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A residuated lattice is an ordered algebraic structure

L = 〈L,∧,∨, · ,e, \ , /〉

such that 〈L,∧,∨〉 is a lattice, 〈L, ·,e〉 is a monoid, and \ and / are binary operations
for which the equivalences

a · b ≤ c ⇔ a ≤ c/b ⇔ b ≤ a\c

hold for all a, b, c ∈ L. It is helpful to think of the last two operations as left and right
division and thus the equivalences can be seen as “dividing” on the right by b and
“dividing” on the left by a. The class of all residuated lattices is denoted by RL.

The study of such objects originated in the context of the theory of ring ideals in the
1930s. The collection of all two-sided ideals of a ring forms a lattice upon which one can
impose a natural monoid structure making this object into a residuated lattice. Such
ideas were investigated by Morgan Ward and R. P. Dilworth in a series of important
papers [15, 16, 45–48] and also by Krull in [33]. Since that time, there has been substantial
research regarding some specific classes of residuated structures, see for example [1, 9,
26] and [38], but we believe that this is the first time that a general structural theory
has been established for the class RL as a whole. In particular, we develop the notion
of a normal subalgebra and show that RL is an “ideal variety” in the sense that it is
an equational class in which congruences correspond to “normal” subalgebras in the
same way that ring congruences correspond to ring ideals. As an application of the
general theory, we produce an equational basis for the important subvariety RLC that
is generated by all residuated chains. In the process, we find that this subclass has
some remarkable structural properties that we believe could lead to some important
decomposition theorems for its finite members (along the lines of the decompositions
provided in [27]).

Keywords: Residuated lattice; residuated partially-ordered monoid; lattice-ordered
group; relatively normal lattice.

AMS Mathematics Subject Classification: 06B05, 06B10, 06B20, 03B20, 03B50, 03B52,
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1. Introduction

Our aim in this paper is to lay the groundwork for, and provide some significant

initial contributions to, the development of a comprehensive theory on the structure

of residuated lattices — a class of algebraic structures that we shall denote RL. We

believe that such a theory, whether in part or in whole, is not only fascinating in

its own right, but also establishes a common framework within which researchers

from a host of diverse disciplines can find tools and models applicable to their own

areas.

The defining properties that describe the class RL are few and easy to quickly

grasp. Moreover, one can readily construct concrete examples that illustrate the key

features of such structures. However, the theory is also sufficiently robust that the

class of residuated lattices encompasses a surprising number of topics from subjects

as disparate as `-groups, algebraic logic, and some areas of theoretical computer

science. Even the objects constructed by Prenowitz [42] and others in their algebraic

treatment of Euclidean geometry give rise to special types of residuated structures.

We show in a few special instances that we are able to take guidance from some of

these areas and generalize known results in their realm to the entire class RL.

It is easy to see that the equivalences which define residuation can be captured

by equations and thus RL is a finitely based variety. In order to emphasize the

large number of important classes that are contained within RL, we give in Fig. 1

a partial sketch of its lattice of subvarieties — henceforth denoted L(RL). The

line segments in the diagram are intended to convey the relative positions of the

indicated subclasses and we do not mean to imply that this fragment is a sublattice

of L(RL).

Here, RLC denotes the subvariety of RL generated by all residuated chains, Br

the variety of Brouwerian (or Heyting) algebras (in the sense of Köhler [32]), RSA

the variety of relative Stone algebras and BA the variety of generalized Boolean
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Fig. 1. A fragment of the subvariety lattice of RL.
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algebras (that is, relatively complemented, distributive lattices with a greatest

element). Following the notational conventions of [1], LG is the variety of all lattice-

ordered groups (`-groups), R is the variety of representable `-groups and A is

the variety of all Abelian `-groups. Of course, we are being lax with regard to the

similarity types of these various varieties. Thus by Br, for example, we mean the

subvariety of RL generated by the additional equation xy ≈ x∧ y, and by RSA we

mean the subvariety of Br generated by the equation (x\y) ∨ (y\x) = e. Similarly,

the other classes are equationally defined subvarieties in the language of RL; the

point is that each of these is term-equivalent to its namesake variety and thus we

feel justified in using the same cognomen without danger of confusion. In several

of these subvarieties the right and left division operations correspond to already

familiar notions. For example, the members of Br (which are the models of intu-

itionistic logic) all satisfy the equation y/x = x\y and this common value is usually

denoted by x → y, where → is the so-called Heyting arrow.

While previous research by others has thoroughly described in detail several

particular classes of residuated structures, we present here a number of general

results that hold throughout the variety RL. We conclude our introduction with a

brief outline of those results.

For L ∈ RL and fixed a ∈ L we define the notion of right and left conjugation by

a: λa(x) := [a\(xa)]∧e and ρa(x) := [(ax)/a]∧e respectively (the factor ∧ e appears

for essentially technical reasons). These are unary operations on the universe of L

that correspond to the analogous concepts from group theory. A subalgebra of L

is called normal if it is closed with respect to all conjugations and it is said to

be convex if it is order-convex with respect to the lattice ordering on L. We let

CN(L) denote the collection of all convex normal subalgebras of L and in Sec. 4 we

establish that RL is an ideal variety:

Theorem 4.12 For any L ∈ RL, Con(L)
∼
= CN(L).

In Sec. 6, we give an explicit basis for the subvariety, RLC , namely:

Theorem 6.7 RLC = ModRL[ε1 ∧ ε2] where ε1 and ε2 are the equations

ε1 : (x ∨ y) ∧ e = (x ∧ e) ∨ (y ∧ e) .

ε2 : λz [x/(x ∨ y)] ∨ ρw[y/(x ∨ y)] = e .

In the process of establishing these two theorems we provide element-wise descrip-

tions of convex normal subalgebras and submonoids generated by arbitrary subsets.

Finally, we investigate some further properties of the subvariety RLC — a class that

we believe is particularly interesting for several reasons. For example, it follows

from the work of Tsinakis and Hart [27] that for L ∈ RLC , the compact elements

of Con(L) form a relatively normal lattice.
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2. Preliminaries

We presume that the reader is familiar with the basic facts, definitions and ter-

minology from universal algebra and lattice theory. In particular, the notions of

posets, lattices, and general algebras are central to this paper as are the con-

cepts of congruences, and homomorphisms. For an introduction to universal

algebra and general algebraic systems, the reader may wish to consult [8] or [36]

while any of [3, 5, 13, 23] or [24] would serve as a suitable lattice theory reference.

Several of the results in this paper were motivated by analogous ideas in the theory

of lattice-ordered groups and the reader interested in this topic may wish to see [1,

21] or [22].

If P is a poset, X ⊆ P and p ∈ P then we use the following notational

conventions:

The principal downset of p in P is the set

↓p := {x ∈ P |x ≤ p} .

The downset generated by X in P is the set

↓X := {p ∈ P |p ≤ x for some x ∈ X} .

A set X is called a downset or order ideal of P if ↓X = X .

The dual of a poset P is the poset P∂ whose underlying set is the set P and

whose ordering is just the opposite of that in P. We also have the dual notions of

those listed above, defined in the obvious ways:

The principal upset of p in P, denoted by ↑p, is the set ↓p of P∂ .

The upset generated by X in P, denoted by ↑X , is the set ↓X of P∂ .

A set X is called an upset or order filter of P if ↑X = X .

We shall denote the bottom element of a poset P, if it exists, by 0P. Similarly,

>P denotes the top element. Obviously, bottom elements and top elements, when

they exist, are unique. Let X ⊆ P be any subset (possibly empty). We will use
∨

P
X and

∧

P
X , respectively, to denote the supremum (or least upper bound)

and infimum (or greatest lower bound) of X in P whenever they exist. We will use

the terms monotone, isotone, and order-preserving synonymously to describe

a map f: P → Q between posets P and Q with the property that for all p1, p2 ∈ P ,

if p1 ≤ p2 then f(p1) ≤ f(p2). If for all p1, p2 ∈ P , p1 ≤ p2 ⇒ f(p1) ≥ f(p2), then f

will be called anti-isotone or order-reversing. The poset subscripts appearing in

some of the notation of this paragraph will henceforth be omitted whenever there

is no danger of confusion.
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3. Residuated Lattices

Let P be a poset and ·: P × P → P be a binary map. We say that · is residuated

provided there exist binary maps \: P × P → P and /: P × P → P such that

x · y ≤ z ⇔ x ≤ z/y ⇔ y ≤ x\z ,

for all x, y, z ∈ P . The maps \ and / are called the residuals of ·. Note that a

binary operation is residuated if and only if it is order preserving in both variables

and for all a, b ∈ P , the sets {p ∈ P |ap ≤ b} and {p ∈ P |pa ≤ b} both contain

largest elements. As a consequence of the general theory of adjunctions (see [19]),

multiplication preserves all existing joins in each argument. Moreover, the residual

operations preserve all existing meets in the “numerator” and convert all existing

joins in the “denominator” to meets. See Lemma 3.2 below.

Definition 3.1. A residuated lattice-ordered monoid, or a residuated lat-

tice for short, is an algebraic system

L = 〈L,∧,∨, ·, e, \, /〉

such that 〈L,∧,∨〉 is a lattice; 〈L, ·, e〉 is a monoid; and 〈\, /〉 are the residuals of ·

in the lattice order.

We will use the symbol RL to denote the class of all residuated lattices. Note that

some authors omit the constant e from the definition and refer to those residuated

lattices with unit as unital. Also, we adopt the usual convention of representing

the monoid operation by juxtaposition, writing ab for a · b.

The following lemma collects numerous basic properties of residuated lattices,

most of which by now can be ascribed to the subject’s “folklore”. Notice that

items 2 and 3 imply that the division operations are isotone in the numerator and

anti-isotone in the denominator. We leave the proofs to the reader since they are

routine.

Lemma 3.2. Let L be a residuated lattice. For all a, b, c ∈ L, and any Y ⊆ L, we

have:

1. (a) a(b ∨ c) = ab ∨ ac and

(b ∨ c)a = ba ∨ ca.

(b) If
∨

Y exists , then

a
(

∨

Y
)

=
∨

{ay|y ∈ Y } and

(

∨

Y
)

a =
∨

{ya|y ∈ Y } .

2. (a) (a ∧ b)/c = (a/c) ∧ (b/c) and c\(a ∧ b) = (c\a) ∧ (c\b).

(b) If
∧

Y exists , then
(

∧

Y
)/

c =
∧

{y/c|y ∈ Y } and

c
∖(

∧

Y
)

=
∧

{c\y|y ∈ Y } .
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3. (a) a/(b ∨ c) = (a/b) ∧ (a/c) and (b ∨ c)\a = (b\a) ∧ (c\a).

(b) If
∨

Y exists, then

a
/(

∨

Y
)

=
∧

{a/y|y ∈ Y } and

(

∨

Y
)∖

a =
∧

{y\a|y ∈ Y } .

4. (a/c)c ≤ a and c(c\a) ≤ a.

5. a(c/b) ≤ ac/b and (a\c)b ≤ a\cb.

6. (c/b)(b/a) ≤ c/a and (a\b)(b\c) ≤ a\c.

7. c/b ≤ (c/a)/(b/a) and b\c ≤ (a\b)\(a\c).

8. b/a ≤ (c/b)\(c/a) and a\b ≤ (a\c)/(b\c).

9. c/b ≤ ca/ba and a\c ≤ ba\bc

10. (c/a)/b = c/ba and b\(a\c) = ab\c.

11. a\(c/b) = (a\c)/b.

12. c ≤ (a/c)\a and c ≤ a/(c\a).

13. a/e = a and e\a = a.

14. a/a ≥ e and a\a ≥ e.

15. (a/b)(e/c) ≤ a/cb and (c\e)(b\a) ≤ bc\a.

16. (a/a)a = a and a(a\a) = a.

17. (a/a)2 = a/a and (a\a)2 = a\a.

18. If L has a bottom element , 0, then L also has a top element , >, and for all

a ∈ L we have:

(a) a0 = 0a = 0.

(b) a/0 = 0\a = >.

(c) >/a = a\> = >.

4. The Class RL is an Ideal Variety

By an ideal variety we mean an equational class of algebras with the property

that for each member A, the congruences of A correspond to certain subalgebras

of A. The meaning of this term will be clarified throughout the remainder of the

paper; for a precise definition see [25] or [44]. We begin by showing the well-known

fact that RL is indeed an equational class.

Proposition 4.1. The class RL is a finitely based equational class. In particular ,

RL = Mod(Σ) where Σ consists of the defining equations for lattices and monoids

together with the six equations given below :

a ≤ (ab ∨ c)/b b ≤ a\(ab ∨ c)

a(b ∨ c) = ab ∨ ac (b ∨ c)a = ba ∨ ca

(a/b)b ≤ a b(b\a) ≤ a

Proof. Suppose L ∈ RL. Then for any a, b, c ∈ L,

(ab ∨ c)/b ≥ ab/b ≥ a(b/b) ≥ a
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so that L satisfies the first equation above. That L satisfies both a(b∨ c) = ab∨ ac

and (a/b)b ≤ a follows from Lemma 3.2. The three dual equations are proved to

hold in a similar manner. Now suppose L is an algebra in the language of residuated

lattices and L |= Σ. Then we have that L is a lattice with respect to the meet and

join symbols and a monoid under the multiplication symbol with unit equal to the

constant symbol. It only remains to prove that L satisfies the equivalences

ab ≤ c ⇔ b ≤ a\c ⇔ a ≤ c/b .

Suppose then that ab ≤ c. From a ≤ (ab∨ c)/b we deduce that a ≤ c/b. Conversely,

suppose that a ≤ c/b. From a(b ∨ c) = ab ∨ ac we see that multiplication preserves

order so that ab ≤ (c/b)b. Finally (a/b)b ≤ a gives us the desired conclusion. The

other equivalence is proved similarly.

Definition 4.2. If L is a residuated lattice, the set L
−

:= {a ∈ L|a ≤ e} is called

the negative cone of L.

Note that the negative cone is a submonoid of 〈L, ·, e〉. As such, we will denote it

by L
−

.

Definition 4.3. Let L ∈ RL. For each a ∈ L, define ρa(x) = (ax/a)∧e and λa(x) =

(a\xa) ∧ e. We refer to ρa and λa respectively as right and left conjugation by

a.

Let P = {ρa|a ∈ L}, Λ = {λa|a ∈ L} and set

Γ = {γ|∃n, and ∃γj ∈ (P ∪ Λ) so that γ = γ1◦γ2◦. . .◦γn} .

We will call each γ ∈ Γ an iterated conjugation map.

Definition 4.4. A subset X ⊆ L is called convex if for any x, y ∈ X and a ∈ L,

x ≤ a ≤ y ⇒ a ∈ X ; X is called normal if X is closed with respect to all ρ ∈ P

and λ ∈ Λ.

Note that a subset is normal if and only if it is closed with respect to all γ ∈ Γ.

Definition 4.5. Let L be a residuated lattice. For a, b ∈ L define [a, b]r = (ab/ba)∧

e and [a, b]l = (ba\ab)∧ e. We call [a, b]r and [a, b]l respectively the right and left

commutators of a with b.

We will say that a subset X is closed with respect to commutators if for any

a ∈ L and x ∈ X , the commutators [a, x]r and [x, a]l both lie in X . Normality and

“closure with respect to commutators” are identical properties for certain “nice”

subsets as we show in the next two lemmas.

Lemma 4.6. Let H be a convex subalgebra of L. Then H is normal if and only if

H is closed with respect to commutators.
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Proof. Suppose H is normal. Then

e ≥ [a, h]r = (ah/ha) ∧ e = ((ah/a)/h) ∧ e

≥ (((ah/a) ∧ e)/h) ∧ e = (ρa(h)/h) ∧ e ∈ H

so that [a, h]r ∈ H by convexity. The proof that [h, a]l ∈ H is analogous.

Conversely, suppose H is closed with respect to commutators. Then

[a, h]rh ∧ e ∈ H and [a, h]rh ∧ e

= ((ah/ha) ∧ e)h ∧ e ≤ (ah/ha)h ∧ e

= ((ah/a)/h)h ∧ e ≤ (ah/a) ∧ e = ρa(h) ≤ e

so ρa(h) ∈ H by convexity. The proof that λa(h) ∈ H is analogous.

The same result holds for convex submonoids of the negative cone of L:

Lemma 4.7. If S is a convex submonoid of L
−

, then S is normal if and only if S

is closed with respect to commutators.

Proof. Let s ∈ S and a ∈ L and suppose S is normal. Then

e ≥ [a, s]r = (as/sa) ∧ e = ((as/a)/s) ∧ e ≥ (as/a) ∧ e = ρa(s) ∈ S

where the last inequality above follows since s ≤ e. Similarly, [s, a]l ∈ S. Conversely,

if S is closed with respect to commutators, then [a, s]rs ∈ S. But

[a, s]rs = (((as/a)/s) ∧ e)s ≤ ((as/a)/s)s ∧ s

≤ (as/a) ∧ s ≤ (as/a) ∧ e = ρa(s) ≤ e

and by convexity we have ρa(s) ∈ S. Similarly, λa(s) ∈ S.

4.1. Two “switching” identities

We often find it useful to convert one of the division operations into its dual.

The following two identities, which can be verified by straightforward calculation,

provide a means by which to do so in any residuated lattice:

z/y ≤ py\z , where p = [z/y, y]r , and

x\z ≤ z/xq , where q = [x, x\z]l .

Note: the above identities still hold if the “∧e” factor is omitted from the commu-

tators.

Lemma 4.8. Let L be a residuated lattice and θ ∈ Con(L). Then the following are

equivalent :

1. aθb
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2. [(a/b) ∧ e]θe and [(b/a) ∧ e]θe

3. [(a\b) ∧ e]θe and [(b\a) ∧ e]θe

Proof. Suppose aθb. Then (a/a)θ(b/a) so that

e = [(a/a) ∧ e]θ[(b/a) ∧ e]

and the other relations in items 2 and 3 follow similarly. Conversely, suppose both

[(a/b) ∧ e]θe and [(b/a) ∧ e]θe. Set r = [(a/b) ∧ e]b and s = [(b/a) ∧ e]a. Then rθb

and sθa. Moreover, r ≤ (a/b)b ≤ a and s ≤ (b/a)a ≤ b so that r = (a ∧ r)θ(a ∧ b)

and s = (b ∧ s)θ(b ∧ a) whence bθrθ(a ∧ b)θsθa; we have shown item 2 ⇒ item 1.

One proves item 3 ⇒ item 1 in an analogous manner.

Lemma 4.9. Let θ be a congruence relation on a residuated lattice L. Then [e]θ :=

{a ∈ A|aθe} is a convex normal subalgebra of L.

Proof. Since e is idempotent with respect to all the binary operations of L, it

immediately follows that [e]θ forms a subalgebra of L. Convexity is a consequence

of the well-known fact that any block of any lattice congruence is convex. Finally,

let a ∈ [e]θ and c ∈ L. Then

λc(a) = [c\ac] ∧ eθ[c\ec] ∧ e = [c\c] ∧ e = e

so that λc(a) ∈ [e]θ. Similarly, ρc(a) ∈ [e]θ.

Lemma 4.10. Suppose H is a convex normal subalgebra of L. For any a, b ∈ L,

(a/b) ∧ e ∈ H ⇔ (b\a) ∧ e ∈ H .

Proof. Suppose (a/b) ∧ e ∈ H . Since H is normal, we have

h := b\([(a/b) ∧ e]b) ∧ e ∈ H .

But h ≤ [b\(a/b)b] ∧ e ≤ (b\a) ∧ e ≤ e ∈ H so that (b\a) ∧ e ∈ H . The reverse

implication is proved similarly.

Next we characterize the congruence corresponding to a given convex normal

subalgebra (see [35] in which McCarthy gives a similar description for a related

congruence in a special case).

Lemma 4.11. Let H be a convex normal subalgebra of a residuated lattice L. Then

θH := {(a, b)|∃h ∈ H, ha ≤ b and hb ≤ a}

= {(a, b)|(a/b) ∧ e ∈ H and (b/a) ∧ e ∈ H}

= {(a, b) | (a\b) ∧ e ∈ H and (b\a) ∧ e ∈ H}

is a congruence on L.
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Proof. First we show that the three sets defined above are indeed equal. That the

second and third sets are identical follows from Lemma 4.10. If (a, b) is a member

of the second set, then letting h = (a/b) ∧ (b/a) ∧ e we have h ∈ H and

ha ≤ (b/a)a ≤ b and hb ≤ (a/b)b ≤ a

so that (a, b) is a member of the first set. Conversely, if (a, b) is a member of the

first set then for some h ∈ H we have

ha ≤ b ⇒ h ≤ b/a ⇒ h ∧ e ≤ (b/a) ∧ e ≤ e

and by convexity, we conclude that (b/a) ∧ e ∈ H . Similarly, (a/b) ∧ e ∈ H .

We now prove θH is a congruence using the second set as our description.

θ is an equivalence relation: Note that θ is reflexive since for any a ∈ L we have

(a/a)∧e = e ∈ H and θ is symmetric by the symmetry of its definition. Finally,

to see that θ is transitive, suppose aθb and bθc. Then,

[(a/b) ∧ e][(b/c) ∧ e] ≤ [(a/b)(b/c)] ∧ e ≤ (a/c) ∧ e ≤ e

so that (a/c) ∧ e ∈ H since H is convex. Similarly, (c/a) ∧ e ∈ H so aθc.

θ is compatible with multiplication: Suppose aθb and c ∈ L. Then

(a/b) ∧ e ≤ (ac/bc) ∧ e ≤ e

so (ac/bc)∧ e ∈ H . Similarly, (bc/ac)∧ e ∈ H so that (ac)θ(bc). Next, using the

normality of H,

ρc((a/b) ∧ e) = (c[(a/b) ∧ e]/c) ∧ e ∈ H .

But

ρc((a/b) ∧ e) ≤ [c(a/b)/c] ∧ e ≤ [ca/b/c] ∧ e = (ca/cb) ∧ e ≤ e ∈ H

so that (ca/cb) ∧ e ∈ H . Similarly, (cb/ca) ∧ e ∈ H so that (ca)θ(cb).

θ is compatible with meet: Suppose aθb and c ∈ L. Set r = (a/b) ∧ e. Since

r ≤ 1 we have rc ≤ c; also r ≤ a/b gives rb ≤ a. Thus,

r(b ∧ c) ≤ (rb) ∧ (rc) ≤ a ∧ c .

From this it follows that r ≤ (a ∧ c)/(b ∧ c) which implies

r = (r ∧ e) ≤ [(a ∧ c)/(b ∧ c)] ∧ e ≤ e

whence [(a ∧ c)/(b ∧ c)] ∧ e ∈ H . Similarly, [(b ∧ c)/(a ∧ c)] ∧ e ∈ H so that

(a ∧ c)θ(b ∧ c).

θ is compatible with join: This proof is similar to (even easier than) the one

above.
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θ is compatible with right division: Suppose aθb and c ∈ L. Then we have

(a/b) ∧ e ≤ [(a/c)/(b/c)] ∧ e ≤ e

so that [(a/c)/(b/c)]∧e ∈ H . Similarly, [(b/c)/(a/c)]∧e ∈ H so that (a/c)θ(b/c).

Next,

(b/a) ∧ e ≤ [(c/b)\(c/a)] ∧ e ≤ e ∈ H

so that [(c/b)\(c/a)] ∧ e ∈ H and, by Lemma 4.10, [(c/b)/(c/a)] ∧ e ∈ H .

Similarly, [(c/a)/(c/b)] ∧ e ∈ H so that (c/a)θ(c/b).

θ is compatible with left division: This proof is analogous to the one

above.

Theorem 4.12. The lattice CN(L) of convex normal subalgebras of a residuated

lattice L is isomorphic to its congruence lattice Con(L). The isomorphism is given

by the mutually inverse maps H 7→ θH and θ 7→ [e]θ.

Proof. We have shown both that θH is a congruence and that [e]θ is a member

of CN(L), and it is clear that the maps H 7→ θH and θ 7→ [e]θ are monotone. It

remains only to show that these two maps are mutually inverse, since it will then

follow that they are lattice homorphisms.

Given θ ∈ Con(L), set H = [e]θ; we must show that θ = θH. But this is easy; using

Lemma 4.8,

aθb ⇔ [((a/b) ∧ e)θe

and ((b/a) ∧ e)θ1] ⇔ [((a/b) ∧ e) ∈ H

and ((b/a) ∧ e) ∈ H ] ⇔ aθHb .

Conversely, for any H ∈ CN(L) we must show that H = [e]θ
H

. But

h ∈ H ⇒ [(h/e) ∧ e ∈ H and (e/h) ∧ e ∈ H ]

so that h ∈ [e]θH . If a ∈ [e]θH then (a, e) ∈ θH and we use the first description

of θH in Lemma 4.11 to conclude there exist some h ∈ H such that ha ≤ e and

h = h · e ≤ a. Now it follows from the convexity of H that h ≤ a ≤ h\e ⇒ a ∈

H .

5. Subalgebra Generation

In the previous section we saw that the congruences of a residuated lattice L cor-

respond to its convex normal subalgebras. Here we show that these subalgebras in

turn correspond to the convex normal submonoids of L
−

. Thus, letting CN(L) and

CNM(L
−

) denote respectively the lattices of convex normal subalgebras of L and

convex normal submonoids of L
−

, we conclude that Con(L)
∼
= CN(L)

∼
= CNM(L

−

).

Finally, we describe the convex normal subalgebra generated by an arbitrary subset

S ⊆ L.
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Our next theorem shows that a convex normal subalgebra is completely deter-

mined by its negative cone:

Theorem 5.1. Let S be a convex normal submonoid of L
−

. Then defining the set

HS by

HS := {a|s ≤ a ≤ s\e for some s ∈ S} ,

HS is a convex normal subalgebra of L and S = H
−

S . Conversely , if H is any convex

normal subalgebra of L the, setting SH = H
−

, SH is a convex normal submonoid

of L
−

and H can be recovered from SH as described above. Moreover , the mutually

inverse maps H 7→ SH and S 7→ HS establish a lattice isomorphism between CN(L)

and CNM(L
−

).

Proof. Given a convex, normal subalgebra H of L, the assertions about SH are

easy to verify. Thus we turn our attention to the other direction: let S be a convex

normal submonoid of L
−

and define HS as above. It is easy to show that HS is

convex and normal. Moreover, it is immediate that H
−

S = S. However, we must

verify that HS is a subuniverse. Clearly e ∈ HS , so we check for closure under the

binary operations: let a, b ∈ HS . Then there are s, t ∈ S so that

s ≤ a ≤ s\e , and

t ≤ b ≤ t\e .

Closure under multiplication: Set r = (st)(ts) ∈ S. Then, by Lemma 3.2 item

15, we have

r ≤ st ≤ ab ≤ (s\e)(t\e) ≤ ts\e ≤ r\e .

Closure under meet: Set r = st. Then

r = st ≤ s ∧ t ≤ a ∧ b ≤ (s\e) ∧ (t\e) ≤ (r\e) ∧ (r\e) = r\e .

Closure under join: Similar to the above proof.

Closure under left division: We have

a\b ≤ s\(t\e) = (ts)\e ,

but to find a lower bound for a\b is a little trickier.

First notice that

t ≤ b and sa ≤ e ⇒ tsa ≤ b .

From this we derive

ats(ats\tsa) ≤ tsa ≤ b ⇒ ts(ats\tsa) ≤ a\b .

Setting p = (ats)\(tsa) and q = ts(p ∧ e), we know that p ∧ e = [ts, a]l ∈ S and

so q ∈ S. But now q ≤ tsp ≤ a\b and we have found the desired lower bound.

Finally, setting r = qts, it follows that r ≤ a\b ≤ r\e.
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Closure under right division: First observe that

s ≤ a and tb ≤ e ⇒ stb ≤ a ⇒ st ≤ a/b ,

but to find an upper bound is a little trickier:

a/b ≤ (s\e)/t ≤ pt\(s\e) = spt\e ,

where

p = [(s\e)/t, t]r

as given by the switching identity. But p ∈ S by the comments following

Lemma 4.6 and we have found an appropriate upper bound. Finally, we can

set r = (st)(spt) and it follows that r ≤ a/b ≤ r\e.

We have shown that the maps between the two lattices are well-defined and mutu-

ally inverse. Since they are clearly isotone, the theorem is proved.

The next two lemmas provide a description of the convex normal submonoid

generated by an arbitrary subset of the negative cone.

Lemma 5.2. For all a1, a2, . . . , an, b ∈ L, if a =
∏

aj then
∏

ρb(aj) ≤ ρb(a) , and
∏

λb(aj) ≤ λb(a) .

Proof. We prove only the case n = 2; the proof can be completed by the obvious

induction.

ρb(a1)ρb(a2) = [(ba1/b) ∧ e][(ba2/b) ∧ e] ≤ [(ba1/b)(ba2/b)] ∧ e

≤ [((ba1/b)ba2)/b] ∧ e ≤ (ba1a2/b) ∧ e = ρb(a1a2) .

In the last two inequalities, we used Lemma 3.2 items 5 and 4 respectively. The

proof for λb is analogous.

Lemma 5.3. Suppose S ⊆ L
−

. Then the convex normal submonoid generated by

S is M(S), where M(S) is constructed as follows.

First , set

Ŝ = {γ(s)|s ∈ S, γ ∈ Γ}
⋃

{e}

and let

P (Ŝ) = all finite products of members of Ŝ .

Finally , define

M(S) = {x|a ≤ x ≤ e for some a ∈ P (Ŝ)} .

Proof. It is clear that e ∈ M(S), that M(S) is convex and closed under multipli-

cation, and that any convex normal submonoid containing S must contain M(S).
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Moreover, since S ⊆ L
−

, S ⊆ M(S). It only remains to show that M(S) is normal.

But this follows from Lemma 5.2 and the convexity of M(S): if x ∈ M(S), then

for some a1, a2, . . . , an ∈ Ŝ and a =
∏

aj we have a ≤ x ≤ e. Moreover, for each

j we have some γj ∈ Γ and sj ∈ S so that aj = γj(sj). For any b ∈ L, set γ ′
j =

ρb ◦γj , a′
j = γ′

j(sj) and a′ =
∏

a′
j . Then for each j, a′

j ∈ Ŝ whence a′ ∈ P (Ŝ).

Finally, from Lemma 5.2, we have

a′ =
∏

a′
j =

∏

ρb(aj) ≤ ρb(a) ≤ ρb(x) ≤ ρb(e) = e

and by the convexity of M(S) we conclude that ρb(x) ∈ M(S). An analogous proof

gives λb(x) ∈ M(S).

For any subset S ⊆ L, let N (S) denote the convex normal subalgebra generated

by S.

Proposition 5.4. If S ⊆ L
−

, then

N (S) = {x|a ≤ x ≤ a\e for some a ∈ P (Ŝ)} .

Proof. This follows from the previous lemmas. Clearly

N (S) = {x|b ≤ x ≤ b\e for some b ∈ M(S)} .

But if b ∈ M(S) then there is some a ∈ P (Ŝ) so that a ≤ b ≤ e from which it

follows that a ≤ x ≤ a\e.

A principal (convex normal) subalgebra is a (convex normal) subalgebra generated

by a singleton; we will write P (â) for P ( ˆ{a}) and N (a) for N ({a}).

Lemma 5.5. For any a ∈ L, N (a) = N (a′) where a′ = a ∧ (e/a) ∧ e.

Proof. Clearly a′ ∈ N (a). On the other hand,

a′ ≤ a ≤ (e/a)\e ≤ a′\e ,

so that a ∈ N (a′).

Thus we have the following corollaries:

Corollary 5.6. If a ∈ L, then

N (a) = {x|b ≤ x ≤ b\e for some b ∈ P (â′)} ,

where a′ = a ∧ (e/a) ∧ e.

Corollary 5.7. Let S ⊆ L and set S∗ = {s ∧ (e/s) ∧ e|s ∈ S}. Then

N (S) = {x|a ≤ x ≤ (a\e), for some a ∈ P (Ŝ∗)} .
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6. The Subvariety RL
C

In this section we turn our attention to the subvariety of RL generated by all those

residuated lattices that are totally ordered. Throughout this section, C will denote

the class of all residuated chains and K ⊆ C will be the class of all subdirectly

irreducible (SI) members of C. If Σ is a set of equations (or a single equation) in

the language of RL then we will write ModRL(Σ) to denote Mod(Σ) ∩RL; that is,

those residuated lattices that also model the equations of Σ.

Definition 6.1. We let RLC = HSP(C) denote the subvariety of RL generated by

C, the class of all residuated chains.

In the first subsection, we find an equational basis for RLC . It follows from

Jónsson’s Theorem on congruence-distributive varieties (see [31]) that the collection

of all subdirectly irreducible algebras of RLC is precisely the class K. It is this fact

that aids us in discovering a concise basis of just two additional equations for RLC ,

our main result of this section. It is easy to make a list of equations that hold in RLC

since any equation satisfied by chains — for example the distributive law — must

hold throughout the subvariety. But to characterize RLC , we seek an equation ε that

captures the fact that the SI algebras of RLC are chains. In other words, we need an

equation ε such that for any subdirectly irreducible member L of RL, if L |= ε then

L is a chain. In Lemma 6.3, we see that it suffices to capture the join-primeness of

e in L (which of course must hold in any chain). But given two elements a, b ∈ L

such that a∨ b = e, we are led to investigate the two principal normal submonoids

N (a)
−

and N (b)
−

. Any element of their intersection must simultaneousy lie above

a product of conjugates of a and a product of conjugates of b and hence the join of

these two products. But if L is to be a chain, this intersection must be trivial, and

thus our first approximation for ε becomes something of the form:

[γ1(a)γ2(a) . . . γj(a)] ∨ [γ′
1(b)γ

′
2(b) . . . γ′

k(b)] = e .

Other lemmas allow us to unravel the iterated conjugations and, by replacing a and

b with a/(a ∨ b) and b/(a ∨ b), we capture the hypothesis that a ∨ b = e producing

finally the four-variable equation

ε : λz(x/(x ∨ y)) ∨ ρw(y/(x ∨ y)) = e .

It is easy to see that RLC |= ε and, including a weakened form of distributivity

εd : e ∧ (x ∨ y) = (e ∧ x) ∨ (e ∧ y) ,

we will show that ε and εd together define RLC relative to RL.

Of course the dual version of ε (in which right division is replaced by left division)

could have been used in place of ε. We note this in the second subsection where

we also look at some additional equations of interest that hold in RLC . Finally,

in the third subsection, we show that each member L of RLC has the property

that the compact elements of Con(L) form a relatively normal lattice, a property

investigated for lattices in general by Hart, Snodgrass and Tsinakis in [27, 43].
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6.1. An equational basis for RL
C

The following observation will make some of our proofs more concise: if L is totally

ordered, then for any a, b ∈ L with say a ≤ b we have that b/a ≥ a/a ≥ e so that

L satisfies the equation

ε1 : (x/y) ∨ (y/x) ≥ e .

Therefore, this equation holds throughout RLC and the next lemma shows that it

is a consequence of ε.

Lemma 6.2. Let ε and ε1 be as defined above. For any L ∈ RL, if L |= ε then

L |= ε1.

Proof. Suppose L ∈ RL and L |= ε. In particular, when z = w = e we have

e = [[x/(x ∨ y)] ∧ e] ∨ [[y/(x ∨ y)] ∧ e]

= [(x/x) ∧ (x/y) ∧ e] ∨ [(y/x) ∧ (y/y) ∧ e]

= [e ∧ (x/y)] ∨ [e ∧ (y/x)] ≤ [(x/y) ∨ (y/x)] ∧ e ≤ e

from which it follows that e = [(x/y) ∨ (y/x)] ∧ e.

The next lemma is immediate.

Lemma 6.3. If L ∈ RL, L |= ε1 and if e is join-prime in L, then L is a chain.

We must now show that for subdirectly irreducible members of RL, equation ε

implies the join-primeness of e. The next two lemmas will be useful in this endeavor.

Lemma 6.4 is an obvious generalization of [5, Theorem 3, p. 324].

Lemma 6.4. Let L be any residuated lattice and {ai|1 ≤ i ≤ n}, {bj|1 ≤ j ≤ m} ⊆

L
−

finite subsets of the negative cone of L with the property that ai ∨ bj = e for

any i and j. Then a ∨ b = e, where a =
∏n

i=1
ai and b =

∏m
j=1

bj.

Proof. We first fix an arbitrary j and proceed by induction on n to show that

a ∨ bj = e. Since this holds for all j, the lemma will then follow by reversing the

roles of the a’s and b’s.

If n = 1, the conclusion is immediate. Suppose the result holds for some n and

that {ai|e ≤ i ≤ (n + 1)} together with {bj} satisfy the hypotheses of the lemma.

Set a′ :=
∏n

i=1
ai and a :=

∏n+1

i=1
ai; by the induction hypothesis, a′ ∨ bj = e. But

now we have

a ∨ bj = a′an+1 ∨ bj ≥ a′an+1 ∨ bjan+1 = (a′ ∨ bj)an+1 = an+1

and of course a ∨ bj ≥ bj so that

e ≥ a ∨ bj ≥ an+1 ∨ bj = e

which gives the desired result.
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Lemma 6.5. Suppose L is a residuated lattice such that L |= ε. For all a, b ∈ L
−

and for any iterated conjugation maps γ1, γ2, if a ∨ b = e then γ1(a) ∨ γ2(b) = e.

Proof. Let a, b ∈ L
−

and suppose a ∨ b = e. Notice that it suffices to show only

that γ(a)∨ b = e for all γ ∈ Γ since the same argument applied to γ1(a) and b will

yield the final claim. Thus let γ ∈ Γ be arbitrary and we proceed by induction on

the complexity of γ. If γ = λc for some c ∈ L, then since L |= ε we have

γ(a) ∨ b = λc(a) ∨ ρe(b) = λc(a/a ∨ b) ∨ ρe(b/a ∨ b) = e ,

and similarly if γ = ρd for some d ∈ L. Now suppose the claim holds for some γ;

then for any c, d ∈ L, and setting a′ = γ(a), we have a′ ∨ b = e and the same

argument as given above shows that

[λc◦γ](a) ∨ b = λc(a
′) ∨ b = e and [ρd◦γ](a) ∨ b = ρd(a

′) ∨ b = e .

Finally we are ready to prove the following crucial lemma.

Lemma 6.6. Suppose L ∈ RL is subdirectly irreducible and that L |= ε ∧ εd. Then

e is join-prime in L.

Proof. Equation εd implies that e is join-prime if and only if e is join-irreducible.

So let a, b ∈ L be such that a ∨ b = e. Clearly, a, b ∈ L
−

and the two previous

lemmas together imply that N (a)
−
⋂

N (b)
−

= {e}. But then the two corresponding

congruences have trivial intersection and since L is subdirectly irreducible, it must

have been that either a = e or b = e.

We now have the main theorem of this section:

Theorem 6.7. RLC = ModRL(ε ∧ εd) where ε and εd are the equations

ε : λz(x/(x ∨ y)) ∨ ρw(y/(x ∨ y)) = e

εd : e ∧ (x ∨ y) = (e ∧ x) ∨ (e ∧ y) .

6.2. Other equations of RL
C

Recall that for an arbitrary residuated lattice L, the division operations preserve

meets in the numerator, and convert joins in the denominator into meets (see

Lemma 3.2). In RLC we also have the order-dual versions of these equations as

listed below. For completeness, we include equations ε and εd here, together with

the multiplicative duals of all the equations. In the propositions that follow, we in-

vestigate the relationships among these equations. All of our discussion is assumed

to be relative to the equational theory of RL. We note that [48, Theorem 13.1]

contains versions of these propositions for the special case in which e is the top

element of the lattice.
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Equations 6.8.

εd : (x ∨ y) ∧ e = (x ∧ e) ∨ (y ∧ e)

ε : λz [x/(x ∨ y)] ∨ ρw[y/(x ∨ y)] = e

ε′ : λz [(x ∨ y)\x] ∨ ρw[(x ∨ y)\y] = e

ε1 : (x/y) ∨ (y/x) ≥ e ε′1 : (y\x) ∨ (x\y) ≥ e

ε2 : x/(y ∧ z) = (x/y) ∨ (x/z) ε′2 : (y ∧ z)\x = (y\x) ∨ (z\x)

ε3 : (x ∨ y)/z = (x/z) ∨ (y/z) ε′3 : z\(x ∨ y) = (z\x) ∨ (z\y)

Proposition 6.9. Equation ε implies equation ε1 and equation ε′ implies

equation ε′1.

Proof. The first half of the statement was proved in Lemma 6.2. The primed

version is proved similarly.

Proposition 6.10. Equations ε1 and εd together imply both ε2 and ε3, each of

which implies equation ε1. Thus , in the presence of εd, equations ε1, ε2, and ε3 are

equivalent. The analogous statement for the primed equations also holds.

Proof. To see that ε2 ⇒ ε1, note that

(x/y) ∨ (y/x) ≥ [(x ∧ y)/y] ∨ [(x ∧ y)/x] = (x ∧ y)/(x ∧ y) ≥ e

and ε3 ⇒ ε1 since

(x/y) ∨ (y/x) ≥ [x/(x ∨ y)] ∨ [y/(x ∨ y)] = (x ∨ y)/(x ∨ y) ≥ e .

Next, suppose εd and ε1 hold. Since it is always true that the left-hand side in

ε2 is greater than or equal to the right-hand side, it suffices to show the reverse

inequality. To this end, consider the following:

[x/(y ∧ z)]\[(x/y) ∨ (x/z)] ≥ [(x/(y ∧ z))\(x/y)] ∨ [(x/(y ∧ z))\(x/z)]

≥ [(y ∧ z)/y] ∨ [(y ∧ z)/z] = [(y/y) ∧ (z/y)] ∨ [(y/z) ∧ (z/z)]

≥ [e ∧ (z/y)] ∨ [e ∧ (y/z)] = e ∧ [(z/y) ∨ (y/z)] = e .

The inequality in the second line is from item 8 of Lemma 3.2. We used εd and ε1

in the equalities of the last line. But now we have shown that

e ≤ [x/(y ∧ z)]\[(x/y) ∨ (x/z)]

which is equivalent to ε2. A similar observation yields ε3:

[(x/z) ∨ (y/z)]/[(x ∨ y)/z]

≥ [(x/z)/((x ∨ y)/z)] ∨ [(y/z)/((x ∨ y)/z)]
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= [x/(x ∨ y/z)z] ∨ [y/(x ∨ y/z)z] ≥ [x/x ∨ y] ∨ [y/x ∨ y]

= [(x/x) ∧ (x/y)] ∨ [(y/x) ∧ (y/y)] ≥ [e ∧ (x/y)] ∨ [e ∧ (y/x)]

= e ∧ [(x/y) ∨ (y/x)] = e

and ε3 follows.

Proposition 6.11. In the presence of equation εd, equations ε and ε′ are

equivalent.

Proof. The proof in Theorem 6.7 that {εd, ε} forms a basis for RLC is easily

modified to show that {εd, ε} is also a basis. The proposition now follows.

Corollary 6.12. Equation εd, together with either of ε or ε′, imply all of the others

in the list of Equations 6.8.

6.3. Congruences in RL
C

For any L ∈ RL and a, b ∈ L we always have N (a ∨ b) ⊆ N (a) ∨ N (b) and

N (a∧ b) ⊆ N (a)∨N (b). However, if a and b come from the negative cone then we

can say more.

Proposition 6.13. Let L ∈ RL and a, b ∈ L
−

be arbitrary. Then,

1. N (a ∧ b) = N (a) ∨ N (b).

2. N (a ∨ b) ⊆ N (a) ∩ N (b). Equality holds if L ∈ SP(C) (in particular , equality

holds if L ∈ RLC).

Proof. Statement 1 and the inclusion of statement 2 are easy to verify. Suppose

now that a, b ∈ L
−

. If L is a chain then it is clear that we have equality in state-

ment 2. Suppose L ≤
∏

t Ct where Ct ∈ C for all t, and let x ∈ [N (a) ∩ N (b)]
−

.

Then there are iterated conjugation maps γ1, . . . , γn ∈ Γ and δ1, . . . , δm ∈ Γ so that
n
∏

j=1

γj(a) ≤ x ≤ e and

n
∏

i=1

δi(b) ≤ x ≤ e .

Fix an arbitrary t and suppose pt(a) ≥ pt(b) where pt is the usual projection map.

Then

e ≥ pt(x) ≥ pt

(

n
∏

j=1

γj(a)

)

=

n
∏

j=1

pt(γj(a)) =

n
∏

j=1

pt(γj(a ∨ b))

≥

[

n
∏

j=1

pt(γj(a ∨ b))

][

m
∏

i=1

pt(δi(a ∨ b))

]

= pt

([

n
∏

j=1

(γj(a ∨ b))

][

m
∏

i=1

(δi(a ∨ b))

])

,
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and an analogous argument shows that

e ≥ pt(x) ≥ pt

([

n
∏

j=1

(γj(a ∨ b))

][

m
∏

i=1

(δi(a ∨ b))

])

also holds if pt(a) ≤ pt(b) so that

e ≥ x ≥

[

n
∏

j=1

(γj(a ∨ b))

][

m
∏

i=1

(δi(a ∨ b))

]

,

which implies that x ∈ N (a ∨ b). Since a convex normal subalgebra is completely

determined by its negative cone, the lemma is proved.

Corollary 6.14. For L ∈ RLC , the compact members of CN (L) are the principal ,

convex normal subalgebras N (a) for a ∈ L
−

.

Definition 6.15. A poset, P, is called a root system if every principal up-set,

↑p := {x ∈ P |x ≥ p}, is a chain.

Definition 6.16. A lower-bounded, distributive lattice L is said to be relatively

normal if its prime ideals form a root-system under set inclusion.

In [27], the following alternative characterization of relatively normal lattices,

due to Monteiro [37], is stated:

Theorem 6.17. Let L be a lower-bounded , distributive lattice. Then the following

are equivalent :

1. L is relatively normal.

2. For every a, b ∈ L there exist a′, b′ ∈ L so that a′∧b′ = 0 and a∨b′ = a′∨b = a∨b

(it necessarily follows that a′ ≤ a and b′ ≤ b).

Proposition 6.18. If L ∈ RLC , then the compact members of Con(L) form a

relatively normal lattice.

Proof. Suppose a, b ∈ L
−

. Set a′ := (a/b)∧e and b′ := (b/a)∧e. Then notice that

a′ ∨ b′ = [(a/b) ∧ e] ∨ [(b/a) ∧ e] = [(a/b) ∨ (b/a)] ∧ e = e

so that we have

N (a′) ∧ N (b′) = N (a′ ∨ b′) = N (e) = {e} .

Next, notice that, since a ≤ e, b/a ≥ b whence b′ = (b/a)∧ e ≥ b∧ e = b. Thus,

a ∧ b′ ≥ a ∧ b from which it follows that

N (a) ∨ N (b′) = N (a ∧ b′) ⊆ N (a ∧ b) .

We need to show the reverse inclusion. To this end, observe that

(a ∧ b′)2 ≤ (a ∧ b′)a ≤ a2 ∧ b′a ≤ a ∧ [(b/a)a] ≤ a ∧ b ≤ e

so that a ∧ b ∈ N (a ∧ b′). The proposition now follows from the symmetry of the

definitions.
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7. Concluding Remarks

7.1. Looking back

Historically, the origins of residuation theory lie in the study of ideal lattices of

rings, and among the first papers published on the subject are those of Ward and

Dilworth in the late 1930s (see [15, 16, 45–48]). Over the years, substantial work in

this area led to the development of Multiplicative Ideal Theory (see [20] by Gilmer

or [34] by Larsen and McCarthy).

As for residuation, the closely-related concept of adjunctions was developed as

a part of category theory beginning in the 1940s, but it was not until the late

1940s and early 1950s that the idea of a residuated map as a separate entity be-

gan to appear in papers such as [4, 39]. During the next two decades few works

dealt specifically with the subject although several refer to it indirectly or in pass-

ing. Some notable examples include the 1963 book by Fuchs [17], particularly his

chapter on “Lattice-ordered semigroups”, and the 1967 edition of Birkhoff’s classic

text Lattice Theory [5]. The latter addresses the topic in two newly-added sections,

“Residuation” and “Applications”, which expand on the brief comments found in

earlier editions. Finally, in 1972, Blyth and Janowitz published a large tome titled

Residuation Theory, [7], which was, as they state in the preface, “the first unified

account of this topic”. Included in their book is a much more extensive bibliography

than we give here. As was mentioned earlier, there has been substantial research

regarding some specific classes of residuated structures, including lattice-ordered

groups and MV-algebras. The theory of lattice-ordered groups is a natural exten-

sion of the theory of Riesz spaces (see [1] and the references therein). MV-algebras,

introduced by C.C. Chang in 1958 as the algebraic counterparts of ℵ0-valued propo-

sitional calculus, also serve as the algebraic structures of truth values for several

calculi including fuzzy logics (see [26] and [38]). A comprehensive development of

the theory of MV-algebras can be found in [9].

7.2. Looking ahead

Recently, Hart, Rafter and Tsinakis [28] began an investigation into the general

structure of commutative residuated objects and a large part of this paper has

been devoted to extending their results to the non-commutative case. These works

represent an attempt to understand such structures in a comprehensive way and

from the viewpoint of universal algebra. Here, in particular, we develop the concept

of a normal subalgebra and we give a canonical description of the elements of the

normal subalgebra generated by an arbitrary subset. This, in turn, allows us to

completely describe the connection between the subalgebra lattice and the lattice

of congruences, showing that RL is an “ideal variety”. Furthermore, one always

likes to have a concise equational characterization for a variety and we provide that

here for both RL and RLC . In the process, we show that the members of RLC have

certain properties that we believe could lead to new decomposition theorems for
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the finite objects of this class. Such results should further illuminate their structure

in a fundamental way.

We believe that the subject of residuated lattices is still wide open with many

areas ripe for possible research. For example, several new results regarding the

atoms of the lattice of subvarieties of RL have been obtained by the participants of

the senior author’s (Tsinakis’) Spring 2000 and Fall 2001 seminars on residuation

theory. These, together with research into problems of decidability and free objects,

are currently being prepared for publication [2, 18].

In this section we outline a few questions and some possible lines of research,

several of which we hope to investigate in the near future. We hesitate to call them

“open questions” since this phrase tends to imply that they have already resisted

efforts to solve them. Rather, these are based on marginal notes made during our

research and as yet we have spent little time working on them. Perhaps some will

turn out to be truly challenging while others may yield quickly once attention has

been focused on them.

• Does there exist a representation theorem for the class RL or the class RLC?

It is well-known that any group can be represented as a group of permutations

of a set (Cayley’s representation theorem) and any l-group as a group of order

automorphisms of a totally ordered set (Holland’s representation theorem [29]).

We wonder whether it is possible that each distributive member of RL, or perhaps

some suitable subclass, can be embedded into the lattice of residuated self-maps

of some chain (with composition of maps as the multiplication). In [6] we point

out that the obvious embedding fails in general.

• Is there a “nice” characterization of those lattices that admit residuation? We

know, for example (see [6]), that any finite lattice admits residuation as does

any upper-bounded chain while any lower bounded lattice without a top element

cannot be residuated. Perhaps a starting point would be to determine whether

(or which) unbounded chains admit residuation.

• Can one fruitfully explore further the lattice of subvarieties of RL, denoted L(RL),

and perhaps shed some light on parts of its structure (see Fig. 1 in the intro-

duction)? Much work has been done along these lines for various subclasses. In

particular, much is known about the intervals below LG, `-groups, and below Br,

Brouwerian algebras. For example, it is known that the variety of lattice-ordered

Abelian groups is an atom in the subvariety lattice of `-groups, and hence also in

L(RL), and that this atom has uncountably many covers (see [30] and [40]). It

would be of interest if one could further illuminate the structure near the bottom

of L(RL), perhaps by describing some interesting classes of atoms. Recent work

([2, 18]) has made some progress in this direction.

• Since the variety RL is an ideal variety, we can define the so-called Mal’cev

product on the lattice of subvarieties in the following way: given two subvarieties

V1 and V2, define

V1 ∗ V2 := {L ∈ RL|∃H ∈ SubCN (L) with H ∈ V1 and L/θH ∈ V2} .
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Of great interest would be any results that contribute to an understanding of the

multiplicative structure of L(RL) with respect to this operation.

• Let X be any finite non-empty chain and let us order the free monoid, FM(X), in

the following way: for two words w1, w2 ∈ FM(X) we define w1 < w2 if and only

if either length(w2) < length(w1), or length(w1) = length(w2) and w1 precedes w2

in the dual lexicographic ordering induced by the ordering on X . This ordering is

a compatible residuated total order on FM(X) and there exist many other total

orderings with respect to which the free monoid is residuated. Free monoids are

of course cancellative and it is known that the members of RL that satisfy the

cancellative property form a subvariety (in this setting, the cancellative property

is captured by the equations (xy)/y = x = y\(yx)). Denoting this subvariety

CanRL, one can show that CanRLC := CanRL ∩RLC is generated by residuated

totally ordered, free monoids. It would be of interest to provide a “canonical”

description of the free algebras of CanRLC , in the style of the description of

the free objects in the variety of representable lattice-ordered groups (see, for

example, [41]).

• Can one describe all residuated total orders on FM(X), where X is a finite set?

• Let Z denote the integers (with the usual ordering) and Z− its negative cone.

Under the usual addition, these two chains become members of RL. It is well

known that Z generates the variety of lattice-ordered abelian groups, which is

an atom in the subvariety lattice L(RL). It is also simple to see that that Z−

also generates an atom in the subvariety lattice. It is shown in [2] that these are

the only two atoms that lie below the subvariety of commutative, cancellative

residuated lattices — but it is an open question whether there are any other

atoms below CanRL itself.

• Although in many well-known subvarieties of RL distributivity is a consequence

of the cancellative law, this is not true in general (see [2]). We would like to

know to what extent this implication fails. In particular, is every finite lattice a

sublattice of some cancellative, residuated lattice?
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América, 1954, pp. 129–162.
38. V. Novák, I. Perfilieva and J. Mockor, Mathematical Principles of Fuzzy Logic, The

Kluwer International Series in Engineering and Computer Science, Vol. 517, Kluwer
Academic Publishers, 1999.
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