [Haussler 1992; Fulk and Case 1993;

Haussler and Pitt 1988; Rivest et al. 1989; Warmuth and Valiant 1991]. The

research described in this paper contributes toward the goal of understanding

how a computer can be programmed to learn by isolating features of incremen-

tal learning algorithms that theoretically enhance their learning potential. In

particular, we examine the effects of imposing a limit on the amount of

information that a learning algorithm can hold in its memory as it attempts to

learn, While this idea in itself is not novel, our approach is. Our results clarify

and refine previous attempts to formalize restricted memo~ learning.

In this work, we consider machines that learn programs for recursive

(effectively computable) functions. This approach is very abstract. Many, if not
all, of the implementation details are ignored, allowing a focus on fundamental

issues. By choosing such a high level of abstraction, any hope of having any

direct impact on the production and implementation of learning algorithms is

lost. [n return, we gain an intuition that is not predicated on any particular

implementation strategy, computer architecture, or any other product of tech-

nology. Several authors have argued that such studies are general enough to

include a wide array of learning situations [Angluin and Smith 1983, 1987;

Blum and Blum 1975; Case and Smith 1983; Gold 1967; Osherson et al. 198151.

For example, a behavior to be learned can be modeled as a set of stimulus and

response pairs. Assuming that any behavior associates only one response to

each possible stimulus, behaviors can be viewed as functions from stimuli to

responses. It is possible to encode every string of ASCII symbols in the natural

numbers. These strings include arbitrarily long texts and are certainly sufficient

to express both stimuli and responses. By using suitable encodings, the learning

of functions represents several, ostensibly more robust, learning paradigms.

Hence, for the purpose of a mathematical treatment of learning, it suffices to

consider only the learning of functions from natural numbers to natural

numbers. A vziety of models for learning recursive functions have been

considered, each representing some different aspect of learning. The result of

the learning will be a program that computes the function that the machine is

trying to learn. Historically, these models are motivated by various aspects {of

1148 R. FREIVALDS ET AL.

human learning [Gold 1967] and perspectives on the scientific method [Popper

1968].

We say that learning has taken place because the machines we consider must

produce the resultant program after having ascertained only finitely much

information about the behavior of the function. The models we use are all

based on the model of Gold [1967] that was cast recursion theoretically in

Blum and Blum [1975]. First, we briefly review the basics of the Gold model

and then proceed to define the memory limited version of the basic model that

will be investigated in this paper.

2. The Gold Model

People often hold steadfast beliefs that they later discover to be false. At

various points in time, the scientific community was convinced that the earth

was flat, the earth was the center of the universe, time is absolute, etc. Hence,

one can never be absolutely sure that they have finished learning all there is to

learn about some concept. We must always be prepared to embrace a better

explanation of some phenomenon that we thought had been learned. Gold, in a

seminal paper [Gold 1967], defined the notion called identification in the limit.

This definition concerned learning by algorithmic devices now called inductive

inference machines (IIMs). An IIM receives as input the range of a recursive

function, an ordered pair at a time, and, while doing so, outputs computer

programs. Since any HM can buffer its input so as to process it in the natural

domain increasing order, f(0), f(l),. . . . we can assume without loss of general-

ity that the input is received by an HM in this natural order. However, such

buffering may not be possible within the confines of the memory limitations we

impose below (see Theorem 5.5). Primarily, we will calculate memory utiliza-

tion for the natural domain increasing order only. In this way, we follow a long

standing tradition and give a unifying theme to our results. An IIM, on input

from a function f, will output a potentially infinite sequence of programs

PO, PI,... . The IIM converges if either the sequence is finite, say of length
n + 1, or there is program p such that for all but finitely many i, p, = p. In the

former case, we say the IIM converges to p., and in the latter case, to p. In

general, there is no effective way to tell when, and if, an IIM has converged.

Following Gold, we say that an IIM M identifies a function f in the limit

(written: f G EX(M)), if, when A4 is given the range off as input in any order,
it converges to a program p that computes f. If the IIM identifies some

function f, then some form of learning must have taken place, since, by the

properties of convergence, only finitely much of the range of f was known by

the IIM at the (unknown) point of convergence. The terms, infer and learn, will
bc used as synonyms for identi~. Each IIM will learn some set of recursive

functions. The collection of all such sets, over the universe of effective

algorithms viewed as IIMs, serves as a characterization of the learning power

inherent in the Gold model. This collection is symbolically denoted by EX (for

explanation) and is defined rigorously by EX = {U I SM(U G EX(M))}. Mathe-

matically, this collection is set-theoretically compared with the collections that

arise from the other models we discuss below. Many intuitions about machine

learning have been gained by working with Gold’s model and its derivatives. In

the next section, we describe the variants of Gold’s model that we examine in

this paper.

Impact of Foqetting on Learning Machines 1149

3. Limited Memory Learning

Although different people learn at different rates, with varying degrees of

success, very few of us learn with perfect recall of the data upon which the

learning is based. This observation of human behavior has prompted several

investigations of learning with less than perfect memory in a variety of

disciplines. Within the field of neural modeling, it has been suggested that one

of the functions of rapid eye movement (REM) sleep is to discard some

memories to keep from overloading our neural networks [Crick and Mitchison

1983]1. Independent simulations have verified that occasional “unlearning” aids

in learning [Hopfield et al. 1983]. In a similar vein, neural networks with a

limitation on the type of the weight in each node were considered in Siegel-

mann and Sontag [1992]. The types considered are integer, rational and real.

Each successive type can, potentially, place higher demands on memory utiliza-

tion within each node. Each type also expands the inherent capabilities of the

neural networks using that type of node weights.

Linguists interested in how children learn language have hypothesized many

mechanisms for remembering. Braine [1971] suggested that human memory is

organized as a cascading sequence of memories. The idea is that items to be

remembered are initially entered in the first level of the memory and then later

moved to successive levels, finally reaching long-term memory. In Braine’s

model, each of the transitionary memory components are subject to degracla-

tions. Consequently, items to be remembered that are not reinforced by

subsequent inputs may be eliminated from some level of the memory befcn-e

they become permanently fixed in memoV. Wexler and Culicover [1980]

formalized many notions of language learning, including one where a device

(essentially an inductive inference machine) was to learn having access to the

most recently received data and the machines’ own most recent conjecture.

Their model was generalized in Osherson et al. [1986] to allow the learning

mechanism access to the last n conjectures as well as the most recently

received data item. This generalization was shown not to increase the potential

of such mechanisms to learn languages.

A study of learning functions with a limited amount of memory was initiated

by Wiehagen [1976]. He defined iterative strategies that, like the Wexler and

Culicover model, had access to only the next data item and the current

hypothesis. ,Also defined were feedback strategies that were allowed to remem-

ber the current hypothesis and a single, algorithmically selected, data item.

Wiehagen showed that the iterative strategies were not as powerful as the

feedback ones, and neither were as powerful as the unrestricted strategies of

the Gold model. Furthermore, iterative learning, and hence feedback learning

as well, are potentially more powerful than consistent learning where the

inference machines are constrained to only output programs that are correct

on all the data seen so far [Wiehagen 1976]. Miyahara generalized Wiehagen’s

work in two ways. Firstly, the iteratively working strategies were allowed to

remember the n most recent conjectures. As was the case for learning

languages, it makes no difference how many previous hypotheses are rememb-

ered for learning functions—one is enough [Miyahara 1987]. Furthermore,
the hierarchies based cm the number of admissible errors in the final answer,

as discovered in Case and Smith [1983], were shown to hold for a variety of

types of iterative learning. The strict inclusion of the class of sets learnable by

iteratively working strategies in the similar class for all strategies (EX) was

1150 R. FREIVALDS ET AL.

shown to hold when anomalies are allowed [Miyahara 1989]. Jantke and Beick

[1981] considered order-independent iterative strategies and showed that Wei-

hagen’s results hold with order restrictions removed.

The conclusion reached in the above-mentioned work on learning functions

was that restricting the data available to the inference machine also reduces its

learning potential. A different approach to memory-limited learning was inves-

tigated in Heath et al. [1991]. The issue addressed in their work is to calculate

how many passes through the data are needed in order to learn. In our model,

the decision to retain data must be made when the data is first encountered.

The models described below constrain the amount of what can be retained by

an IIM, without placing any provisions on the content of the remembered data.

There have been other studies with similar motivations. For example, based

on the observation that people do not have enough memory to learn an

arbitrarily large grammar for a natural language, a study of learning minimal-

size grammars was initiated [Case et al., to appear]. There has been a large

body of work addressing the inference of minimal-size programs. See Freivalds

[1990] for a survey.

There have been a few results concerning space limited learning in the PAC

(probably approximately correct) model [Valiant 1984]. Haussler [1985] showed
how to PAC learn strictly ordered decision trees using space linear in the size

of the smallest possible decision tree. Boucheron and Sallantin [1988] showed

that some classes of Boolean functions can be learned time efficiently using

only logarithmic (in the number of variables) space. PAC learning while

remembering only a fixed number of examples, each of a bounded size is

considered in Ameur et al. [1993], Floyd [1989], and Hembold et al. [1989]. The

most general investigation on this line was the observation in Schapire [1990]

that the boosting algorithm can be made reasonably space efficient as well.

Sample complexity gives only a very crude accounting of space utilization.

Learning procedures may want to remember other information than just prior

examples. For example, all algorithms are based on some underlying finite

state device. The states of the underlying finite state machine can also be used

as a form of long-term memory. Consequently, the sample complexity metric

neglects to count some of the long-term storage employed by learning algo-

rithms. Lin and Vitter [1994] consider memory requirements for learning

sufficiently smooth distributions. Since they assume that the inputs are in some

readable form, the issue of how much space it takes to store a number never

arises.

We now describe the model investigated in this paper. To ensure an accurate

accounting of the memory used by an IIM, we will henceforth assume that each

IIM receives its input in such a way that it is impossible to back up and reread
some input after another has been read. All of the previously mentioned

models of learning languages or functions measured memory used in the

number of data items or hypotheses that could be remembered. Since it is

possible to encode an arbitrary finite set within any single hypothesis, coding

techniques played a major role in the proofs of some of the above-mentioned

results. Computers, and humans, use storage proportional to the size of what is

being remembered. To circumvent the use of coding techniques, the memory

used will be measured in trits (input alphabet consists of three elements), as

opposed to integers. Each data entry will appear as a bit string with a

designated delimiter separating the entries. The delimiter will be viewed as a

“special bit” and we will henceforth count the memory utilization in bits.

Impact of Fo~etting on Learning Machines 1151

Each of the machines we consider will have two types of memory. In the

long-lemz memoy, the IIM will remember portions of the input it has seen,

prior conjectures, state information pertaining to the underlying finite state

device and perhaps other information as well. In addition, each machine will

have a potentially unlimited short-temz memory that will be annihilated every

time the IIM either outputs a new conjecture or begins reading the bits

corresponding to another point in the graph of the mystery function providing

the input to the IIM. The short-term memory clear operation is done automati-

cally and takes one time step. The short-term memory is necessary to ensure an

accurate accounting of the real long-term memory utilization of a learning

process, It might be that some very space consuming computation must be

performed in order to decide which few bits of information to retain and which

to discard, Without a short-term memory, such a temporaV use of space would

artificially inflate the long-term memory needed by a learning algorithm.

As an added side benefit, we note that our technically motived model bears a

strong resemblance to contemporary models of memory function with respect

to the dichotomy between long- and short-term memory that was initiated in

Miller [1956]. This dichotomy is evident in neural nets. The weights in the

nodes correspond to long-term storage and the calculations as to how to

update the weights is carried out using a short-term memory [Levine 1991].

Some well-known implementations of learning algorithms, the Soar project

[Rosenbloom et al. 1991; Servan-Schrieber 1991] and the ACT* project

[Anderson 1983], also divide memory into long- and short-term components.

The Soar project uses the concept of “chunking” [Miller 1956] as a way lto

convert traces of problem solving behavior into new rules, freeing up space in

the working short term memory in the process, The rules of Soar, in some

sense, are analogous to the states of the finite state devices that we study. As in

the Soar program, we keep state information in long-term memory. Another

similarity between our model and the way Soar operates is that temporaty

calculations are lost in both schemes. When Soar reaches an impasse, some

calculations are performed to generate a new subgoal. Just like our short-terlm

memcm-y, the subgoal calculations are lost when an appropriate one is found.

Under the above conventions concerning the use of long- and short-ter~m

memcm-y, we proceed to define our limited memory model. We say that

U G .5X(M):g if g is a recursive function such that for any ~ = U, f = EX(M)

and M uses no more than g(n) bits of long-term memory, where n is th~e

number of bits of the range of f, from the natural domain increasing order

enumeration, that M has observed. In one of our results, when we discuss thle

effects of changing the order of the input, we consider the input as arriving in

ordered pairs. A more desirable model would be to consider inputs arriving in

any order and to consider the worst possible case. In light of the Theorem 5,5

below:, such a model would not be very robust. Consequently, in this prelimi-

nary study, we focus on the IIMs receiving their input in the traditional,

increasing-domain-order enumeration. The collection of all sets of functions

inferrible with memory bound, given by g, is denoted by LEX: g, where

LEX: g = {U I M4(U G EX(M): g}. To handle the important special case of
the memory bound being a constant function, we will write EX: c to denote

for @ the collection of all constant functions.

1152 R. FREIVALDS ET AL.

A few more technical definitions are needed. Natural numbers (N) will serve

as names for programs. The function computed by program i will be denoted

by pi. It is assumed that PO, PI, . . . forms an acceptable programming system

[Machtey and Young 1978; Rogers 1967]. The quantifier ~ is read “for all but

finitely many.” Sometimes, it will be convenient to represent a function by a

sequence of values from its range. Such a representation is called a string

representation. So, for example, the sequence 012 043~ represents the (total)

function:

{

if x= Oor3<x <6,

f(x) = ! if 1SXS2

3 otherwise.

This example function has two blocks of consecutive O’s, one of length 1 and

the other of length 4. The string representation of a finite function is called a

jkzgrrzent. The length of any string a, in characters, is denoted by Ia 1.A class U

of recursive functions is dense iff for every finite function there is an ~ E U

extending it. For example, the functions of finite support are a dense class.

4. Prelimina~ Results

In order to get a rough idea of the relative learning power of EX: c type

inference, we will employ the set UO of functions of finite support and the set

UI of self-describing functions. These sets were introduced in Barzdins [1974]

and Blum and Blum [1975] and used in Case and Smith [1983] and Freivalds

and Smith [1993] to separate ~arious classes of learnable sets of functions. Let

UO = {~ I ~ is recursive and Vx(~(x) = O)} and UI = {f I f is recursive and

Pf(o) = f}.

PROPOSITION 4.1. UI = EX: c.

PROOF. The IIM that, upon receipt of input pair (x, ~(x)), compares x with

O. If there is a match, the value ~(x) is copied from the input register to the

output register. The memory is needed only to store the constant O. Clearly,

UI=EX:C. ❑

PROPOSITION 4.2. UO @ EX: c.

PROOF. Suppose by way of contradiction that M is an IIM such that

UO G EX: c(M). A pumping lemma type argument is used [Bar-Hillel et al.
195 1] (see also Lewis and Papadimitriou [1981]). The string representation of

functions is used in this proof. Since A4 has a constant, finite amount of

memory, there are strings u and ~ such that

(1) u and r contain only O’s and l’s,
(2) 7 contains at least one 1,

(3) ~, on input m, outputs a conjecture while reading T, and
(4) the contents of M’s memory (including current state) is the same after

reading O-I- as it was when it had just finished reading u.

Such a m and r must exists, as we have assumed that M’s memory is of a

fixed size. By the choice of u and ~, M’s internal state, memory contents and

most recent conjecture are identical after reading UT and m 2. Consequently,

M cannot distinguish the (distinct) functions UT Om and m-20~, both of which

are in UO. ❑

Impact of Forgetting on Learning Machines 1153

COROLLARY 4,3. EX: c c EX.

PRIDOF. By definition, EX: c g EX. The inclusion is proper by Proposition

4.2 and the fact that UO c EX [Blum and Blum 1975]. ❑

Another type of inference that may be relevant to neural networks is

the class PEX defined in Case and Smith [1983] and studied in Case and

NgoManguelle [to appear]. A set of functions U is in PEX just in case there is

an IIM that outputs only programs for total recursive functions and U G

EX(i14). The collection of sets PEX is defined analogously. In this case, tlhe

witnessing IIM M is called Poppetian. Virtually all practical learning systems

only consider hypotheses that correspond to total recursive functions.

COROLLARY 4.4. EX: c and PEX are incomparable.

PROOF. UO is in PEX [Case and Smith 1983], therefore, by Proposition

4.2, PEX – EX: c # 0. U1 @ PEX, hence, by Proposition 4.1, EX: c – PEX

+0. ❑

For our final result in this section, we will verify that linear long-term

memory is sufficient for any learning task. Based on this result, our ensuing

discussion of memory-limited EX inference will be based on sublinear bound-

ing functions.

THIZOREM 4.5. There exists a constant c such that if g = Ax[x + c], then

EX=EX:g.

PROOF. Clearly, EX: g c EX. Suppose S ● EX as witnessed by the IIM M.

We describe the operation of an IIM M’ such that S ~ EX(M’): g, whe:re

g = Ax[x + c], and the constant c is to be chosen large enough to accommo-

date the state information of M’. Suppose f G S. M’ reads the graph of f for

input and copies the information into long-term memory. The long-term

memcny bound of g is a large enough bound to accommodate all the input and

the necessary state information. After Ill’ completes reading the input bits

corresponding to another element of the graph of f, M’ then uses its

short-term memo~ to mimic the behavior of M using the long-term memory

of M’ for input. M’ then produces as output the last conjecture produced by

M on the input in the long-term memo~ of M’. Since the short-term memory

is destroyed every time M’ produces a conjecture, the simulation of M must

start again from the beginning each time. If M declines to produce an output

on some initial segment of f such that no additional output is produced on th~e

next longer initial segment of f, then M’, on the longer segment, will repeat

the previous output. So, aside from, perhaps, some extra repetitions of th~e

most recent hypothesis, the sequence of conjectures produced by M’ on f

is the same as sequence of hypothesis produced by M on f. Hence, if

M(f) converges, then M’(f) converges to the same value. Therefore, S G

EX(M’) : g. ❑

Notice that if g = Ax[2 .x] long-term memory were allowed, then the simula-

tion described above could be performed in the part of long-term memory that
was not used to save the input data. In this case, no short-term memoly

whatsoever would need to be used. Hence, the above result shows that any set

in EX can be inferred using a linear amount of long-term memory and no

short-term memory at all.

1154 R. FREIVALDS ET AL.

5. Bounds on Long-Term MemoV

Our first result generalizes Proposition 4.2 to show that, not only is linear

long-term memory sufficient for any learning task, sometimes it is necessary as

well.

THEOREM 5.1. There exists a constant c, a function g = Ax[x + cl, and class

U of total recursive fimctions such that if h is any sublinear recursive function, then

U~EX:g– EX:h.

PROOF. Let g and h be as in the hypothesis. Let U be the class of {O, 1}

valued functions of finite support. Since U is in EX, by Theorem 4.5 there

exists a constant c and function g = Ax[x + c] such that U G EX: g. It

remains to show that U @ EX: h. Suppose, by way of contradiction, that

U e EX(i14): h for some IIM M. We consider the natural, increasing domain

order enumeration of the functions in U. Let n be such that h(n) < n. Notice

that if f G U then f(0), f(1) ,..., f(n – 1) can be represented by n bits.

Consider all length n initial segments of the functions in U. There are 2“ such

initial segments. The number of different memory configurations possible in

h(n) < n space is 2~(”) < 2“. Hence, there are two different length n initial

segments, say mO and ml, that will result in the same memory configuration in

M’s long-term memory. Since there are infinitely many functions of finite

support extending UO and we have assumed that M can learn them all, there

must be a TO, extending mO, such that M(aO) # M(~O) and the range of 1-0 is

{O, 1}. Let m be the length of the initial segment TO. Define ~1 as:

{

al(x) if x<n,
71(X) =

To(x) if n<x <m.

Consider the functions fO and fl defined as follows:

(fo(x) = y
if x<m,

otherwise

{

f,(x) = y if x<m,

otherwise

M will be in the same long-term memory configuration after seeing the first n

values of either fO or f ~.Both functions are identical after that point. Hence,

M will exhibit the same limiting behavior on both fO and fl, contradicting the

assumption that U G EX(M): h. ❑

Notice that for the class U of the proof of Theorem 5.1 for any f = U, only a

constant amount of long-term memory is needed. However, the constant
changes for each function from U. The proof of Theorem 5.1 showed that at

least linear long-term memory was needed at some point in the inference of

any function from U. By using a more complicated argument, we can show that

a linear amount of long term memory will be needed infinitely often when

learning any function from some (more complicated) class.
We proceed to develop some techniques to prove lower bound results.

Eventually, we will give a general theorem (Theorem 5.3). First, we give an

interesting example class that we will show has logarithmic lower and upper
bounds. Let Us~ be the class of recursive functions f with prefixes of the form

1“~, i # 1, where pi = f if n is a perfect square and qj = f, otherwise.

Impact of Fogetting on Learning Machines 1155

THEOREM 5.2. There exists a constant c such that U~~ = EX: g where g =

Ax[x + c]. Furthermore, f Us~ = EX: h for any recursive function h with h(x) <

g(x) for all x, then h(x) > 1/2 log x for infinitely many x.

PR(OOF. TO see that u~~ G EX: g, notice that the initial prefix of 1’s can be

read and the value of n can be held in g(n) bits, Use short-term memory to

decide if n is a perfect square, leaving the answer in long-term memory. In

another state, an IIM decides to output the next input, or the one after. The

constant c is 1 plus the amount of memory needed for the state information of

the IIIM informally described above.

Suppose M is an IIM such that Us~ G EX(M): h. Consider giving M

different length prefixes of all 1’s. We claim that for any natural numbers a, b,

and m such that 22’rn s a < b < (2m + 1)o(2m + 1) M will have different

long-term memory contents after seeing la and lb. Suppose by way of contra-

diction, that a and b satisfy the numeric constraints of the claim, yet Mr’s

long-term memory is the same after seeing the segments la and lb. There are

two cases to consider in order to verify the claim.

Case 1. a = 22”m. Then a is a perfect square and b is not. By the mutual

recursion theorem [Smullyan 1961], there are programs el and ez such that

P., = laelezOm and P., = lbelezO~. Notice that both p., and q., are in UsQ.

Since M’s long-term memory is assume to be unable to distinguish la from 1b,

M will exhibit the same output behavior on both p,, and p.,. Hence, M fails to

infer {one of them, contradicting the assumption that UsQ = EX(M): h.

Case 2. a b 22”m. Then neither a nor b is a perfect square. Let c = (2rn +

1) “ (2M + 1) – b. Hence, b + c is a perfect square and a + c is not. By the

mutual recursion theorem there are programs el and e2 such that q., ‘=

lb+ CelezO~ and p., = la+ celezO~. Notice that both p~, and p. are in Us,Q.

Since M’s long-term memory is assumed to be unable to distinguish 1“ from lb,

it will also be unable to distinguish 1“ ~ c from lb +‘. Therefore, M will exhibit

the same output behavior on both p~l and P.,. Hence, M fails to infer one of

them, contradicting the assumption that Us~ ~ EX(M): h.

As a consequence of the claim, M will have different long-term memory

contents for each of the prefixes of 1’s with lengths 22 ‘~, 22’rn + 1,22 “rn -+

2,,.. (2m + 1)-(2m + 1) – 1. Since there are 2m+ * + 1 different memory con-

tents, at least one of these requires at least rn + 1 bits to represent. Since each

of the prefixes above has length at most the logarithm of 2m + 1, we note that

for the particular prefix in question, the amount of memory used is at least

m + 1 > (2m + 1)/2 > 1/2 (length of the prefix). Since m was arbitra~, thk

shows that if UsQ = EX(M): h, then for infinitely many values of x, h(x) :>
1/2 log x. ❑

The next result that we prove shows that there is a hierarchy based on larger

and larger amounts of long-term memory utilization. For the purposes of the

following theorem, we will say that a recursive function f is almost su~ective if

there is an n such that {x I x > n} is included in the range of f.

THEOREM 5.3, Suppose g is a nondecreasing, almost subjective recursive

function such that g = O(n) and h is a recursive finction such that h = o(g).

Then there is a class of recursiue jimctions U such that U @ EX: h, and U &

EX: g, Furthermore, if U E EX(M): f, for some IIM M, then f(n) > h(n) for

infinitely many n.

1156 R. FREIVALDS ET AL.

PROOF. Suppose g is a nondecreasing, almost subjective recursive function

such that g = O(n). Define S8, the pseudo-inuerse of g, as Sg(n) is the least

value x such that g(x) z n. Note that since g is almost subjective, such an x

will exist for all n. Let U be the class of all recursive functions ~ that have

string representations

Omlapqom

where

(1) a and ~ are strings over {0, 1}, and

(2) Ial=l Pl, and
(3) if a = p, or a follows ~ in the lexicographical ordering of strings over

{O, 1}, then i is a program for the function, and

(4) if P follows a in the lexicographical ordering, then j is a program for the
function, and

(5) n’z=sg(lal+lpl)– 1.

Functions in U will be obtained by applying suitable recursion theorems,

First, we consider some properties of g and h. We claim that there is a

constant c such that, for all n, g(s~(n) + n) s c - n. Let n be sufficiently large

so that for all k z O, n + k is in the range of g. Then g(s~(n)) = n (since n is

in the range of g), We show that g(s~(n) + k) < n + k for all k. Suppose to

the contrary that for some k, g(s~(n) + k) > n + k. Since g(s~(n)) = n,

g(s~(n) + k) > n +- k, and since g is nondecreasing, the only arguments to g
that could map to the k distinct values n + 1, n + 2,. ... n + k (which are all

in the range of g, by the choice of n) are arguments Sg(n) + 1, Sg(n) +

2,. ..> s~(n) + (k – 1). A contradiction arises as there are only k – 1 argu-

ments. We conclude that for sufficiently large n, g(sg(rz) + k) s n + k for all

k. It follows that for all sufficiently large n, g(s~(n) + n) s 2n. Since g is

defined only on integers, we can choose a suitable constant c such that for all

n > 1 (in particular, even those not “sufficiently large”), g(s~(n) + n) s c . n.

Suppose by way of contradiction that U e EX(M): h. Recall that M’s state

information is contained in its long-term memory. For the constants c and k

chosen above and sufficiently large n, M will have less than n\2 bits of

memory to decide whether or not a preceeds @ in the lexicographical

ordering, for n = Ia I + I @1.For large enough n, c chosen so that g(sg(n) + n)
< c . n, and k > 2c, h(sg(rt) + n/2) is at most l/k -g(s~(n) + n/2) (since h is

o(g)) which is at most l\k” g(.sg(n) + n) (since g is nondecreasing). Finally,
I/k. g(s,(n) -t n) < n/2, by the choice of k. Hence, h(s~(n) + n/2) K rz/2.
Let m = s~(n) – 1. We will not choose a, a’ and ~, all of length n/2. Notice

that after M has read the string 0~ 1 a of length Sg(n) + n/2, it will have at

most h(s~(n) + n/2) < n/2 bits of long-term memory available. However,
there are 2“ /2 possible a ‘s. Hence, we may choose a and a’ such that M has

the same long-term memory contents after seeing Om1 a as it does after seeing

Om1 a’. Let -y be the largest common prefix of a and a’. Suppose without loss

of generality that y 1 is a prefix of a and y O is a prefix of a’. Choose ~ = a.

Note that a’ preceeds ~ in the lexicographical ordering, while a does not.
By the mutual recursion theorem [Smullyan 1961], there are programs el and

ez such that program el computes 0~ 1 a~el e20m and ez computes

0~ 1 a~el ezO~. Notice that both p~, and p., are in U. Furthermore, by the

choice of a and a’, the behavior of M on both functions is identical. Since the

choice of n was arbitraV (as long as it is sufficiently large), for each of

Impact of Forgetting on Learning Machines 1157

infinitely many possible values of n, we have described a pair of functions, e;

and e; such that if M uses at most h(xJ bits of long-term memory after

reading the prefix of length x, = s~(n) + n/2, then one of the two functions

cannot be inferred, and so M does not infer U. Any IIM M using f to bound

long-term memory, must use more than f(xJ > h(x~) long-term memory for

each of the infinitely many choices of n (hence, x.) which results in the

infinitely many potentially look-alike pairs e; and e; in U. Hence, for infinitely

many n, f(n) > h(n).

The proof is completed by exhibiting an IIM M’ such that U G EX(M’): g.

Notice that since for all n, g(s~(n)) z n, by the fact that g is nondecreasing,

g(s (n) + k) > n > k, for k s n. Consequently, for each k s n, g(s~(n) + k)
z ~. Hence, M’ can store the entire string a~ in its long-term memory.

Hence, M’ will always be able to decide whether or not a preceeds ~ in the

lexicographical ordering in the allotted space. Hence, U = EX(M’): g. ❑

The next theorem reveals a gap phenomenon. There are classes of recursive

functions that can either be learned in a constant amount of long-term space,

or require at least a logarithmic amount of space.

THEOREM 5.4. For any dense class U, for all IIM’s M such that U e EX(M)

either:

(1) there is a constant c such that U E EX(M): c, or,

(2) there is constant k such that for all n, there are injinite~ many f = U with an

initial segment, o, of length n such that M, after reading v as input, has used

at least (log n) “ k long-term memory cells.

PR.00F. Suppose M is an IIM. Let s be the number of different symbols

that may be written in a single cell of M’s long-term memory. Suppose that

there is no constant c satisfying (1) above. For any d 6 N, there is a fragment

a such that M uses at least d cells of long-term memory to process. Pick a

particular d and take a fragment a that forces M to use d cells of long-term

memory. If a can be written as mrp where the contents of M’s long-term

memory is the same after reading m- as it was when it had finished reading u,

then let a’ = crp. If a’ can be similarly rewritten, form a“ by removing the

segment that returns M to a prior long-term memory state. Eventually, a

fragment ~ will be found such that M has a different long-term memory

contents after reading each initial segment of P. Since there are [~ I initial

segments,

lPlss+s2+ s3+”””+s~-1=~< Sd.

Hence, d z log~(l ~ /). The proof is completed by observing that each of

p, po, /31, poo, pol,... can be extended to a function in U. ❑

We note that Theorem 5.4 does not hold vacuously. To see this point, ‘we
need to construct two examples of dense classes. Let U be the class of almost

everywhere self-describing fimctions. Formally, U consist of all the functions

f= ate” where a is some arbitrary initial segment and p.= f. Let ~0, al,...
be an effectwe enumeration of all the finite initial segments. By the operator

1158 R. FREIVALDS ET AL.

recursion theorem [Case 1974], there is a recursively enumerable sequence of

recursive functions, indexed by i, such that Ph(i) = ~ih(i)m. Clearly, { q~[i) I i ~

N} ~ U is dense. Furthermore, it can be learned by an IIM that simply copies

the input to the output, an operation that involves no long-term memory.

The second example of a dense class will be one that requires at least

logarithmic long-term memory. This class is like the almost everywhere self

describing functions, except that the self description is done in the unary

alphabet. Formally, U’ consists of all the functions ~ = a (01’)@ where a is

some arbitrary initial segment and q. = ~. Another operator recursion theorem
argument [Case 1974] constructs functions Ph[i) = ‘i (Olk[i))m all of which are in

U’. Clearly, U’ is dense. Furthermore, to learn U’, an IIM must count the

lengths of the sequences of 1’s. Logarithmic long-term space is sufficient for

this task. To show that logarithmic long-term space is required, we need only

show that U’ cannot be learned in constant long-term space and appeal to

Theorem 5.4. To do this, we use an argument similar to one used in the proof

of Theorem 5.3. Suppose that M is an IIM with .?7’ = EX(M): c. First we find

two different strings aO and al, of the same length, such that M is the same

memory configuration after reading aO as it does after reading al. Since M‘s

memory is assumed to be of constant size, two such strings will exist. By two

applications of the recursion theorem [Kleene 1938], there are programs eO

and el such that ~c, = aO(O1’O)m and q~, = al(O~’)m. Clearly, both q,, and Pgl

are in U’. M wdl exhibit the same limiting behavior on both functions,

contradicting the assumption that U’ G EX(M): c.

As is evident from the proof of the Theorem 5.1, the amount of long-term

memory used by an IIM to infer some function may vary depending on the

order of presentation of the graph of the function. This variation may swing

from one extreme to the other, as evidenced by the following theorem. For the

following theorem, the IIMs are assumed to input ordered pairs, not just

elements of the range.

THEOREM 5.5. There is a class U of total recursive ji.mctions and a particular

enumeration of functions in U such that there is an IIM M witnessing U G

EX(M): c with respect to this order. Furthermore, with respect to the natural,
increasing domain order, U @ EX(M’) : g for any M’ and any sublinear recursive

function g.

PROOF. Let U be the set of recursive functions f such that if n is the

smallest number such that f(2n + 1) = 1, then either n = O and f(x) = O for

all x > 1, or else n # O and Qf(2.) = f.

The unusual ordering that we will use to infer U with a constant amount of
memory is the so called reuerse pair ordering: f(l), f(0), f(3), f(2), f(5), f(4),... .

This ordering will be compared with the natural, increasing domain order:

f(o),f(l), f(z), f(3),... . Next, we describe the behavior of the IIM M that only

uses long term memory (3 bits) to remember which state it is in and infers all

the functions f G U, provided the input is received in the reverse pair ordering.
Operation of M (starting in state 1):

(1) Read an input f(y) into the short-term memory. If this is the reverse pair
ordering, this value will be f(1), If the value in short-term memory is “1”,

then go to state 2, else go to state 3.

Impact of Forgetting on Learning Machines 1159

(2) Read an input f(y) into the short-term memory. If this is the reverse lpair
ordering, this value will be f(0). Let z be the value currently in short-term

memory. Output a program for the following function @:

(
if x=O,

*(X) = ; if x=1,

o otherwise.

After outputting this program, stop. (State 2 is a halting state.)

(3) Read an input f(y) into the short-term memory. If this is the reverse lpair
ordering, then y will be an even number. Go to state 4.

(4) Read an input ~(y) into the short-term memory. If this is the reverse lpair
ordering, then y will be an odd number. If the value in short-term memory

is “ 1“ then go to state 5, else go to state 3.

(5) Read an input f(y) into the short-term memory. Output this same value
and stop.

Suppose that f G U is given to M in the reverse pair ordering. Then M will

first read the value of jll) (state 1). If this value is a “l”, then M will read the

value of jlO), output the correct program and halt in state 2. If the value of

jll) # 1, then M reads data (states 3 and 4) until it finds f(y) = 1 for some
odd value of y in state 4. Then M goes to state 5, and reads the correct

program in as the next input.

The proof is completed by showing that no IIM can learn U with sublinear

memory with respect to the natural, increasing domain order. Let M’ be an

IIM and suppose by way of contradiction that U G EX(M’): g, with respect to

the increasing domain order, for g a sublinear recursive function. By the

operator recursion theorem [Case 1974], there is a monotone increasing

recursive function h such that, for any i,

{

h(i) if x=O,

p,(i)(x) = 1 if x=1,

o otherwise.

Clearly, each p~(i) is in U. Since h is monotone increasing, for any i and j,

h(i) + h(j) and ~~(i) + q~(~). Then, for. any n, M’ must remember

%(o)(o)> %(l)(o)> p~(.)to), differently. Consider n = 2b, for some b. So there
are 2b different values to be saved in order to correctly learn Ph(0), ..., ~h(n)-

This will require at least b bits. Hence, M’ requires at least linear long-term

memory. ❑

6. Probabilistic Limited Memoy Machines

Probabilistic inductive inference machines were introduced in Pitt [1989] and

stuclied further in Pitt and Smith [1988]. A probabilistic inductive inference

machine is an IIM that makes use of a fair coin in its deliberations. We say

that f G EX(M)(p) if M learns f with probability p, O s p <1. The collec-
tion EX(p) is defined to be {U I EM(U) G EX(A4)(p)}. Pitt showed that for

p >$, EX(p) = EX [Pitt 1989]. Limiting the memory available to a proba-

bilistic IIM, according to the conventions of this paper, gives rise to the class

EX:c(p).

1160 R. FREIVALDS ET AL.

In this section, we define a class of recursive functions, called ~, and prove

three theorems about it. Firstly, we show that ~ can be probabilistically

learned (with probability 1) by an algorithm that uses only a constant amount

of long-term memory. Then we show that both the upper and lower bounds for

learning ~ deterministically are logarithmic. We proceed with the definition of—
u.

Every function in ~ will @ke on only four values, O, 1 and two self-refer-

ential indices. Members of U will be constructed via suitable recursion theo-

rems. Every function ~ = ~ will have several (perhaps infinitely many) blocks

of 0’s. Let ~1, rz, . . . denote the length of the first block of O’s, the second

block, etc. Similarly, ml, Uz, . . . denotes the lengths of the blocks of l’s, in their

order of appearance in the range. For a function ~ to be in ~, one of the

following two conditions must be met:

Furthermore, if case (1) occurs, ~ e ~ iff the sequence of values ~(.xl),

f(xJ, for positions xi immediately following a block of O’s or l’s, con-

verges to a program for f. Similarly, for (2) to qualify a function f for

membership in ~, the sequence of values f (yl), f(yz), . . . converges to a

program for f, where yi = xi + 1, for example the yi’s are points immediately

following a point that immediately follows a block of O’s or 1’s.

THEOREM 6.1. ~ E ~X: c(l).

PROOF. The proof proceeds by constructing two probabilistic o-automata

[Ablaev and Freivalds 1986; Taimina and Freivalds 1966]. These o-automa@

will process the string of values representing the range of functions from U.

Consequently, they will only have to recognize symbols as being either O or 1 or

other. The state transition graph of automata A* and A ~ are given in figures 1

and 2 respectively. The arc from ql to qz labeled 1, ~ indicates, that when in

state ql, if the automaton sees_a 1, it enters state qz with probability ~.

Let some function ~ from U be given. Consider what happens when the

string representation of f is given as input to A ~ and A ~, What will turn out to

be important is the number of times Al enters state q3 and how often Az
enters state q;. Our discussion will be in terms of Al, q3 and 1‘s. The same

dialogue will hold for Az with qi replaced by q; and all references to 1

replaced by O.

State qq can only be entered from state ql. State ql is accessible only from

states q~ and q~. Observation of a 1 is required for a change of state to ql.

Once in state ql, observing more 1’s can keep A ~ in the same state. When A ~

is any state other than qz, observation of a 1 will move the automaton to state

ql or state qz with equal probability. From state qz, observing a 1 keeps the

automaton in state q~, thus if Al observes n consecutive l’s, then the

probability that it will be in state ql after seeing them all is at most 2-”.

Impact of Fo~etting on Learning Machines 1161

1,; 1,1

1,; 0,1
other, 1 A ‘“ other, 1

0,1

other, 1

FIG. 1. Automaton Al.

o,: 0,1

1,1
o,*

other, 1 1

1,1
other, 1

FIG. 2. Automaton A ~.

1162 R. FREIVALDS ET AL.

Recall that mi denotes the length of the ith block of 1’s in the string

representation of ~. By the above discussion, if

‘1

x—
~=, 2U”

(3)

diverges, then by the Borel–Cantelli lemma [Feller 19681, state ql, hence state

q~ will be entered just at the end of reading an entire block infinitely often

with probability 1, and finitely often with probability O. On the other hand, if

(3) converges, then, with probability 1, state q~ will be entered only finitely
often (and infinitely often with probability O). This is because q~ can only be

entered by reading a O or “other” at the end of a block of l’s, and this happens

only if at the end of the block, A ~ was in state ql.

Similarly, in Az, state qj will, with probability 1, be entered infinitely often

when

~:1 ; (4)

diverges (finitely often with probability O). Since ~ was defined to include only

functions ~ such that (3) converges iff (4) ~iverges, the following statement

holds with probability 1 for any member of U

either state q~ is entered infinitely often and q: only finitely often or

state qj is entered infinitely often and qq only finitely often.

A probabilistic IIM, M, that infers all the functions in ~ simulates the

behavior of Al and Az, tossing a f@ coin every time a probabilistic state

transition is made. Suppose that ~ G U. If observing the value jlx) causes AZ

to enter state qj, then M outputs the value ~(x) when it is received as input. If

observing the value ~(x + 1) causes Al to enter state q3, then M outputs

~(x + 2) when it is received as input. Under no other circumstances will the
IIM produce an output.

With probability 1, M converges to a program that computes ~. The memory

used by M is bounded by a constant. All that is needed is to remember the

transitions of Al and A ~, their current states, two bits to remember if q3 or qj

was entered, and one final bit to be able to count 2 more inputs before

transferring an input to the output tape. ❑

THEOREM 6.2. Suppose that h = o(logn) for all IIMs M, ~ G EX(M): h.

PROOF. Suppose h = o(log n). Suppose by way of contradiction that M is

an IIM such that ~ c EX(M): h.. Define a. = log n. Let LCM(n) denote the

least common multiple of {1,..., n}. We would like to define b. > a. +
LCA4(n). To do so, we must develop an upper bound for K3f(rz). From

elementary number theory (e.g., see Griffin [1954]), the number of primes less

than or equal to n is O(n/in n). The largest possible factor of any prime in

LCM(n) is n. Consequently, an upper bound for LCM(n) is

O(n~(n/Mn))

Thus, we can choose b. = c log n c log ~ / in @ ~ for some constant c. Conse-

quently,

~;, ;

Impact of Forgetting on Learning Machines 1163

diverges and

‘1

.:15

converges.

The sequences of ai’s and hi’s will be used to determine the sizes of the

blocks of consecutive O’s and 1’s in~he functions that we will construct belctw.

Befo:re defining the function from U that M will fail to identify, ye must first

describe a transformation on programs. Recall that functions in U have string

representations that look like:

If pi has a string representation that conforms to the above schema, then ~g(i)

will interchange the roles of a~ and b~ for k > c resulting in the following

appearance:

Oalvlhg ““” lye”’xylb’xyob’+ ’xyl’’+ ’xyob’+’ayl’’+’~ ‘“” .

The transformation g is specified by the construction of q~[i), uniformly in i

in effective stages of finite extension below. Consequently, g will be a total

recursive function, even if some of the programs in its range compute functions

with finite (or empty) domains. @[i) denotes the finite amount of p~(i) deter-

mine prior to stage s. p~[i) = @. xs denotes the least number not in the domain

of q;(i). Consequently, X“ = O.

Be&”n stage O, Look for the least z such that qi(z) = O and there are

2 “ c numbers y < z such that qi(y) is defined to some number other

than O or 1. Set q~[i) = {(x, ~i(~) I x < Z} and go to stage 1.
End stage O.

Begin stage s >0. Look for the least z > x’ such that pi(z) is defined

and pi(z) # O. If pi(z) is undefined for some value, then ~g(i) has finite

domain. Look for the least w > z + 1 such that qi(w) is defined and

qi(~) # 1. Again, if pi is undefined for some value involved in the

search, then q~(i) has finite domain. Define:

qJ;;)’(x) =

‘P;(i)(x) if X<xs

o if XSSX<XS+W–(Z +2)

Pi(z) if x=xs+w–(z +2)

pi(z + 1) if X=xS+w–(z+2)+l

1 if XS+W–(Z+2)+1<X<W

Pi(w) if X=W

,~i(w’ + 1, if x=w+l

Go the stage s + 1.

End stages.

We are now ready to define the function f ● ~ that cannot be identified by
M. By implicit use of the recursion theorem, define a function P. with string

representation:

O“’g(e)elblg(e) eO”2g(e)elb’g(e)e ““. .

1164 R. FREIVALDS ET AL.

Clearly, q. is a total function. 13y the choice of the ai’s and hi’s, p, ● ~. Let

ni denote the length of the string

Oa’g(e)elb’g(e)e “.” O“g(e)elbg(e)e.

Let ~ = p.. To complete the proof, we define a recursive function ~’ that is

different from ~ but that M cannot distinguish from ~. The argument is

similar to a pumping lemma argument. Notice that ai = fl(log nj). Each block

of O’s (length ai) and block of 1’s (length bi) is longer than h(ni) in length, for

sufficiently large i. (The convergence or divergence of the series is not

dependent on the first few values ni.) Choose an i such that h(x) < c “ log(x)

for all x > ni. So, for large enough i there is a block of di < h(n,) O’s such that

M’s memory (and internal state) are in the same configuration when those O’s

are just about to be read, and just after they have all been read. Similarly, there

is a block of ji < h(ni) 1’s. Redrawing the string representation of f, given the

above observation yields:

o“” OOO””” OOOOdOO”.” OOOg(e)elll . . . lllljlll . .. 1111....

ai bi

Since bi – ai = LCM(i), both di and ji divide bi – ai, for large enough i.

Consequently, for such i’s, it is possible to expand the ith block of O’s by a

multiple of di to make the block have exactly bi 0’s. Similarly, it is possible to

remove a multiple of ji 1’s from the ith block of l’s, leaving the block with

exactly ai 1‘s. Performing this transformation on all but finitely many blocks of

O’s and 1’s results in a function that we will call f‘. Notice that the fi~st value

following each block of O’s or 1’s (g(e)) is an index for f‘; hence, f‘ ● U. M, on

input from f’ will be in the same state when it leaves the n.th block of O’s (or

l’s) as it will be when using f as input. Consequently, M will produce the same

outputs on input from f and f’. Hegnce, M cannot infer both f and f’, a

contradiction to the assumption that U c EX(M): h. ❑

THEOREM 6.3. Let g = Ax[3 . log x]. Then ~ ● EX: g.

PR_OOF. Let ~ and g be as in the hypothesis. The key to inferring some

f 6 U is to decide which of the two series:

‘1

21~ (5)

‘1

z—
~=, 2U”

(6)

converges.

We will estimate the values is the series (5) and (6). This estimate will be

kept in long-term memory. The series with the smaller estimate will be

assumed to be the one that is converging. Suppose that we have an estimate of

the sum of the first t – 1 values of both series. The value of l/2T’ can be

obtained by reading ~~ zeros into short-term memory. If ~, > log t + 2 log log t

(e.g., 1/2Tf < 2-10g~-z 10~logr), then this value is ignored, hence at most a

logarithmic amount of long-term memory will be used for this purpose.

Otherwise, the value of l/2T’ is added to the estimate of (5) in long-term

memory. The value of (6) is updated similarly. We add to the sums numbers of

Impact of Fo~etting on Learning Machines 11.65

lengths at most 2 log t > log t + 2 log log t.For the first t numbers we m-e

adding numbers of lengths 2 log 1,2 log 2,2 log 3, ...,2 log t.Since there are t

such numbers, each of value at most t2,the sum is at most t 3, so the space

needed for the sum is at most 3 log t. The above argument is relevant for both

series (5) and (6).

Thle proof is completed by showing that the terms that are ignored do not

have any effect on the convergence or divergence of the series. Since the series

51
~=1 n(log n)z

converges, there is no need to consider terms smaller than 1/t(log t)2,This

happlens precisely when ~, > log t + 2 log log t. EI

7. Conclusions

A complexity theoretic model of learning in the limit without complete infor-

mation was presented. This model was related to previously studied restrictions

on the traditional model of learning in the limit. It was shown that linear space

is enough long-term memory to complete any learning task. With logarithmic

longterm space, it is possible to maintain a counter. Without this much space,

what can be accomplished seems to be done via finite automata, requiring only

a constant amount of space. Several lower bound results were given, The proof

of these results used an unusual combination of pumping arguments with

mutual recursion theorems. A space hierarchy result was also shown. Proba-

bilistic memory limited learning was also examined.

There are many interesting questions concerning the trade-offs between

long- and short-term memory. We have been able to obtain only solme

preliminary results concerning the relationships between long- and short-term

memory sizes for certain problems [Freivalds et al. 1993b].

The model used in all these results required that the short-term memory be

destroyed each time the learning machine starts to read another datum. An

alternative model would be for the data in short-term memory to be destroyed

every time a new bit is read. Some of our results may not hold in this

alternative model.

Most of our results, with the exception of Theorem 5.5, considered giving the

inputs to an IIM in the natural, increasing domain order. Although this is a

traditional starting point, it would be desirable to consider the worst case over

all possible orders. Certainly, our lower-bound results, as well as some results

concerning constant long-term memory, would hold in this model. The other

theorems do not hold in any obvious way. A further investigation of worst-case
memory utilization would be very interesting.

ACKNOWLEDGMENTS. Some results in this paper were obtained while the

authors attended ICALP’91 in Madrid. We gratefully acknowledge The Univer-

sities of Latvia and Maryland, the National Science Foundation and the

organizers of ICALP’91 for making it possible for the authors to convene in a
setting conducive to obtaining the results described in this paper. Our col-

league, Bill Gasarch, made valuable comments on an early draft of this paper.

Sally Goldman served as a guide to the PAC learning literature. Haym Hirsh

pointed out the memory utilization scheme of Soar to us. Simon Kasif, Richard

1166 R. FREIVALDS ET AL.

Lewis, Don Perlis, Paul Rosenbloom, and Steven Salzberg also made comments

on earlier drafts. The very thorough referees made several valuable sugges-

tions, greatly improving this paper.

REFERENCES

ABLAEV, F. M., AND FREIVALDS,R. 1986. Why sometimes probabilistic algorithms can be more
effective. In Lecture Notes in Computer Science,vol. 233. Springer Verlag, New York, pp. 1–14.

AMEUR, F., FISCHER,P., Hi5FFGEN,K., AND AUF DER HEIDE, F. 1993. Trial and error: A new
approach to space-bounded learning. In Proceedings of the 1st European Conference on Compu-
tational Learning Theory. Oxford University Press, Oxford, England, pp. 133–144.

ANDERSON,J. R. 1983. The Architecture of Cognition. Harvard University Press, Cambridge,
Mass.

ANGLUIN,D., AND SMITH,C. H. 1983. Inductive inference: Theory and methods. Comput. Suru.
15,237-269.

ANGLUIN, D., AND SMITH, C. H. 1987. Inductive inference. In Encyclopedia of Artificial Intelli-
gence, S. Shapiro, ed. Wiley, New York, pp. 409-418.

BAR-HILLEL, V., PERLES,M., AND SHAMIR, E. 1951. On formal properties of simple phrase
structured grammars. Z. Phon. Sprach., Kommun. 14, 143–172.

BARZDINS, J. 1974. Two theorems on the limiting synthesis of functions. In Theory of Algorithms
and Programs, vol. 1. J. Barzdins, ed. Latvian State University, Riga, U. S.S.R., pp. 82–88.

BLUM, L., ANDBLUM, M. 1975. Toward a mathematical theory of inductive inference. hf. Cont.

28, 125-155.
BOUCHERON,S., ANDSALLANTIN,J. 1988. Some remarks about space-complexity of learning, and

circuit complexity of recognizing. In Proceedings of the 1988 Workshop on Computational
Learning Theory. D. Haussler and L. Pitt, eds. Morgan-Kaufmann, San Mateo, CA, pp. 125-138.

BRAINE, M. D. S. 1971. On two types of models of the internalization of grammars. In The
Ontogenesis of Grammar, D. I. SJobin, ed. Academic Press, Orlando, Fla., pp. 153-186.

CASE,J. 1974. Periodicity in generations of automata. Math. Syst. l%eo~ 8, 15-32.
CASE,J., JAIN, S., AND SHARMA,A. 1994. Convergence to nearly minimal size grammars by

vacillating learning machines. J. Comput. ,!i’yst. Sci. 49, 2, 189–207.

CASE,J., AND NGOMANGUELLE,S. Refinements of inductive inference by popperian machines.
Kybemetika, to appear.

CASE, J., AND SMITH, C. 1983. Comparison of identification criteria for machine inductive
inference. Theoret. Comput. Sci. 25, 2, 193–220.

CRICK,F., ANDMITCHISON,G. 1983. The function of dream sleep. Nature 304, 14, 111-114.

FELLER,W. 1968. An Introduction to Probability Theo~ and Its Applications, vol. 1. Wiley, New
York.

FLOYD,S. 1989. Space-bounded learning and the Vapnik–Chervonenkis dimension. In Proceed-
ings of the 1989 Workshop on Computational Learning Theoiy, R. Rivest, D. Haussler, and M.
Warmuth, eds. Morgan-Kaufmann, San Mateo, Calif., pp. 349-364.

FREIVALDS,R. 1990. Inductive inference of minimal size programs. In Proceedings of the 3rd
Annual Workshop on Computational Learning Theory, M. Fulk and J. Case, eds. Morgan
Kaufmann, San Mateo, Calif., pp. 1-20.

FREIVALDS,R., KINBER,E., ANDSMITH,C. 1993a. Learning with a limited memory. In Notes of

the AAAI Spring Symposium on Training Issues in Incremental Learning. Stanford Univ., Stanford,
Calif., pp. 78–87.

FREIVALDS,R,, KINBER, E., AND SMITH, C. 1993b. On the impact of forgetting on learning
machines. In Proceedings of the 6th Annual ACM Conference Computational Learning Theory

(Santa Cmz, Calif., July 26-28). ACM, New York, pp. 165-174.
FREIVALDS,R., KINBER, E., AND SMrrH, C. 1993c. Probabilistic versus deterministic memory

limited learning. In Record of the Workshop on Algorithmic Learning for Knowledge Processing.

FREIVALDS,R., KINBER,E., AND SMITH, C. 1994. Quantifying the amount of relevent informa-
tion. In Notes of the AAAl Spring Symposium on Reference, pp. 76–79.

FREIVALDS,R., AND SMITH,C. 1992. Memory limited inductive inference machines. In Lecture
Notes in Computer Science, vol. 621. Springer-Verlag, New York, pp. 19-29.

FREIVALDS,R., ANDSMITH,C. 1993. On the power of procrastination for machine learning. Inf.

Comput. 107, 237-271.

Impact of Forgetting on Learning Machines 1167

Ilnx, M., AND CASE,J., ~DS. 1990. Proceedings of the 3rd Annual Workshop on Computational
Learning TheoV. Morgan-Kaufmann, San Mateo, Calif.

GOLD, E. M. 1967. Language identification in the limit. Inf. Cont. 10, 447-474.
GRIFFIN, H. 1954. Elementay Theoiy of Numbers. McGraw-Hill, New York.
HAUtSSLER,D, 1985. Space efficient learning algorithms. Tech. Rep. UCSC-CLR-88-2. Univ.

California at Santa Cruz, Santa Cruz, Calif.
HAUSSLER,D., ED. 1992. Proceedings of the 5th Annual Workshop on Computatwnal Learning

Theory (Pittsburgh, Pa., July 27–29). ACM, New York.
HAUSSLER,D., AND PITT, L., EDS. 1988. Proceedings of the 1988 Workrhop on Computatwnal

Learning Theo~. Morgan-Kaufmann, San Mateo, Calif.
HEATH, D., KASIF, S., KOSARAJU, R., SALZBERG, S., AND SULLIVAN, G. 1991. Learning nested

concept classeswith limited storage. In Proceedings of the 12th International .loirrt Conference on

Artificial Intelligence (Sydney, Australia). Morgan-Kaufmann, San Mateo, Calif.j pp. 777-782.
HELMBOLD, D., SLOAN, R., AND WARMUTH, M. 1989. Learning nested differences of

intersection-closed concept classes. In Proceedings of the 1989 Workshop on Computational

Le(zming Theoty, R. Rivest, D. Haussler, and M. Warmuth, eds. Morgan-Kaufmann, San Mateo,
Calif., pp. 41-56.

HOPFIELD,J. J., FEINSTEIN,D. I., ANDPALMER,R. G. 1983, ‘Unlearning’ has a stabilizing effect
in collective memories, Nature 304, 14, 158–159.

JANm@ K. P., AND BEICK, H. R. 1981. Combining postulates of naturalness in inductive
inference. Electron. Inf. Kyber. 17, 465–484.

KLEENE, S. 1938, On notation for ordinal numbers. J. Symb. Logic 3, 150-155.
LEVINE, D. 1991. Introduction to Neural and Cognitive Modeling. Lawrence Earlbaum Associates,

Hillsdale, N.J.
LEWIS,H., ANDPAPADIMITRIOU,C. 1981. Elements of the Theoty of Computation. Prentice-Hall,

Inc., Englewood Cliffs, New Jersey,
LIN, J. H., AND VITTER, J. S. 1994. A theory for memory-based learning. Mach. Learn. 17, 2,

141-168.

MACHTEY, M., AND YOUNG, P. 1978. An Introduction to the General Theory of Algorithms,

North-Holland, New York.
MICHMLSKI,R., CARBONELL,J., ANDMITCHELL,T. 1983. Machine Learning. Tioga Publishing Co.,

Palo Afto, Calif.
MILLER, G. 1956. The magical number seven plus or minus two. Psych. ReLJ. 63, 81-97.

MIYAHARA, T. 1987. Inductive inference by iteratively working and consistent strategies with
anomalies. Bull. Inf. Cybem. 22, 171–177.

MIY.WARA, T. 1989. A note on iteratively working strategies in inductive inference. In Proceed-

ings of the Fujitsu IL4S-SIS Workshop on Computational Learning Theoiy (Numazu, Japan).
OSHERSON,D., STOB,M., AND WEINSTEIN,S. 1986. Systems that Learn. MIT Press, Cambridge,

Mass.
PrrT, L. 1989. Probabilistic inductive inference. J. ACM 36,2 (Apr.), 383-433.
PITT, L., AND SMITH, C. 1988. Probability and plurality for aggregations of learning machines.

Inf, Comput. 77, 77-92.
POPPER,K. 1968. The Logic of Scientific Discovery. Harper Torch Books, New York.
RIVEST, R., HAUSSLER,D., AND WARMUTH, M., EDS. 1989. Proceedings of the 2nd Annual

Workshop on Computational Learning Theory (Palo Alto, Calif.). Morgan-Kaufmann, San Mateo,
Calif.

ROGERS,JR., H. 1967. Theo~ of Recursive Functions and Effective Computabil@. McGraw-Jdill,
Ne,~ York,

ROSENBLOOM,P., LAIRD, J., NEWELL,A., AND MCCARL, R. 1991. A preliminary analysis of the
Soar architecture as a basis for general intelligence. Artif Znt. 47, 289-325.

SCHAPIRE,R. 1990. The strength of weak learnability. Mach. Learn. 5, 2, 197–227.

SERVAN-SCHREIBER,E. 1991. The Competitive Chunking Theory: Models of Preception, Learning,
and MemoV. Ph.D. dissertation. Department of Psychology, Carnegie Mellon Univ., Pittsburgh,
Pa.

SHAPIRO,S. 1987. Encyclopedia of Artificial Intelligence. Wiley, New York.
SIEGELMANN,H. T., AND SONTAG,E. D. 1992. On the computational power of neural nets. In

Proceedings of the 5th Annual ACM Workshop on Computational Learning Theo~ (Pittsburgh,
Pa., July 27-29). ACM, New York, pp. 440-449.

SMULLYAN, R. 1961. Theory of Formal Systems, Annals of Mathematical Studies, vol. 47. Princeton
University Press, Princeton, N.J.

1168 R. FREIVALDS ET AL.

TAIMINA, D. YA., AND FREIVALDS, R. 1966. On complexity of probabilistic finite automata
recognizing superlanguages. In Methods of Logic in Construction of Effective Algorithms. Kalinin
State Univ., Tver, pp. 92-96.

VALIANT, L. G. 1984. A theory of the learnable. Cornrrum. ACM 27, 11 (Nov.), 1134-1142.
WARMUTH, M., AND VALIANT, L., EDS,1991. Proceedings of the 1991 Workshop on Computational

Learning Themy (Palo Alto, Calif.). Morgan-Kaufmann, San Mateo, Calif.
WEXLER,K., AND CULICOVER,P. W. 1980. Formal Principles of Language Acquisition. The MIT

Press, Cambridge, Mass.
WEIHAGEN,R. 1976. Limes-erkennung rekursiver funktionen durch spezielle strategies. Elek.

Inf. Kyber. 12, 93-99.

RECE1vED JULY 1993; REVISED JUNE 1995; ACCEPTED JULY 1995

Jaurnalof the Asso.iaion for ComputingMachinery,Vol. 42,No. 6, November1995.

View publication statsView publication stats

https://www.researchgate.net/publication/259475423

	On the Impact of Forgetting on Learning Machines
	Recommended Citation

	On the impact of forgetting on learning machines

