
Sacred Heart University
DigitalCommons@SHU

Computer Science & Information Technology
Faculty Publications Computer Science & Information Technology

2003

Ethical Issues in Open Source Software
Frances Grodzinsky
Sacred Heart University, grodzinskyf@sacredheart.edu

Keith W. Miller
University of Illinois at Springfield

Marty J. Wolf
Bemidji State University

Follow this and additional works at: http://digitalcommons.sacredheart.edu/computersci_fac

Part of the Business Law, Public Responsibility, and Ethics Commons, and the Computer
Sciences Commons

This Article is brought to you for free and open access by the Computer Science & Information Technology at DigitalCommons@SHU. It has been
accepted for inclusion in Computer Science & Information Technology Faculty Publications by an authorized administrator of
DigitalCommons@SHU. For more information, please contact ferribyp@sacredheart.edu.

Recommended Citation
Grodzinsky, Frances; Miller, Keith W.; and Wolf, Marty J., "Ethical Issues in Open Source Software" (2003). Computer Science &
Information Technology Faculty Publications. Paper 20.
http://digitalcommons.sacredheart.edu/computersci_fac/20

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sacred Heart University: DigitalCommons@SHU

https://core.ac.uk/display/231038531?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.sacredheart.edu/?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.sacredheart.edu/?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.sacredheart.edu?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.sacredheart.edu/computersci_fac?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.sacredheart.edu/computersci_fac?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.sacredheart.edu/computersci?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.sacredheart.edu/computersci_fac?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/628?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.sacredheart.edu/computersci_fac/20?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ferribyp@sacredheart.edu

Ethical Issues in Open Source Software

1. INTRODUCTION

Open Source Software (OSS) and the emer-
gence of an entire Open Source Movement
have practical, political, economic and eth-
ical ramifications for software development
and software use. In this article we examine
ethical issues that have been raised by open
source software and its challenge to com-
mercial software models. First we will trace
the history and impetus of the open source
movement, examining its forerunners,
including UNIX, Stallman’s Free Software
Foundation, and Linux. Next we will define
Open Source and examine its development
model. Lastly, we present the ethical issues
raised by OSS and attempt to demonstrate

how human values are interwoven with the
economic and technical choices that OSS
affords.

2. A BRIEF HISTORY
OF SOFTWARE
DEVELOPMENT

The field of software development, like
many technological fields, has its roots
intertwined with academia. Academia has a
long-standing tradition of sharing ideas and
results, as long as appropriate credit is
given to the originators. This tradition is
most easily observed in the rich collection
of scholarly journals used by the research
community. These journals provide a forum

Info, Comm & Ethics in Society (2003) 1: 193–205
© 2003 Troubador Publishing Ltd.

KKEEYYWWOORRDDSS

Open Source
Software

Linux

Software
development

models

GNU, FSF

F S Grodzinsky
Sacred Heart University, Fairfield, CT, USA

Email: grodzinskyf@sacredheart.edu

K Miller
University of Illinois Springfield, Springfield, Illinois. USA

Email: Miller.keith@uis.edu

M J Wolf
Bemidji State University, Bemidji, MN, USA

Email: mjwolf@bemidjistate.edu

CCOOVVEERRAAGGEE

� �

� �

In this essay we argue that the current social and ethical structure in the Open Source Software (OSS)
Community stem from its roots in academia. The individual developers experience a level of autonomy
similar to that of a faculty member. Furthermore, we assert that the Open Source Software Community’s
social structure demands benevolent leadership. We argue that it is difficult to pass off low quality open
source software as high quality software and that the Open Source development model offers strong
accountability. Finally, we argue that Open Source Software introduces ethical challenges for universi-
ties and the software development community.

ABSTRACT

for the dissemination of ideas and results.
In addition, they provide a vehicle for
researchers to advance new ideas and
enhance the quality of existing theories.
These traditions are deeply engrained in
the Computer Science and Software
Engineering academic communities.

The field of software development also
shares a close connection with industry.
The first ties occurred with hardware
developers. IBM, for example, in conjunc-
tion with researchers at Harvard University,
built its first computer in 1944. Over the
next 15 years, IBM would bundle hardware,
software and services in a single package,
rarely distinguishing among the various
components. Then in 1969 IBM adopted a
new marketing policy in which software
and services were marketed separately from
hardware. Therefore, in order to have any
opportunity for profitability for the pro-
gramming division, the source code would
need to be kept confidential. This separa-
tion became complete in 1981 when IBM
partnered with Intel and Microsoft to
develop the personal computer (The
History of IBM). Hewlett Packard (HP)
was another company that first marketed
hardware and then later software. In 1966,
HP’s first computer was developed to con-
trol a variety of laboratory instruments. In
1969, HP marketed its first time-sharing
operating system (About HP, 2003).

Perhaps the most interesting connection
between software development, industry
and academia surrounds the history of Unix.
Unix was first developed in the early 1970’s
at AT&T Bell Labs in New Jersey, USA,
largely due to the efforts of K. Thompson,
D. Ritchie, M. D. McIlroy, J. F.Ossanna
(Ritchie, 1996). One of their design goals
was to develop a portable operating system.
Thompson demonstrated the portability of
Unix by mailing magnetic tapes containing
Unix source code and utilities to friends
(Moffitt,2002). At the same time, AT&T
gave away source code and licenses to uni-

versities for Unix Level 6. AT&T even pub-
lished two books that contained the source
code along with commentary.

The Computer Science Department at
the University of California, Berkeley, was
one such licensee that used the source code
extensively for research projects. Eventually,
they enhanced the Unix source code to
include many new features and were freely
distributing their enhanced versions. People
throughout the world added many addition-
al features, some of which are used to run
the Internet today. Throughout the 1980’s
there was confusion as to just what ‘Unix’
meant. There were lawsuits and counter
lawsuits over which parts of Unix software
source code could be freely given away and
which parts required a royalty even to use in
binary form. As we will see later, these
issues largely went away in the early 1990's
when Linus Torvalds introduced Linux.

While these developments were taking
place in industry, the hacker culture was
developing at many of the major research
laboratories across the United States. The
hacker culture involved people who loved
to program and enjoyed being clever about
it. By the early 1970’s this culture was
engrained at the Massachusetts Institute of
Technology and had a significant impact on
Richard Stallman’s attitudes about software
development. He says, “Whenever people
from another university or a company
wanted to port and use a program, we glad-
ly let them. If you saw someone using an
unfamiliar and interesting program, you
could always ask to see the source code, so
that you could read it, change it, or canni-
balize parts of it to make a new program”
(Stallman, 1999). The idea that source code
could be freely exchanged, changed and
used appealed to him as an efficacious soft-
ware development technique. However,
that system of development began to break
down in the late 1970's and early 1980's as
the changes noted above were taking place
in industry. A further impact was the fact
that industry was hiring many of the best
software developers and programmers from
the computing labs, and those individuals
were taking the software they developed
with them. To Stallman, succumbing to this
industrial model of software development
was tantamount “to making the world a
worse place” (Stallman, 1999). In response
to commercialization within the software
development industry, Stallman began the

Grodzinsky et al: Ethical Open Source Software

PPeerrhhaappss tthhee mmoosstt iinntteerreessttiinngg
ccoonnnneeccttiioonn bbeettwweeeenn ssooffttwwaarree

ddeevveellooppmmeenntt,, iinndduussttrryy aanndd
aaccaaddeemmiiaa ssuurrrroouunnddss tthhee

hhiissttoorryy ooff UUnniixx..

194

Grodzinsky et al: Ethical Open Source Software

GNU project in 1984 with a goal of “creat-
ing a new software sharing community”
(Stallman, 1999). The GNU project goal
was to develop an entire Unix-like operat-
ing system, complete with all the utilities,
in order to build a community of develop-
ers dedicated to writing free software. All
of the source code would be freely available
for modification and use by anyone who
was willing to make further changes.

The Free Software Foundation (FSF) was
started in 1985 largely to support this objec-
tive (The GNU Project, 2002). By the early
1990's, the GNU project had succeeded in
many ways. Useful software development
and environment tools, plus the General
Public License (GPL), had been developed
under the auspices of the Free Software
Foundation. However, GNU still lacked the
core of an operating system – the kernel.
However, when Linus Torvalds developed
and released the Linux kernel under the
GNU GPL the picture was completed.
With the Linux kernel and the tools devel-
oped by GNU, the world now had a com-
plete, functional operating system with all
of the source code freely available for
inspection, modification and improvement.

As the Linux kernel developed and
matured, people began to take note of the
software development methodology used
to create it. In 1998, those who advocated
the software development process that is
afforded by shared source code started a
movement called the Open Source
Initiative (OSI). The Open Source
Initiative shares many of the same goals as
the Free Software Foundation (Open
source initiative, 2002). However its focus
is grounded in the development methodol-
ogy that arises when source code is open
and free to all who want it. On the other
hand, the FSF is a proponent of a philoso-
phy that puts the notion of free software
first. According to the FSF there are four
freedoms that are essential for free soft-
ware:

1. Freedom to run the program, for any
purpose.

2. Freedom to study how the program
works, and adapt it to your needs.

3. Freedom to redistribute copies so you
can help your neighbor.

4. Freedom to improve the program, and
release your improvements to the public,
so that the whole community benefits.

Requiring that all derivative works of
GPL software also be licensed under the
GPL, if and when they become published,
propagates these freedoms. This protec-
tion is known as copyleft and prevents
source code from being swallowed up in a
commercial venture (See Appendix B).

The OSI is less focused on philosophical
tenets emphasized by Stallman and more
focused on promoting open source as a
development methodology. This promo-
tion is evident in the emergence of other
important software cultures including the
Perl culture under Larry Wall, John
Osterhout's Tcl and Guido van Rossum's
Python languages. “All three of these com-
munities expressed their ideological inde-
pendence by devising their own, non-GPL
licensing schemes” (Raymond, 2000).

3. ETHICAL ISSUES IN OSS

What motivates a developer to write OSS?
In the previous section we have alluded to
the philosophy of Richard Stallman and
members of the Open Source Initiative.
Linus Torvalds believes that good software
development starts by the scratching of a
personal itch: the curiosity and desire to see
if something can be done. In The Cathedral
and the Bazaar, Eric Raymond depicts the
OSS developer as one who has found the
golden mean between underutilization and
over-utilization caused by ill-formulated
project goals. Raymond’s “happy program-
mer,” conforms to the Aristotelian model of
one, who while enjoying the freedom to
experiment and excel, brings forth imagina-
tive and creative software (Raymond, 2001).
Which, if any of these depictions still holds
true? We will begin by examining the Open
Source Software Development Community
including the Open Source Definition as a
social contract. Then we will explore some
of the ethical issues that might explain the
motivations of the OSS movement: autono-
my, quality, and accountability. Finally we
will close this section with analysis of
whether Open Source can be considered a
public good.

3.1 TheOpen Source Software
Development Community

The Open Source Software development

195

community emerged out of a parting of the
ways with Richard Stallman and the Free
Software Foundation. While the details of
the contentious debate are beyond the
scope of this paper, we will try to articulate
some of the major points. Stallman’s vision
was one of a community of programmers
who were doing something for the good of
humankind. Although he acknowledges
that open source and free software belong
to the same category of software, Stallman
maintains that there was an ideological
shift within those advocating for open
source. Stallman asserts that while the
GNU Project holds onto the concept of
freedom, the OSS community tries to
appeal to businesses. Because business val-
ues profit above all, he argues that values of
community and freedom are lost in the
OSS development model. Citing examples
of proprietary software that work with
Linux, Stallman wonders if OSS developers
will shun or support them (Stallman, 1999).

Open Source advocates argue that OSS is
primarily a development methodology
grounded in the philosophy of making
source code open and free to all who want
it. Developers self-select according to their
interest in a project. Users and developers
co-exist in a community where software
grows and expands based on personal
needs. These enhancements make the proj-
ect more globally desirable as it fits more
and more requirements. Linus Torvalds,
the epitome of the open source developer
says:

• Release early and often
• Delegate everything you can
• Be open (Raymond, 2001, p.309).

It usually takes one interested developer to
write a piece of core code to get a project
going. Torvalds believes that it is the
responsibility of the originator of the proj-
ect to listen to the users who will find the
bugs and those who will fix them. In this
type of scenario, “users are rewarded by the
daily improvement in the work” (Raymond,
2001, p. 315).

Creators of OSS typically use the soft-
ware themselves as it is being developed;
therefore, the users are involved in the soft-
ware development from the beginning.
When software is created solely for com-
mercial gain, there is always a danger that
the customer is treated merely as a means
to a financial end: financial enrichment of
the software developer. Open source soft-
ware removes that temptation.

Empirical evidence suggests that devel-
opers are less concerned with the ideologi-
cal split between the FSF and the OSS,
than with the idea of making free software
available to all. Eric Raymond explains, “A
side effect of the rapid growth of Linux was
the induction of a large number of new
hackers for which Linux was their primary
loyalty and the FSF's agenda primarily of
historical interest” (Raymond, 2000). He
maintains that it was the Netscape
announcement in February 1998 that it
would distribute Navigator 5.0 in source
that changed the environment dramatically.
The idea that ‘free software’ could be
exploited within the commercial communi-
ty excited the hacker culture and caused
the parting of the ways between free soft-
ware and open source advocates.

As with all software, quality is a major
issue when evaluating Open Source
Software. It has been argued that with open
source software “you get what you pay for.”
If a developer is not paid for creating and
maintaining a piece of software, then he/she
may not feel the same obligation to do a
quality job. Linus Torvalds argues that pro-
grammers tend to find projects that interest
them, and if the programmer loses interest
in a piece of code, there is usually a co-
developer out there willing and able to con-
tinue on the project. The reason that Linux
is so successful is that it interests people to
develop a complete, open operating system.
While it is true that there might be less suc-
cess in developing a less glamorous project,
developers would usually not undertake it,
rather than do a shoddy job. Their reputa-
tions among their peers are at stake. In the
hacker community, “one’s work is one’s
statement...and there’s a strong ethos that
quality should (indeed must) be left to speak
for itself...Boasting or self-importance is
suppressed because it behaves like noise
tending to corrupt the vital signals from
experiments in creative and cooperative
behavior”. (Raymond, 2000).

Grodzinsky et al: Ethical Open Source Software

IItt hhaass bbeeeenn aarrgguueedd tthhaatt wwiitthh
ooppeenn ssoouurrccee ssooffttwwaarree ““yyoouu ggeett

wwhhaatt yyoouu ppaayy ffoorr..””

196

Grodzinsky et al: Ethical Open Source Software

Thus within the community of those
working on the project, individual interest
and work contribute to a larger goal: a
working project for all. In addition,
because it is open source, others may take
advantage of the software once it is avail-
able on line. Floridi and Saunders in their
paper entitled Internet Ethics: the
Constructionist Values of Homo Poieticus main-
tain that a collaborative project relies on an
“unsuspected but evident interest, shared
by a growing community” and the coordi-
nation of efforts to produce a global prod-
uct based on “local specific components.”
They name this phenomena ‘distributed
constructionism.’ They maintain that
the Internet facilitates communication
amongst users irrespective of distance and
creates an environment that encourages
and facilitates production of OSS like
Linux (Floridi et al., 2003).

3.2 The Open Source Definition:
A social contract

The formalization of the OSS community
came about with the development of the
Open Source Definition and the OSI. In
1997, Bruce Perens published a set of guide-
lines to articulate the developers’ commit-
ment to open source software and its users
(Perens, 2002). The Debian Free Software
Guidelines were incorporated into and
became the basis of the Open Source
Definition (See Appendix A). The OSI pub-
lished licenses that met the Open Source
Definition and declared that software dis-
tributed under any of these licenses would
be 'OSI Certified.' The OSI offers copies of
these licenses for anyone to use and modify
for their own business model. The Mozilla
Public License has been the one most often
used since 1998. Most of these licenses give
permission for the software to be used.
Some ask that a copyright and year be
included when redistributing the software.
Most of them present the software ‘as is’
and indemnify themselves against liability.

The social contract articulated in the
guidelines is fairly clear about what the
OSS is offering to others. But what do OSS
developers expect in return? What moti-
vates developers to contribute to an open
source project? Is it altruism, i.e., do they
consider it a ‘pro bono’ project that con-
tributes to the public good? Is it a reaction

against corporate greed? Does it make
them feel part of a select community with
special talents? Clearly all of these play a
part in OSS developer motivation to abide
by this contract. Beyond that, however,
there is also a sense that developers see
their involvement as “enlightened self
interest” (Kollock, 1999). Their contribu-
tions lead to software that they want and
often need. OSS is an alternative for users;
developers are themselves users of comput-
ing, almost always heavy users. Developers
and users participate voluntarily in a devel-
opment environment that emphasizes
cooperation and mutual support under the
OSI guidelines. They have found the envi-
ronment satisfying enough to make OSS a
major challenger to commercial software.

3.3 Autonomy

One perceived attraction for OSS develop-
ers is the autonomy of the developer.
While developers who embrace OSS
do gain a measure of autonomy not avail-
able to developers working on commercial
software, the claim for complete autonomy
doesn’t appear to be valid. OSS developers
work as volunteers, and can join or quit an
effort strictly on their own initiative. These
volunteers are not coerced into participa-
tion and willingly contribute. Therefore,
one might assume that the OSS developer
can be depicted as a libertarian
ideal, unshackled by corporate controls.
However, there are several types of control
in OSS, even though no single developer is
in charge of an OSS project. As an OSS
developer, the developer cannot be sure
that his/her contribution will be accepted
into the canonical version that is continu-
ously evolving. This contribution may be
embraced or rejected in the short term, and
if accepted may be changed or replaced
later. The developer is free to contribute or
not, but any single developer cannot claim
ultimate control over the use of his/her
contribution. In Homesteading the Noosphere,
Eric Raymond states, “the open-source cul-
ture has an elaborate but largely unadmit-
ted set of ownership customs. These cus-
toms regulate who can modify software, the
circumstances under which it can be modi-
fied, and (especially) who has the right to
redistribute modified versions back to the
community”(Raymond, 2000).

197

Open source software has the seemingly
useful feature that at any point, any one
with appropriate technical skills can modi-
fy the code and take the project in a direc-
tion that diverges from the direction others
are taking it (called 'code forking'). Thus,
one of the perceived benefits of a piece of

open source software is that it has the
opportunity to evolve rapidly into compet-
ing programs where, presumably, Darwin’s
theories of evolution can take over: the
best piece of software for the current envi-
ronment will survive. If code forking is
prevalent, we might expect to see many
innovations occur in open source software
development. However, Raymond gives
two very pragmatic reasons for the low
incidence of code forking in many success-
ful OSS projects. The first major reason for
projects to persist is a fear of diluting the
developer community for the project --
both child projects have fewer developers,
thus weakening the entire project, especial-
ly relative to the parent project. Secondly,
shortly after a code fork the child projects
cannot exchange code. In addition,
Raymond adds that “there is strong social
pressure against forking projects” in the
open source community. According to
Raymond the open source community is
best viewed as a gift culture where one's
social status is determined by what one
gives away. In addition to the practical con-
cerns, forking a project cuts right to the
core of the culture-it damages someone's
reputation.

Thus, given both the pragmatic and cul-
tural pressure to avoid code forking, the
developers of an open source project must
take special care to avoid the symptoms of
groupthink. A newcomer to open source
development has very little in terms of rep-
utation to bring to the table when he/she
proposes a new piece of code or a new tack
on development for a project. Project lead-
ers, who are less open to new ideas and

ways of doing things, may miss the innova-
tion of the newcomer's idea. Not only will
the project lose the good idea, but it also
faces the potential of losing a good devel-
oper. Thus, open source project leaders and
developers must show a great willingness to
take in new ideas, evaluate them thought-
fully, and respond constructively in order to
nurture both the idea and the developer of
the idea.

Project leaders must exercise similar
abilities when a subgroup comes with an
idea that is controversial. Care must be
taken that the larger group does not ride
roughshod over the smaller group's idea.
Again, in addition to losing out on a good
idea and potentially driving people away
from the project, doing so will discourage
future innovators from taking their ideas
forward. Note that the proprietary soft-
ware development model is not subject to
this argument. The innovative developer
who meets resistant project leaders or man-
agement is typically free to leave the organ-
ization, and he/she regularly does. In fact
there are social norms that actually encour-
age this type of behavior; we call these peo-
ple entrepreneurs.

So it appears that the autonomy experi-
enced by an open source developer is much
like the autonomy experienced by a univer-
sity faculty member: freedom to choose
which projects to work on. Thus, an open
source developer has increased autonomy
when compared to a corporate developer.
Whereas, the corporate developer might
find a supportive social structure to take a
project in a new direction, the social struc-
ture in the Open Source community can
work to suppress this type of entrepreneur-
ial endeavor.

3.4 Software quality

Quality software, in the traditional sense, is
software that meets requirement specifica-
tions, is well tested, well documented and
maintainable (Schach, 2002). Advocates of
OSS claim that its developers/users are
motivated to do quality work because not
only are they developing software for their
own use, but their reputations among their
peers also are at stake. Critics of OSS claim
that volunteers will not do professional
quality work if there is no monetary com-
pensation. They also claim that documen-

Grodzinsky et al: Ethical Open Source Software

OOppeenn ssoouurrccee pprroojjeecctt lleeaaddeerrss
aanndd ddeevveellooppeerrss mmuusstt sshhooww aa
ggrreeaatt wwiilllliinnggnneessss ttoo ttaakkee iinn

nneeww iiddeeaass

198

Grodzinsky et al: Ethical Open Source Software

tation and maintenance are non-existent.
While it is true that documentation and
maintenance are concerns, OSS advocates
assert that OSS meets users’ requirements,
is tested by its developers and is constantly
being upgraded. Documentation evolves as
more and more users become interested in
the software and use it. For example, books
on Linux can be found everywhere.

The question of whether OSS is of high-
er or lower quality than comparable com-
mercial software is essentially an empirical
rather than philosophical question. The
answer to this question is not readily avail-
able, but we can cite some preliminary
anecdotal evidence on this issue. The
Apache web server is OSS that competes
with commercial web servers. The web
server market is a potentially lucrative one,
and we expect commercial software devel-
opers to compete for that market with high
quality software. Yet despite commercial
alternatives, according to third party
observers (Netcraft, 2002) the OSS Apache
server is by far the most used web server.

According to an August, 2002 survey,
63% of web servers on the Internet are
Apache. At least in this market segment, it
appears that OSS is sufficiently high quali-
ty for most users. Of course, Apache is free
and other servers aren't; the cost motiva-
tion might explain some of Apache's popu-
larity. But if the Apache server were of sig-
nificantly lower quality than commercial
alternatives, then it would be surprising to
see its widespread use. This raises the ques-
tion of whether market-dominance and
popularity should be a benchmark for soft-
ware quality. Does the fact that Microsoft
Windows runs on some 90% of home com-
puters assure us of its quality? We would
argue that popularity and quality might be
linked if it can be shown that there is a level
of expertise about software quality in the
people making the choices. System admin-
istrators have more expertise than an aver-
age user of a home computer system.
Therefore, when a majority of these profes-
sionals choose an OSS alternative, it
deserves notice.

The Apache example illustrates an
important distinction among OSS users.
Initially, first adopters of OSS are its devel-
opers and as the code becomes more
known, OSS gains users who were not
involved in the development. These users
adopt the OSS for many reasons, but some

of these new users (particularly non-pro-
grammers), appreciate the product, though
they may not understand or care about the
process that developed it. All users of OSS
gain if the software delivers needed func-
tionality.

If an OSS project pleases its developers,
but does not gather a following outside the

developing community, that may be fine
with the developers; if a commercial proj-
ect only pleases its developers, it is a finan-
cial failure. The OSS model has different
kinds of successes, and fewer outright fail-
ures. The rewards for developers in an OSS
project are likely to be less tangible than
rewards for a successful commercial prod-
uct, but that does not make the rewards
less real. The public has potential gains in
the OSS movement that do not require
large investments by the public.

Another distinction between OSS proj-
ects and commercial projects is the lack of
a release date. While open source develop-
ers anticipate frequent releases, there are
no release deadlines. The announcements
of a release day by a commercial vendor
impose pressure on developers to cut cor-
ners, thus increasing the possibility of
errors in the software. Furthermore, such a
deadline has a tendency to impose on the
autonomy of the developer.

Finally we note that both open source
and proprietary developers share the same
professional ethical responsibility to devel-
op solid, well-tested code. The social pres-
sure in the open source community to
avoid code forking provides incentives for
project leaders to ensure that the code is
the best it can be. On the other hand, when
an open source developer believes there is
too much risk associated with a particular
piece of code, he/she can rewrite it and
release it. While there is a reputation risk
in doing so, there is the opportunity to
publicly demonstrate that the forked prod-
uct is superior. In a proprietary model,
however, a developer’s main avenue of

199

TThhee OOSSSS mmooddeell hhaass ddiiffffeerreenntt
kkiinnddss ooff ssuucccceesssseess,, aanndd ffeewweerr
oouuttrriigghhtt ffaaiilluurreess..

recourse is to ‘blow the whistle’ on his/her
manager or employer. To do so entails
grave personal risk to one's livelihood, pro-
fessional standing, lifestyle and family.
Worse yet, the developer will likely not
have the opportunity to demonstrate the
wisdom of his/her ways.

3.5 Open Source
and Accountability

In her article entitled Computing and
Accountability, Helen Nissenbaum cites four
barriers to accountability:

1. The problem of many hands,
2. bugs,
3. computer as scapegoat and
4. ownership without liability.

She asserts that these barriers can lead to
“harm and risks for which no one is answer-
able and about which nothing is done”
(Nissenbaum, 1994). We will examine how
OSS may have addressed barriers 1 and 2.
Number 3 is a general issue and number 4
does not apply because there is not soft-
ware ownership per se in open source. The
Open Source Definition #1 addresses her
fourth point (See Appendix A).

“Where a mishap is the work of ‘many
hands’, it can be difficult to identify who is
accountable because the locus of decision
making is frequently different from the
mishap’s most direct causal antecedent;

that is, cause and intent do not converge”
(Johnson, 1995). In open source, however, if
a developer were to write irresponsible
code, others contributing to the open
source software would be unlikely to accept
it. So, in this case, there is built-in individ-
ual accountability. If a developer were part
of a large company, where all programming
parts contribute to a large commercial ven-
ture, it then would fall on both the compa-
ny and the individual to accept responsibil-
ity for the problematic software product.

Often this is not done. So the many hands
problem referred to by Nissenbaum in
Computing and Accountability can be
reduced in OSS because parts of code can
be ascribed to various developers, and their
peers hold them accountable for their con-
tributions.

Nissenbaum argues that accepting bugs
as a software fact of life has issues regarding
accountability (Nissenbaum, 1994). The
open source approach to software develop-
ment treats the bug problem with a group
effort to detect and fix problems. Torvalds
states, “given enough eyeballs, all bugs are
shallow” (Raymond, 2001, p. 315). The per-
son that finds a bug in OSS may not be the
person to fix it. Since many adept develop-
ers examine OSS code, bugs are found and
corrected more quickly than in a develop-
ment effort where only a few developers
see the code. In this group effort, account-
ability is not lost in the group, but is
instead taken up by the entire group. The
question of whether this group accounta-
bility is as effective as individual responsi-
bility is, again, empirical. The examples of
Apache and Linux (Webcab solutions,
2003) offer at least anecdotal evidence that
some OSS demonstrates high reliability.

Don Gotterbarn is also concerned about
issues of professional accountability in OSS
(Wolf et al, 2002). In addition to worries
about sufficient care in programming and
maintaining OSS, Gotterbarn points out
that an OSS licensing agreement forces the
authors of the software to relinquish con-
trol of the software. If someone puts OSS
to a morally objectionable use, then the
developers have no right to withdraw the
software from that use.

Gotterbarn’s objection has some theo-
retical interest, for the OSS licensing agree-
ments clearly state that no one who follows
the OSS rules can be blocked from using
the software. But if we accept the idea that
software developers have a moral duty to
police the use of the software they distrib-
ute, especially when the software is utility
software, we fall into a practical and theo-
retical thicket. How is a vendor to know
the eventual use of software, especially
when the software is utility software (such
as an operating system or a graphics pack-
age)? Are software developers empowered
to judge the ethics of each customer or per-
spective customer? These responsibilities
are overreaching ethically, and far too

Grodzinsky et al: Ethical Open Source Software

AAccccoouunnttaabbiilliittyy iiss nnoott lloosstt iinn tthhee
ggrroouupp,, bbuutt iiss iinnsstteeaadd ttaakkeenn uupp

bbyy tthhee eennttiirree ggrroouupp

200

Grodzinsky et al: Ethical Open Source Software

ambitious in a practical sense.
Furthermore, the relinquishment of con-

trol argument has practical significance
only if existing competing software models
include effective control over the use of
software. (That is, should OSS be held to a
higher standard than commercial software
in relation to ethical responsibility for
downstream use?) We are unaware of any
action by existing commercial software
vendors to police the uses to which their
software is put. Commercial software ven-
dors are certainly concerned that people
who use their software have paid for it.
Once paid for, vendors concerned about
ethical use do not police commercial soft-
ware.

3.6 Is Open Source a Public
Good?

The claim that OSS is a revolutionary idea,
a departure from previous models of intel-
lectual property, is worth examining.
Although clearly distinct from a commer-
cial model of software development, OSS
can be seen as a continuation of previously
accepted traditions in academics in general,
and in mathematics in particular.

Academia has long had the tradition of
sharing ideas without direct payments.
Scholarly journals do not pay authors (and
in fact may charge them for pages printed).
Law has not protected mathematical for-
mulae and formal descriptions of natural
laws. Copyright covers the expression of
ideas, but not the ideas themselves; patent
has (at least traditionally) protected the
practical application of ideas, but not the
physical laws underlying the ideas. So, if
software is viewed as an extended mathe-
matical object, akin to a theorem, then
OSS could be a natural extension of the
long tradition of free ideas in mathematics.
Does that make it a public good?

Peter Kollack, a sociologist at the
University of California at Los Angeles,
examines the idea of public goods on line in
his paper entitled The Economies of Online
Cooperation: Gifts and Public Goods in
Cyberspace. He defines public goods as
those things that are non-excludable and
indivisible. Because the Open Source
Definition prohibits discrimination against
persons or groups or against fields of
endeavor (see Appendix A), it supports the

definition of a public good being non-
excludable. Public goods in cyberspace can
benefit the users of cyberspace irrespective
of whether they have contributed to these
goods or whether these goods have come
from groups or individuals. The fact that
one person using OSS does not affect its
availability to the whole supports Kollack's
idea of indivisibility. He maintains that
“[a]ny piece of information posted to an
online community becomes a public good
because the network makes it available to
the group as a whole and because one per-
son’s ‘consumption’ of the information does
not diminish another person’s use of it”
(Kollock,1999). If a user downloads a copy
of Linux, for example, it does not diminish
its availability for other users. So by this
definition, we concur that OSS is a public
good.

However, is there an active interest
among developers to create a public good?
Are OSS developers actually motivated to
do good by contributing software to the
public, and by maintaining it in a group
effort? Some developers argue that they
can customize OSS, and if others find the
customizations useful, then they have pro-
vided a public good. However, there could
be another possible motivation for OSS. It
might be a philosophical or instinctive ani-
mus towards existing commercial software
developers. Bertrand Meyer recites with
dismay the many negative statements by
OSS advocates about commercial software
development and developers (Meyer,
2000). Some see ‘Microsoft bashing’ as a
central theme of the OSS movement. Since

most OSS competes directly with
Microsoft products, some friction between
OSS advocates and the largest commercial
software corporation seems inevitable. But
if OSS development is motivated primarily
by its opposition to commercial software
producers, then its ethical underpinnings
are less benign than if OSS is motivated
primarily by an altruistic desire to help

201

HHoowweevveerr,, iiss tthheerree aann aaccttiivvee
iinntteerreesstt aammoonngg ddeevveellooppeerrss ttoo
ccrreeaattee aa ppuubblliicc ggoooodd??

computer users. Since the OSS movement
is, by design, decentralized and evolving, it
seems impossible to gauge with any preci-
sion the motivations of all its members. But
the often-repeated disdain for commercial
business practices seems more in tune with
the hacker culture than with a culture of
altruism. So, we would argue that for the
most part, the altruism involved in the cre-
ation of a public good in the case of OSS is
more of a by-product of developers who are
interested in creating tools that are of use
for themselves. Customization and expan-
sion of Linux, for example, came from
developers who wanted applications for
their own use and then shared their code.

Nowhere can OSS be considered more of
a public good than in the academic com-
munity. Computer Science departments are
expected to be on the cutting edge of tech-
nology in their curricular offerings.

The price of commercial software, even
with educational discounts, often straps a
department's budget. Academic institu-
tions have strong financial motivations to
adopt open source software. GNU compil-
ers, for example, have largely replaced pro-
prietary versions that cost the university
software fees as well as licensing fees.
Linux is appearing as the operating system
of choice often replacing Solaris. As more
and more applications run on Linux, uni-
versities will have less incentive to buy
from vendors who offer a UNIX platform.
They will buy cheaper hardware and run
Linux. One caveat to this scenario is the
availability of staff that can support the
Linux platform and the availability of doc-
umentation for OSS.

Using OSS at a university raises interest-
ing ethical questions. One could argue that
a university should expose its students to
multiple perspectives so students develop
skills to make judgments about the world
around them. A university that exposes its
students to a single point of view fails to
help a student develop these skills. Thus, a
university should provide a learning envi-
ronment where future computer science
professionals are exposed to both propri-
etary and open source software, and be
given experiences to develop software eval-
uative skills. Part of this evaluation would
come from using the software and evaluat-
ing the effectiveness from a user's perspec-
tive. However, an important part of the
evaluative process, at least for computer

science students, involves accessing the
source code. Open source software makes
looking at the source code easy. While it is
true that some proprietary software ven-
dors are willing to share their source code
with universities for educational purposes,
others are not. It is precisely when the soft-
ware vendor is unwilling to share source
code with university faculty, or makes it
onerous on the university, that the universi-
ty is faced with an ethical dilemma: How
does it respond to proprietary software ven-
dors that interfere with its duty to educate
its students? OSS provides a partial solution
to that problem. These questions are fur-
ther complicated by the relationship that
software companies often share with many
universities. It is not uncommon for a soft-
ware company to make generous contribu-
tions to a computer science department for
access to the department's graduates, or to
sponsor a faculty member's research.
Faculty at these institutions must take care
not to let the largess interfere with their
ethical responsibilities to their students.

If a university is part of the open source
community, we might expect them to be a
contributor as well as a user of OSS. For
many places of higher education, especially
research institutions, this is not an issue as
university faculty and students develop
much open source software. But those
institutions, whose faculty and students are
not making such contributions, are faced
with making the choice of contributing in
some other way.

One approach might be a cash donation
to an appropriate foundation that supports
open source development for the value the
software brings to the educational environ-
ment. This is not always easy to do.
Anecdotally, a federal employee who want-
ed to do this reported two problems:

1. Accountants in her agency balked at
making a contribution; they thought it
might be illegal.

2. She tried but could not get additional
clarifying information from the OSS
foundation. Contact people listed at the
foundation did not return her emails
and phone calls. She ended up not mak-
ing a donation and feeling bad about it.

It may be argued that merely exposing stu-
dents to open source software may fulfill the
university’s ethical obligation to support OSS

Grodzinsky et al: Ethical Open Source Software

202

Grodzinsky et al: Ethical Open Source Software

since doing so meets the OSS community's
goal of building the OSS user community.

Finally, we explore an issue that is
becoming part of the mission of many insti-
tutions of higher education: service learn-
ing. The choice between open source soft-
ware and proprietary software plays into
service learning as well. Consider a scenario
where a software engineering class is to
produce a piece of software for a local char-
ity. The choice between open source alter-
natives and proprietary alternatives is not
to be taken lightly. Seemingly, open source
software makes good sense for both the
students and the charitable organization.
The cost is low and, presumably, the quali-
ty is sufficient. Yet there are long-term
costs that are faced by the charity (as well
as any business making such a choice).
How expensive will it be to maintain the
software? Is there enough open source
expertise available to maintain it? And,
finally, what documentation and user train-
ing can be expected if OSS is the software
of choice. An extension of the service
model might offer some on-going support
to these charities.

4. CONCLUSION

OSS is no longer an academic curiosity. We
have demonstrated that certain OSS prod-
ucts are making a significant niche for
themselves in computing environments.
Both Apache and Linux are increasing in
popularity. The OSS model is distinct from
commercial software development from
several viewpoints: as a software engineer-
ing process, as an economic plan, and as a
marketing strategy. In both models, howev-
er, developers have certain obligations and
responsibilities to their users. In our analy-
sis we have argued that open source soft-
ware’s successes may be due in part to the
sheer number of people who get involved,
and to the users who are engaged from the
start of development.

We have found that the authors of OSS
have complex motivations, some laudatory,
and others less so. OSS has produced some
successes, and the public has benefited
from these. There are questions about reli-
ability and professionalism, but evidence
against the quality of OSS is not, as yet,
convincing to us. It does not appear likely
that OSS will displace commercial software

in the foreseeable future, and we have not
uncovered any ethical imperative that it
should. Yet, OSS has distinct economic

advantages for many especially in the aca-
demic arena. It can help bridge the digital
divide and can involve growing numbers of
people in computing, both as developers
and users. Developers of OSS strive to be
the best they can to contribute to the sus-
tainable whole and thus secure their repu-
tation ethically among their peers.

OSS and commercial software can coex-
ist, each giving the public the goods it
desires. Both advocates and critics of OSS
have an ethical obligation to respect each
other and to avoid inaccurate and mean-
spirited accusations. All software develop-
ers have ethical obligations for quality and
openness (Software engineering code of
ethics, 1999). OSS is a novel development
of traditional ideas of sharing academic
intellectual property, but OSS exists in a
world dominated by commercial enter-
prise. As such, OSS challenges the status
quo in a way that can be a constructive
check on excesses of traditional free enter-
prise systems. In a time when many for-
profit corporations have disappointed the
public with their lack of ethical behavior,
OSS has the potential to be a positive ethi-
cal force in the world of computing.
Hackers who get involved in OSS develop-
ment can contribute to the sustainable
whole and, thus ethically secure their repu-
tation among their peers. This is a way to
publicly excel at hacking without illegal and
unethical harm to others.

APPENDIX A

Open Source Definition

Open source doesn't just mean access to
the source code. The distribution terms of
open-source software must comply with
the following criteria:

203

AAllll ssooffttwwaarree ddeevveellooppeerrss hhaavvee
eetthhiiccaall oobblliiggaattiioonnss ffoorr qquuaalliittyy
aanndd ooppeennnneessss..

A.1 Free Redistribution

The license shall not restrict any party
from selling or giving away the software as
a component of an aggregate software dis-
tribution containing programs from several
different sources. The license shall not
require a royalty or other fee for such sale.

A.2 Source Code

The program must include source code, and
must allow distribution in source code as
well as compiled form. Where some form of
a product is not distributed with source
code, there must be a well-publicized means
of obtaining the source code for no more
than a reasonable reproduction cost-prefer-
ably, downloading via the Internet without
charge. The source code must be the pre-
ferred form in which a developer would
modify the program. Deliberately obfuscat-
ed source code is not allowed. Intermediate
forms such as the output of a preprocessor
or translator are not allowed.

A.3 Derived Works

The license must allow modifications and
derived works, and must allow them to be
distributed under the same terms as the
license of the original software.

A.4 Integrity of The Author's
Source Code

The license may restrict source-code from
being distributed in modified form only if
the license allows the distribution of
“patch files” with the source code for the
purpose of modifying the program at build
time. The license must explicitly permit
distribution of software built from modi-
fied source code. The license may require
derived works to carry a different name or
version number from the original soft-
ware.

A.5 No Discrimination
Against Persons or Groups

The license must not discriminate against
any person or group of persons.

A.6 No Discrimination
Against Fields of Endeavor

The license must not restrict anyone from
making use of the program in a specific field
of endeavor. For example, it may not restrict
the program from being used in a business,
or from being used for genetic research.

A.7 Distribution of License

The rights attached to the program must
apply to all to whom the program is redis-
tributed without the need for execution of
an additional license by those parties.

A.8 License Must Not Be
Specific to a Product

The rights attached to the program must
not depend on the program's being part of
a particular software distribution. If the
program is extracted from that distribution
and used or distributed within the terms of
the program's license, all parties to whom
the program is redistributed should have
the same rights as those that are granted in
conjunction with the original software dis-
tribution.

A.9 The License Must Not
Restrict Other Software

The license must not place restrictions on
other software that is distributed along
with the licensed software. For example,
the license must not insist that all other
programs distributed on the same medium
must be open-source software.:
http://www.opensource.org/docs/defini-
tion_plain.html

APPENDIX B

“To copyleft a program, we first state that
it is copyrighted; then we add distribution
terms, which are a legal instrument that
gives everyone the rights to use, modify,
and redistribute the program's code or any
program derived from it but only if the dis-
tribution terms are unchanged. Thus, the
code and the freedoms become legally
inseparable.”(www.FSF.org)

Grodzinsky et al: Ethical Open Source Software

204

Grodzinsky et al: Ethical Open Source Software

REFERENCES

About HP: History and Facts.
www.hp.com/hpinfo/abouthp/histnfacts/.
Accessed 2003.

Barr, J. Live and let license: A primer on soft-
ware licensing in the Open Source context,
May 23, 2001.

Computers, Ethics and Social Values. Johnson, D.J.
and Nissenbaum H., eds. Prentice Hall: New
Jersey, 1995.

Floridi, L. and Sanders, J.W. Internet Ethics:
the Constructionist Values of Homo
Poieticus. In The Impact of the Internet on Our
Moral Lives, Cavalier, R., ed. New York:
SUNY, 2003.

Kollock, P. The Economies of Online
Cooperation: Gifts and Public Goods in
Cyberspace. In Communities in Cyberspace,
Smith, M. and Kollock, P., eds. London:
Routledge, 1999.

Meyer, B. The Ethics of Free Software.
Software Developers Online.
www.sdmagazine.com/documents/s=746/sd
m0003d/0003d.htm, login required, March
2000.

Miller, R. 90% Windows, 5% Mac, 5% Linux?
Not true! The Register.
www.theregister.co.uk/content/4/19661.htm,
June 13, 2001.

Moffitt, N. Nick Moffitt's $7 History of Unix.
www.crackmonkey.org/unix.html. Accessed
2002.

Netcraft Web Server Survey.
www.netcraft.com/survey, 2002.

Nissenbaum, H. Computing and
Accountability. Communications of the ACM,
37, 1, January 1994.

Open Source Initiative (OSI).
www.opensource.org, 2002.

Perens, B. Debian Social Contract.
www.debian.org/social_contract.html, 2002.

Raymond, E.S. Homesteading the Noosphere. tuxe-
do.org/~esr/writings/cathedral-bazaar, 2000.

Raymond, E.S. “The Cathedral and the Bazaar”,
in Readings in Cyberethics, eds. Spinello and
Tavani, Jones and Bartlett, 2001.

Ritchie, D.M. The Evolution of the Unix Time-
sharing System. cm.bell-
labs.com/cm/cs/who/dmr/hist.html, 1996.

Schach, Stephen, Object Oriented and Classical
Software Engineering (fifth ed). McGraw Hill,
2002. p. 137.

Software Engineering Code of Ethics and
Professional Practice(5.2).
seeri.etsu.edu/TheSECode.htm, 1999.

Stallman, R.M. The GNU Operating System
and the Free Software Movement. In Open
Sources: Voices from the Open Source
Revolution, Stone, M., Ockman, and
DiBona, C., eds. , 1999.

The GNU Project and the Free Software
Foundation (FSF). www.gnu.org and
www.fsf.org, 2002.

The History of IBM. www-1.ibm.com/ibm/his-
tory/index.html Accessed spring 2003.

WebCab Solutions – Linux Reliability. Accessed
2003.

Wolf, M.J., K. Bowyer, D. Gotterbarn, and K.
Miller. Open Source Software: Intellectual
Challenges to the Status Quo, panel presen-
tation at 2002 SIGCSE Technical Symposium,
SIGCSE Bulletin, 34(1), March 2002, pp. 317-
318.

205

CORRESPONDING AUTHOR

Fran Grodzinsky
Sacred Heart University, Fairfield,

CT, USA
Email: grodzinsky@sacredheart.edu

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Sacred Heart University
	DigitalCommons@SHU
	2003

	Ethical Issues in Open Source Software
	Frances Grodzinsky
	Keith W. Miller
	Marty J. Wolf
	Recommended Citation

	2-Grodzinsky-193-206-x

