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Adolescent Bisphenol-A exposure decreases dendritic spine 
density: Role of sex and age

Rachel E. Bowmana, Victoria Luineb, Hameda Khandakerb, Joseph J. Villafanea, and Maya 
Frankfurtc

aDepartment of Psychology, Sacred Heart University, Fairfield, CT 06825

bDepartment of Psychology, Hunter College, CUNY, New York, NY 10065

cDepartment of Science Education, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY 
11549

Abstract

Bisphenol-A (BPA), a common environmental endocrine disruptor, modulates estrogenic, 

androgenic, and anti-androgenic effects throughout the lifespan. We recently showed that low dose 

BPA exposure during adolescence increases anxiety and impairs spatial memory independent of 

sex. In the current study, six week old Sprague Dawley rats (n=24 males, n=24 females) received 

daily subcutaneous injections (40 μg/kg bodyweight) of BPA or vehicle for one week. Serum 

corticosterone levels in response to a 1 h restraint stress and spine density were examined at age 7 

(cohort 1) and 11 (cohort 2) weeks. Adolescent BPA exposure did not alter stress dependent 

corticosterone responses but decreased spine density on apical and basal dendrites of pyramidal 

cells in the medial prefrontal cortex (mPFC) and hippocampal CA1 region (CA1). Sex differences 

in spine density were observed on basal dendrites of the mPFC and CA1 with females having 

greater spine density than males. This sex difference was further augmented by both age and 

treatment, with results indicating that BPA-dependent decreases in spine density were more 

pronounced in males than females on mPFC basal dendrites. Importantly, the robust neuronal 

alterations were observed in animals exposed to BPA levels below the current U.S.E.P.A. 

recommended safe daily limit. These results are the first demonstrating that BPA given during 

adolescence leads to enduring effects on neural morphology at adulthood. Given that humans are 

routinely exposed to low levels of BPA through a variety of sources, the decreased spine density 

reported in both male and female rats after BPA exposure warrants further investigation.
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Bisphenol-A (BPA), a known endocrine disruptor, is utilized in the manufacturing of hard 

plastic products such bathtubs, countertops, and microwaveable food containers. Potential 
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health hazards exist because alterations in temperature and pH can cause leaching of BPA 

from plastics (Rubin, 2011; Rubin and Soto, 2009; Talsness et al., 2009; vom Saal and 

Hughes, 2005) and detectable levels of BPA have been reported in saliva, urine, blood, 

breast milk and the placenta of humans and animals (Biedermann et al., 2010; Geens et al., 

2011; Rubin, 2011). Exposure to BPA has been documented to have estrogenic, anti- 

estrogenic, and anti-androgenic effects (Negishi et al., 2003; Sohoni and Sumpter, 1998) on 

various hormone- induced physiological and behavioral phenomena. Perinatal exposure to 

BPA has been shown to reverse and abolish sexual dimorphisms in several neural regions. 

For example, perinatal BPA exposure decreased the number of tyrosine hydroxylase cells in 

the anteroventral periventricular nucleus of the hypothalamus (Patisaul et al., 2006) and the 

rostral periventricular preoptic area (Rubin et al., 2006) in female rats. In rhesus monkeys, 

prenatal exposure to BPA decreased fetal midbrain tyrosine hydroxylase neurons and 

reduced the number of spine synapses in the CA1 region of the hippocampus (Elsworth et 

al., 2013). Sex differences in overall volume of the locus coeruleus are abolished by BPA in 

exposed female rodents (Kubo et al., 2003). Additionally, perinatal BPA exposure reverses 

the sexually dimorphic patterns of estrogen receptor beta mRNA expression in the 

hypothalamus and amygdala of rats (Cao et al., 2013).

Perinatal BPA exposure also alters a wide variety of behaviors. Prenatal BPA exposure led to 

the abolishment of sex differences in open-field behavior (Fujimoto et al., 2006; Kubo et al., 

2003) and forced swimming test (Fujimoto et al., 2006) in adolescent rats. Chronic low dose 

perinatal exposure to BPA increased aggression and anxiety in adult rats (Patisaul and 

Bateman, 2008; Patisaul et al., 2012) and decreased exploratory behaviors in both adolescent 

(Fujimoto et al., 2006) and adult rodents (Farabollini et al., 1999; Goncalves et al., 2010). 

Acute administration of BPA during the perinatal period has been observed to increase 

hyperactivity in adolescent males in a dose dependent fashion (Ishido et al., 2004; Kiguchi et 

al., 2008). Postnatal BPA exposure (i.e., during lactation) impaired both object recognition 

and spatial memory in male and female adult rats (Goncalves et al., 2010). Taken together 

these experiments demonstrate that early BPA administration has behavioral effects on a 

variety of non-reproductive behaviors.

The mechanism (s) by which BPA exerts its effects on neural systems appears to be as a 

mixed agonist/antagonist for both estrogen and androgen receptors (Wolstenholme et al., 

2011). BPA can, depending on the dose and the presence or absence of circulating gonadal 

hormones, mimic or block gonadal hormone effects on neural functions such as memory. 

When an acute dose, 40 μg/kg, of BPA is given to intact adult males immediately following 

a sampling trial, object and place memory is impaired 2–4 hours later (Eilam-Stock et al., 

2012). In cycling rats, the impairment of object memory by BPA occurred during proestrous 

(Inagaki et al., 2012). Therefore, BPA rapidly impairs hormone dependent recognition 

memory in gonadally intact adult male and female rats. However, BPA does not appear to 

mimic estradiol’s effects on memory in females because doses from 1 to 400 μg did not 

affect recognition memory in ovariectomized (OVX) females, but 40 μg/kg BPA blocked 

recognition memory enhancements in OVX females receiving 17β-estradiol (Inagaki et al., 

2012). Thus, when administered with estrogen, BPA appears to rapidly antagonize 

estrogenic / androgenic effects on recognition memory, but alone it does not enhance or 

impair memory.
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There is increasing evidence that the mechanism(s) underlying estrogenic effects on learning 

and memory involve plasticity of dendritic spines on pyramidal cells in the CA1 region of 

the hippocampus (CA1) and the medial prefrontal cortex (mPFC) (for review, Luine and 

Frankfurt, 2012). Although early studies demonstrated that chronic changes in estradiol 

altered dendritic spine density, more recently it has been demonstrated that acute 

administration of estrogen also rapidly increases dendritic spine density and enhances 

memory (Luine et al., 2003; MacLusky et al., 2005a). In addition, acute administration of 

BPA alters gonadal hormone effects on both memory and dendritic spines. In males, within 

30 to 40 minutes BPA (40 μg/kg) impairs recognition memory and decreases spine density in 

the apical and basal dendrites of the mPFC by approximately 25% and CA1 by 

approximately 10% (Eilam-Stock et al., 2012). In females, BPA also blocks estrogen 

dependent enhancements in recognition memory, but BPA interactions with estrogen on 

spines appears more complex than in males. Given 30 min before estradiol (20 μg/kg), 40 

μg/kg of BPA blocks estrogen’s induction of spines on basal dendrites in CA1 but is additive 

with estrogenic effects on basal dendrites in the mPFC at 4 h (Inagaki et al., 2012).

The age of exposure (the vast majority of studies have focused on pre- and neo-natal 

exposure) and the dose (most focus on chronic, high dose amounts) are important 

considerations when reviewing the BPA literature. The findings reported above (Eilam-Stock 

et al., 2012; Inagaki et al, 2012) on BPA’s effect on memory and spine density have been 

demonstrated in adulthood following an acute dosing regimen, but it is currently unclear 

whether the same pattern of results hold true following adolescent BPA exposure. 

Adolescence is an important developmental period characterized by hormonal changes 

which induce structural effects on the brain and subsequently behavior (for review, Romeo, 

2003); however, only recently have researchers begun to turn their attention to the behavioral 

effects of BPA exposure during adolescence (e.g., Diaz-Weinstein et al., 2013; Xu et al., 

2011). We have previously demonstrated that short term, low-dose BPA exposure (below the 

current reference safe daily limit of 50 μg/kg day set by the United States Environmental 

Protection Agency, 1993) during adolescence increased anxiety on the elevated plus maze 

and open field and impaired spatial memory on the object placement task, independent of 

sex (Diaz-Weinstein et al., 2013). To date, there is no literature regarding the potential 

effects of adolescent BPA exposure on neuronal morphology in brain areas known to 

contribute to these cognitive behaviors such as the CA1 and mPFC (Broadbent et al., 2004; 

Jo et al., 2007).

In addition to BPA’s effect on sexual differentiation of the brain and numerous behavioral 

responses, perinatal exposure to low-dose BPA alters corticosterone levels under both basal 

and stress conditions in adolescence (Panagiotidou et al., 2014; Poimenova et al., 2010). 

These findings show that perinatal exposure to BPA alters the concentration of hippocampal 

glucocorticoid and mineralocorticoid receptors and induced sex differences in plasma 

corticosterone levels at an earlier developmental age (pre-pubertal) than previously reported 

(Malendowicz and Mlynarczyk, 1982) (Panagiotidou et al., 2014; Poimenova et al., 2010). 

To date, there is no literature regarding the potential effects of adolescent BPA exposure on 

stress induced corticosterone levels and it is unknown whether BPA exposure during 

adolescence can alter sexually differentiated corticosterone release in response to a stressor 

in adulthood.
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In order to better understand the mechanisms responsible for BPA’s effects on the adolescent 

brain, the present study was designed to determine whether or not BPA exposure during 

adolescence (postnatal days [PND] 42–49) alters spine density in the mPFC and CA1 region 

of the hippocampus in male and female rats immediately following BPA injections on day 

49 (7 weeks of age), and later in adulthood, at 11 weeks of age. In addition, because 

perinatal exposure to low-dose BPA alters corticosterone levels under both basal and stress 

conditions in adolescence, we examined whether adolescent BPA exposure altered serum 

corticosterone levels in response to a restraint stress challenge at 7 and 11 weeks of age, 

immediately prior to sacrifice.

Materials and Methods

Subjects

Forty-eight experimentally naïve 5 wk old Sprague Dawley rats (n=24 males, n=24 females) 

were obtained from Charles River Laboratories (Maryland, USA) and maintained on a 

12/12-hr light/dark cycle (lights on 7:00 am). All experimental procedures were approved by 

the Sacred Heart University Institutional Animal Care and Use Committee and in 

accordance with the NIH Guide for the Care and Use of Animals. Subjects were double 

housed according to sex and treatment condition in a common animal colony room, 

temperature regulated at 21.1°C, and had free access to rat chow and water (Glass water 

bottles, Ancare Corporation, Bellmore, NY). All animals were weighed regularly. Table 1 

illustrates the methodological timeline.

Injections

Following a one-week acclimation period during which animals were allowed to adjust to 

the new housing conditions, male and female adolescent subjects, now aged 6 weeks, were 

randomly assigned to either a control (vehicle only) or experimental group (BPA exposed). 

BPA (>99% purity grade) was obtained from Sigma-Aldrich Corp (St. Louis, MO). Each rat 

received a daily subcutaneous injection, 40 μg/kg bodyweight, at the nape of the neck for 

one week. The BPA was initially dissolved in ethanol for stock solutions and diluted with 

saline for the injection.

Stress challenge

Immediately following injections on the seventh day, half of the subjects (n=6/group) now 

aged 7 weeks, were exposed to a 1 h restraint stress challenge. The remaining subjects (n=6/

group) were allowed to mature to 11 weeks of age and were then exposed to the 1 h restraint 

stress challenge. Stress was applied by placing each individual rat in a Plexiglas tube 

(Harvard Apparatus, item #52029). The Plexiglas restraint tubes were equipped with air 

holes and an adjustable endplate used to secure the rat within the tube. Once the rats were 

placed in their respective restraint tube, they were placed in a temperature control room 

(21.1°C) separate from the main animal colony. Animals remained in the restrainer for 1 h 

and were then immediately removed and sacrificed via rapid decapitation (between 12:00 – 

1:00 pm).
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Golgi Impregnation

Following sacrifice, brains were removed from subjects and cut into an anterior block 

(anterior to the optic chiasm) and a posterior block (between the optic chiasm and the 

brainstem) and placed in solutions provided in the Rapid Golgi Stain Kit (FD 

NeuroTechnologies, Ellicott City, MD). Golgi impregnation was performed as previously 

described (Frankfurt et al., 2011; Inagaki et al., 2012). Secondary basal dendrites and 

tertiary apical dendrites were analyzed blindly from pyramidal cells in the CA1 region of the 

dorsal hippocampus and layer II/III of the prelimbic portion of the mPFC. Six cells per 

region/brain were included in the analysis and 5 or 6 brains were quantified per group. 

Neurons in both areas were chosen for analyses as follows: (1) cell bodies and dendrites 

were well impregnated, (2) dendrites were clearly distinguishable from adjacent cells and 

continuous. Spines were counted under oil (100x) using a hand counter and dendritic length 

measured using the Spot Advanced program, version 5.0 Windows (Diagnostic Instruments, 

Inc.) and a Nikon Eclipse E400 microscope. Spine density was calculated by dividing the 

number of spines by the length of the dendrite and data expressed as number of spines/ 10 

μm dendrite.

Corticosterone measurement

At sacrifice, trunk blood was collected from all subjects. Samples were centrifuged at 3000g 

at 4°C for 15-minutes and sera collected. Using a corticosterone ELISA kit (Neogen Corp., 

Lexington, KY), 100μL of plasma was dissolved in ethyl ether and allowed to evaporate for 

48-hours. The ELISA kit used polyclonal rabbit antibodies, had a sensitivity range from 

0.05–5.0 ng/ml, and had an inter-assay and intra-assay validation of ≤10%. Samples went 

through a series of washes and incubations as directed by the kit instructions. Samples and 

standards (50μL) were assayed in a kit-provided 96-well plate and read in a microplate 

reader at 650nm. Output was converted into corticosterone levels at ng/ml via equations 

provided by Neogen Corp.

Data analysis

Data were analyzed using NCSS software (Kaysville, UT, USA). Three-way (treatment X 

sex X age) ANOVAs were used to test for group differences in spine density and 

corticosterone levels. Type I error rate was set at 0.05 and Fisher’s LSD Tests were used for 

post-hoc analysis, where appropriate.

Results

Medial Prefrontal Cortex (mPFC) basilar dendritic spine density

Spine density of basal dendrites in pyramidal cells in the mPFC was measured in control and 

BPA-treated, male and female rats at 7 and 11 weeks of age, and data analyzed by three-way 

ANOVA. Figure 1 is of secondary basal dendrites in the mPFC illustrating spine density in a 

control and BPA treated male. There was no overall treatment X sex X age three-way 

interaction, F(1,46)=2.23, p=0.14. Main effects are shown in Figure 2 A. Basal spine density 

was decreased 21% in all BPA treated subjects (9.4 ± 0.2) compared to all controls (11.9 

± 0.3), regardless of sex or age, main effect of treatment, F(1,46)=147.82, p=0.00001. There 
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was a small, 6%, but highly significant sex difference (F (1,46)=8.32, p=0.006), with males, 

control and BPA treated, having fewer spines on the basal tree of the mPFC neurons (10.4 

± 0.4) than control and BPA treated females (11.0 ± 0.3). The main effect of age showed that 

all subjects showed a significant 9% increase in spines with time (10.2 ± 0.2 at 7 weeks and 

11.1 ± 0.4 at 11 weeks) , F (1,46)=22.38, p=0.0001).

Each of these three main effects were differentiated by three significant two-way 

interactions. In addition to the main effect of BPA, there was a significant treatment X sex 

interaction, F(1,46)=9.46, p=0.006. The BPA-dependent decrease in males was 25% while in 

females it was 15% and post hoc analysis showed that male BPA treated subjects had 

significant decreased spine density compared to all other groups (Fisher LSD, P=0.05), 

Figure 2B. Additionally, spine density on basal dendrites of mPFC pyramidal cells showed a 

significant treatment X age interaction, F (1,46), =55.40, p=0.0001, Figure 2C. Post hoc 

testing revealed that the combined male and female control subjects had increased spine 

density from 7 to 11 weeks (Fisher LSD, P=0.05); however, the combined treated subjects 

did not show increased spine density over time. Thus, the decreased spine density caused by 

BPA exposure persisted across time in both males and females. Finally, the increase in spine 

density with age was primarily dependent on changes in males because there was a 

significant sex X age interaction, F (1,46)=7.70, p=0.008), Figure 2D, such that only males, 

not females, showed significant increases in spine density from 7 to 11 weeks (Fisher LSD, 

P=0.05).

Medial Prefrontal Cortex (mPFC) apical dendritic spine density

There was no overall treatment X sex X age three-way interaction effect on apical dendrites 

of pyramidal cells in the mPFC, F(1,46)=0.18, p=0.67. Main effects are shown in Figure 3A. 

BPA exposure lead to a 10% decrease in mPFC apical dendritic spine density in the males 

and females combined (10.1 ± 0.1) compared to the combined controls (11.2 ± 0.2), main 

effect of treatment, F (1,46)=39.85, p=0.0001. While there was no significant main effect of 

sex, F(1,46)=1.27, p=0.27, all subjects showed a 9.5% increase in spine density from 7 (10.4 

± 0.2) to 11 weeks (11.5 ± 0.3), main effect of age F (1,46)=16.13, p=0.0003). Furthermore, 

a significant treatment X age interaction was observed, F (1,46)=10.41, p=0.003 and shown 

in Figure 3B. Post hoc testing again showed that control subjects increased spine density 

from 7 to 11 weeks (Fisher LSD, P=0.05); however, BPA exposed subjects had decreased 

spine density that persisted from 7 to 11 weeks.

CA1 basilar dendritic spine density

There was no overall treatment X sex X age three-way interaction effect in the spine density 

of basal dendrites in CA1 F(1,44)=0.06, p=0.81. Main effects are shown in Figure 3A. A 

substantial decrease of 24% was observed in the spine density on basal dendrites in CA1 of 

all BPA treated subjects (9.1 ± 0.2) compared to all controls (12.0 ± 0.2), main effect of 

treatment, F(1,44)=103.13, p=0.00001. Figure 4A also shows a smaller, 9%, yet strongly 

significant sex difference with males, control and BPA treated, having fewer spines on CA1 

basal dendrites (9.9 ± 0.4) than control and BPA treated females (10.9 ± 0.3), main effect of 

sex, F (1,44)=9.19, p=0.004). While there was no main effect of age, F(1,44)=0.90, p=0.35, 

a significant treatment X age interaction was observed, F (1,44)=6.88, p=0.01 (Figure 4B). 
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Post hoc testing showed that male and female control subjects had no change in spine 

density from 7 to 11 weeks; however, both male and female BPA exposed subjects had a 

significant decrease in CA1 basal dendritic spine density from 7 to 11 weeks (Fisher LSD, 

P=0.05).

CA1 apical dendritic spine density

The fewest changes in dendritic spine density were observed in the apical dendritic spines of 

pyramidal cells in CA1. There was no overall treatment X sex X age three-way interaction 

effect in the spine density of apical dendrites in CA1 F(1,44)=0.06, p=0.81. Exposure to 

BPA, regardless of sex or age, significantly decreased spine density by 15% (10.9 ± 0.2) 

compared to controls (12.9 ± 0.3), main effect of treatment, F (1,44)=23.06, p=0.0002). No 

other, significant main or interaction effects were observed in CA1 apical dendritic spine 

density (p>.05).

Serum Corticosterone

All subjects received a 1 h restraint stress challenge at 7 and 11 wks of age, and serum 

corticosterone levels were measured (Figure 5). There was no overall three-way treatment X 

sex X age effect on serum corticosterone levels, F(1,40) = 0.021, p=0.89. While there were 

no main effects of either BPA treatment or sex (p>0.05), corticosterone levels were higher at 

11 wks (367.1 ± 42.5, ng/ml) than at 7 wks of age (130.1 ± 30.6, ng/ml), main effect of age, 

F (1,47)=23.91, p=0.00001. Additionally, there was a sex X age interaction, F (1,47)=12.81, 

p=0.0009. As shown in Figure 5, post hoc testing showed corticosterone levels were lowest 

in females at 7 weeks compared to all other groups. Furthermore, females had substantial 

increases in corticosterone levels from 7 to 11 wks; however, males did not have any 

significant change in levels across time.

Discussion

In the current study, we examined the effects of low dose adolescent BPA exposure on the 

spine density of apical and basal dendrites of pyramidal cells in the mPFC and CA1 region 

of the hippocampus, at 7 and 11 weeks of age. These results are the first to demonstrate that 

short term, low dose exposure to BPA during the critical period of adolescence (PND 42–49) 

decreases spine density and that, in some cases, these treatment effects are dependent on sex 

and age of the animal.

Adolescent BPA exposure resulted in a decrease in basilar and apical dendritic spine density 

in both the mPFC and CA1. In the mPFC, BPA induced decreases in spine density observed 

at 7 weeks were stable and persisted through 11 weeks. During this time, mPFC apical and 

basal dendritic spine density in controls increased whereas there were no observed increases 

in BPA treated subjects across time. These findings differ from recent data demonstrating 

that dendritic spines decreased in both sexes post-puberty (Koss et al., 2014); however, this 

apparent discrepancy may be the result of strain differences (hooded versus Sprague Dawley 

rats). Also, the decreases reported by Koss and colleagues were observed in PFC layer V 

between PND 35–90 compared to layer II-III between PND 49–77 in the current study. 

Thus, the observed dendritic pruning may be occurring in the PND 77–90 range.
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In CA1, BPA further decreased spine density on basal dendrites with developmental 

maturation. Control subjects showed no change in basal dendritic CA1 spine density from 7 

to 11 weeks of age; however, the BPA decrease observed at 7 weeks persisted through 11 

weeks of age. It has previously been shown that acute BPA administration to adult males 

decreased spine density in both the mPFC and CA1 (Eilam-Stock et al., 2012). Long-term 

(i.e., 12 weeks) exposure to BPA in adulthood impaired male spatial memory and reduced 

CA1 hippocampal synaptic density in male mice (Xu et al., 2013). Other evidence has 

shown that BPA can block the formation of synapses and reduce synaptic density in the CA1 

and mPFC (Leranth et al., 2008a,b; McLusky et al., 2005b) in adults. The current data 

provides novel results that generalize these findings to adolescence and extends them to 

females. While it is not clear how BPA decreases spine density, changes in cell-signaling 

pathways (e.g., pCREB, Eliam-Stock et al., 2012) and decreases in NMDA subunit NR1 and 

AMPA receptor subunit GluR1 binding (Tian et al., 2010; Xu et al., 2013) have been 

observed following BPA administration suggesting that there are several possible 

mechanisms for this effect.

Sex differences in spine density on basal dendrites in CA1 pyramidal cells were observed 

and females had greater spine density than males, regardless of age. Sex differences were 

also observed in spine density on basal dendrites of pyramidal cells in the mPFC but, unlike 

in CA1, the mPFC sex differences interacted with both age and treatment. A sex difference 

was apparent at 7, but not 11 weeks. Furthermore, the current findings demonstrate that sex 

interacts with BPA exposure. Specifically, BPA decreases in spine density on basal dendrites 

in the mPFC were larger in males than in females and this is similar to findings previously 

reported in the CA1 region of adult mice (Xu et al., 2013). It has previously been shown that 

BPA leads to decreases in synaptic density, synaptic proteins and glutamate receptors in 

CA1 of adult male, but not female, rats (Xu et al., 2013) and this was speculated to be due to 

endogenous estrogen. Consideration must also be given to intrahipppocampal synthesis of 

estrogen (for review, Hojo et al., 2011). The current data provides novel evidence that the 

increased male susceptibility to BPA (as previously seen in hippocampal synaptic plasticity 

measures, Xu et al., 2013) can be extended to include spine density, the period of 

adolescence, and the mPFC.

We have previously demonstrated that adolescent BPA exposure impairs spatial memory 

performance in an object placement task in both male and female rats when tested in 

adolescence (Diaz-Weinstein et al., 2013). Others have shown that perinatal BPA exposure 

impairs spatial learning and memory on the Morris Water Maze at both postnatal days 21 

and 56 (Xu et al., 2010) and it is known that various aspects of these behaviors are mediated 

by CA1 and mPFC (Broadbent et al., 2004; Jo et al., 2007). Thus, it is appealing to speculate 

that the observed morphological differences may be contributing to previously reported 

behavioral effects in response to adolescent BPA exposure. Thus, BPA’s effects on spatial 

memory may be due to dendritic spine density changes. The hippocampus, which plays a 

vital role in spatial memory and cognition, has many sexually dimorphic features and 

continues to be responsive to sex hormones through adulthood (reviewed in Hajszan and 

Leranth, 2010). Since BPA has been shown to have estrogenic and anti-androgenic effects 

(Jolly, 2009), exposure to BPA during adolescence may effect spatial cognition by altering 

neural plasticity in the hippocampus.
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It is important to note that while stressful experiences can alter dendritic spines, we believe 

that the dendritic spine density measured in the current study reflect changes due to 

adolescent BPA exposure and not the 1 h restraint stress exposure for several key reasons. 

First, all groups experienced the acute stress, and thus alterations in spine density should 

reflect the differences among groups due to sex, treatment, and age effects. And, the spine 

density decreases were only observed in the BPA, but not control, groups. Importantly, these 

findings (e.g., BPA decreases in spine density) are consistent with previously reported data 

regarding BPAs effect on spine density (Eilim- Stock et al., 2012; Leranth et al., 2008a,b; 

McLusky et al., 2005b; Xu et al., 2013) ; which further strengthens the argument that the 

spine density changes were due to the BPA, and not stress, exposure. Second, the vast 

majority of studies demonstrating stress induced alterations in neuronal morphology have 

focused on chronic stress exposure (Galea et al., 1997; Magarinos and McEwen, 1995; Sandi 

et al., 2003; Stewart et al., 2005; Watanabe et al., 1992; for review, Bowman et al., 2003). 

While changes in spine density following acute stress have been reported (Chen et al., 2008; 

Sebastian et al., 2013; Shors et al., 2001) these changes did not occur immediately and 

alterations in CA1 dendritic spine density in male or female rats only occurred after 24 hr 

(Shor et al., 2001) well outside the timeframe of stress and sacrifice in our study. Third, the 

primary target of corticosterone influenced neuronal changes is the CA3 region of the 

hippocampus (Galea et al., 1997; Watanabe et al., 1992), which was not examined in the 

present study. While stress-induced changes in morphology have been observed in mPFC 

and CA1 they are not consistent in design with the data presented here. For example, a 

reorganization of apical arbors in mPFC has been reported following chronic corticosterone 

administration (Wellman, 2001) or chronic restraint stress (Radley et al., 2004). CA1 

dendritic spine density is altered by exposure to intermittent tail shocks (Shors et al., 2001), 

but this acute stressor places a higher physical demand on the animal than restraint stress 

(for review, Bowman et al., 2003). In sum, with respect to the 1 h restraint stress challenge, 

the design of the current study was to examine potential alterations in stress-induced 

corticosterone levels in adolescent BPA exposed subjects compared to controls and we did 

not expect there to be any spine density changes due to stress. Finally, it should be noted that 

the decreased spine densities observed in the present study were not the result of increased 

dendritic length as we compared the dendritic lengths across all groups for both 7 and 11 

weeks and found there to be no effect of BPA on dendritic length in either CA1 or the PFC 

(P>0.05). We recognize that the effects of BPA and stress exposure in the current study are 

hard to differentiate. BPA exposure could alter the stress response which in turn could have a 

potential effect on spine density. Future studies are necessary to address this possibility.

Our results demonstrate that adolescent BPA exposure did not alter corticosterone levels 

following a restraint stress challenge. Previous findings have shown that basal corticosterone 

levels were increased in neonatally BPA exposed females, but not males, during adolescence 

(Poimenova et al., 2010). Adolescent sex differences in stress-induced corticosterone release 

appear dependent upon the stressor. Corticosterone release was greater in BPA treated males 

than females (Panagiotidou et al., 2014) following an acute forced swim stressor; however, 

both male and female BPA treated subjects showed elevated corticosterone following the 

mild Y-maze stressor (Poimenova et al., 2010). Two important distinctions must be 

considered when making comparisons between the previous and current studies. First, is the 
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type of stressor and second, is the timing of BPA exposure. Poimenova et al. (2010) and 

Panagiotidou et al. (2014) exposed rats prenatally to BPA, thus it appears that BPA interferes 

with the organization of the stress response/hypothalamic-pituitary-adrenal axis during 

development but the current data suggests that BPA does not exert effects on stress 

dependent release of corticosterone during adolescence. However, further studies are needed 

to measure basal corticosterone levels and stress induced corticosterone levels over time 

following BPA treatment.

While corticosterone levels were not altered by BPA exposure, there were increases 

associated with age and this effect was greatest for females. These findings are consistent 

with past reports that showed basal corticosterone levels increased with age (for review, 

Sapolsky, 1992) and that it is markedly observed in female rats (Lo et al., 1999). 

Importantly, female corticosterone levels fluctuate across the estrous cycle and, thus it is 

reasonable to suggest that the age related increases in female corticosterone reported here 

are due to the onset of estrous cyclicity. Additionally, stress-induced corticosterone release is 

highest in females during proestrous (Viau and Meaney, 1991) suggesting that future studies 

should take into consideration the relationship between adolescent BPA exposure and 

estrous cycle in adulthood.

In conclusion, short term, low dose BPA exposure during the critical period of adolescent 

development decreased spine density in both basal and apical dendrites in pyramidal neurons 

of the mPFC and CA1, but did not alter corticosterone release following a 1 h restraint stress 

challenge. The impact of BPA exposure on spine density was maintained across time and 

endured into adulthood in both the mPFC and CA1. Furthermore, to the best of our 

knowledge, we are the first to report that BPA exposure has a significantly greater effect in 

males than females with regard to spine density decreases in basal dendrites in the mPFC. 

Importantly, these robust neuronal alterations were observed in animals exposed to BPA 

levels below the current recommended safe daily limit (United States Environmental 

Protection Agency, 1993). Humans are routinely exposed to low levels of BPA through a 

variety of sources and an important consideration when interpreting the current data is the 

subcutaneous method of BPA administration used in the current study in comparison to an 

oral route of exposure. No differences were found in circulating BPA levels in neonatal mice 

following oral or subcutaneous exposure (Taylor et al., 2008); however, future studies should 

investigate BPA’s effects following various routes of administration. Recent studies of 

Americans showed that 95% had detectable levels of BPA in their urine (Calafat et al., 2005, 

2008); thus it seems imperative to better understand BPAs effects on behaviors as well as the 

possible neuronal underpinnings of these effects.
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Figure 1. 
Photomicrograph illustrating golgi impregnated secondary basal dendrites from pyramidal 

cells in the mPFC (100 x oil). Top: Control, Bottom: BPA. Arrows denote spines.
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Figure 2. 
Pyramidal cells, basal dendritic spine density, mPFC. Entries are the average # spines/10 μm 

± SEM. All significant effects are P<0.05. Panel A shows the main effects of treatment 

(CON vs BPA), sex (male vs female) and age (7 weeks vs. 11 weeks). Significant 

differences between groups are denoted by *. Panel B shows the significant treatment X sex 

interaction where BPA decreases in spine density were greater in males than females. Panel 

C shows the significant treatment X age interaction which shows spine density increased 

across time for control subjects, but not BPA treated. Panel D shows the sex X age 
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interaction. Across time, males, but not females, showed significant increases in spine 

density from 7 to 11 weeks.
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Figure 3. 
Pyramidal cells, apical dendritic spine density, mPFC. Entries are the average # spines/10 

μm ± SEM. All significant effects are P<0.05. Panel A shows the main effects of treatment 

(CON vs BPA), sex (male vs female) and age (7 weeks vs. 11 weeks). Significant 

differences between groups are denoted by *. Panel B shows the significant treatment X age 

interaction. Control subjects increased spine density across time; however, BPA subjects had 

decreased spine density that persisted from 7 to 11 weeks.
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Figure 4. 
Pyramidal cells, basal dendritic spine density, CA1. Entries are the average # spines/10 μm ± 

SEM. All significant effects are P<0.05. Panel A shows the main effects of treatment (CON 

vs BPA), sex (male vs female) and age (7 weeks vs. 11 weeks). Significant differences 

between groups are denoted by *. Panel B shows the significant treatment X age interaction. 

Control subjects had no change in spine density from 7 to 11 weeks; however, BPA treated 

subjects had a significant decrease in spine density across time.
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Figure 5. 
Corticosterone levels following a 1 h restraint stress challenge. Entries are the serum 

corticosterone levels, ng/ml, ± SEM. A significant sex X age interaction revealed that 

females had substantial increases in corticosterone levels from 7 to 11 wks (denoted by *); 

however, males did not have any significant change in values across time.
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