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Abstract In Sphaerium striatinum, a freshwater brooding
bivalve, up to 97.5% of offspring that adults initially
produce fail to reach independence. Marsupial sacs, spe-
cialized extensions of gill filaments that act as nurseries,
initially contain multiple offspring in various sizes and
stages of development. However, by the time offspring
reach later stages of development, marsupial sacs typi-
cally contain only one offspring. Brood mortality is hy-
pothesized to be the result of competition among embryos
for nutrients and/or space. Sphaeriid eggs do not con-
tain enough yolk for offspring to complete development.
Adults supply additional nutrients required to reach in-
dependence. Brood capacity is limited by adult size.
Adults cannot physically brood all offspring they produce.
Here, we examine the validity of the competition hy-
pothesis for brood mortality. We reared offspring, in
vitro, through metamorphosis under varying nutrient lev-
els and embryo densities. While hatching success and
time to hatching were not influenced by nutrients or
density, both factors had significant effects on the per-
centage of embryos completing metamorphosis and tim-
ing of metamorphosis. A higher percentage of offspring
completed metamorphosis in higher nutrient levels and
lower densities. Offspring reared with higher nutrient
levels and lower densities also completed metamorphosis
more rapidly. We discuss these results in relation to hy-
potheses for the overproduction of offspring, sibling ri-
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valries, as well as factors that might explain brood mor-
tality in this species.
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Introduction

Size-limited brood capacity is common among inverte-
brates that brood offspring inside the adult body (Strath-
mann and Strathmann 1982; Shine 1988). Invertebrates
with hard exoskeletons such as cladocerans (Perrin 1987)
and amphipods (Glazier 2000) or with shells such as bi-
valves (Bayne et al. 1983; Calow 1983; Sebens 1987;
Nakaoka 1998) and gastropods (Chaparro et al. 1999)
are particularly susceptible to size-related constraints on
brood capacity. In these species, the physical space avail-
able for brooding determines the critical upper limit of
brood size (Olsson and Shine 1997). While spatial con-
straints need not limit initial numbers of offspring, they
may become increasingly severe over the course of off-
spring development (Strathmann and Strathmann 1982).
Consequently, species with size-limited brood capacity
often produce more offspring than they can physically
rear to independence.

The continued production of supernumerary offspring
has been categorized theoretically in a number of ways
(see Mock and Parker 1997). The resource-tracking hy-
pothesis states that the production of supernumerary off-
spring allows parents to capitalize on unpredictable fa-
vorable ecological conditions (Kozlowski and Stearns
1989). Parents may create optimistic brood sizes to take
advantage of years when food is abundant and offspring
can be fully supported. Alternatively, the insurance hy-
pothesis states that the creation of a core brood (num-
ber of offspring that can normally be supported) plus a
number of marginal offspring (offspring that are expend-
able) ensures that parents won’t have to settle for an
undersized brood if some core brood members fail to
develop properly (Forbes 1990). Finally, the progeny-
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choice hypothesis posits that the production of supernu-
merary offspring enhances the potential for quality con-
trol (Mock and Forbes 1995). Parents benefit by pro-
ducing a wide array of offspring and “choosing” which
offspring to support, or by allowing sibling rivalry to
select for the best-fit offspring through competitive in-
teractions.

While sibling rivalries have been the subject of intense
theoretical and empirical research (see Mock and Parker
1997), most empirical research has been restricted to
vertebrates, especially birds. Among invertebrates, sibling
rivalries have been documented primarily in beetles, bees,
and molluscs (see Elgar and Crespi 1992). In general,
internal fertilization, prolonged retention, brooding or
guarding of offspring, and dependence upon nutritive re-
sources prior to independence in molluscs favor sibling
rivalries (Mock and Parker 1997). Perhaps the most
common context for sibling rivalries in molluscs is the
deposition of eggs inside a nursery where food is a dis-
crete resource shared by multiple offspring (Spight 1976).
Certain kinds of molluscan “nurseries” feature physical
barriers where there are no options available for offspring
to alleviate the constraints imposed by limited resources.
In these nurseries, siblings may compete for limited re-
sources via scramble or contest competition. Sibling ri-
valries in gastropods have received much attention with
respect to sibling cannibalism, sibling competition for
limited resources, effects of sibling density on sibling
competition, and asynchronous hatching (Desbuquois et
al. 2000).

Asynchronous hatching and/or differential develop-
ment may also intensify sibling rivalries. Early-hatched
offspring generally have faster growth rates and higher
survivorship than later-hatched offspring (Mock and
Forbes 1995; Forbes and Glassey 2000). Because off-
spring typically gain weight from the time they hatch,
early-hatched offspring will grow more rapidly than later-
hatching individuals. Larger offspring intrinsically com-
mand a disproportionate share of available resources
(such as food or space) at the expense of their smaller
siblings (Mock and Parker 1997). The disproportionate
amount of resources remaining for later-hatched offspring
ultimately results in brood mortality arising as a conse-
quence of differential resource allocations among off-
spring and age/size hierarchies (Mock and Parker 1997).

Sphaerium striatinum (Bivalvia: Sphaeriidae) is a
small (<14.0 mm in length) freshwater bivalve that broods
offspring internally (McMahon 1991). Oocytes (~100 pm
diameter) are fertilized within the gonadal tract and re-
leased into the mantle cavity where they are encapsulated
by marsupial sacs located between the lamellae of the
inner demibranchs (gills). Offspring undergo direct de-
velopment and are eventually released into the environ-
ment as fully developed juveniles (34 mm in length).
S. striatinum is a sequential brooder. Adults repeatedly
produce small cohorts of offspring throughout the year
and simultaneously brood them. Reproduction in this
manner is analogous to an assembly line. At any one time,
adults contain an array of marsupial sacs each with a

discrete size class of embryos. At the earliest stages of
embryonic development (<1.0 mm), marsupial sacs typi-
cally contain multiple offspring (between 5 and 12 em-
bryos; M.A. Beekey and R.H. Karlson, personal obser-
vation). By the time offspring reach later stages of de-
velopment (>1.0 mm in length), only one offspring per
marsupial sac is typical (Beekey 2001). In fact, up to
97.5% of offspring produced fail to reach independence
(Avolizi 1976; Hornbach et al. 1982; Beekey 2001). This
degree of brood mortality is indicative of serious con-
straints on brood size. The challenge has been to identify
the mechanism(s) responsible for brood mortality and
explain the continued production of supernumerary off-
spring in a theoretical context.

The proposal that brood mortality is related to com-
petition among embryos for nutrients and/or space has
merit (Groenewegen 1926; Meier-Brook 1970, 1977;
Heard 1977). First, sphaeriid eggs do not contain enough
yolk for offspring to complete development (Raven 1958;
Mackie 1978). Adults provide offspring with additional
nourishment by bathing them in nutrient-rich hemolymph
inside the marsupial sac (Okada 1935; Heard 1977).
Second, nutrition and the physical space available for
brooding are limited (Beekey and Karlson 2003; Beekey
and Hornbach 2004). Finally, differential development
within marsupial sacs has repeatedly been observed
among multiple populations (Groenewegen 1926; Avolizi
1976; Meier-Brook 1970, 1977; Heard 1977; Hornbach et
al. 1982; Beekey 2001). Size differences observed within
marsupial sacs are not due to the presence of multiple
cohorts because each marsupial sac represents a single
reproductive event (Mackie et al. 1978). Thus these dif-
ferences likely emerge as a consequence of differential
development and/or hatching asynchrony. Offspring pro-
visioning, limited nutrition and space, and the presence of
size hierarchies are all factors that enhance the prospects
for sibling rivalry in S. striatinum. The difficulty has been
observing and manipulating siblings within adults.

Since in vivo manipulations are not feasible, we con-
ducted a laboratory experiment in which we removed
embryos from field-collected adults and reared them in
vitro, varying nutrient concentrations and embryo densi-
ties. Embryo density may mediate competition by serving
as a density dependent feedback mechanism (Stearns
1987, 1992). An increase in embryo density under limited
resources would increase competition due to a propor-
tional decline in the amount of resources available per
offspring. Alternatively, once embryo density declines to
levels where resources are no longer limiting, all re-
maining offspring may complete development. Under the
competition hypothesis, one would predict that propor-
tionately more embryos would complete development in
higher serum and lower embryo density treatments.

Methods

We reared offspring in vitro using a modification of basic culture
techniques for rearing unioniid embryos developed by Isom and



Hudson (1982) and later refined by Keller and Zam (1990). We
collected 56 adult S. striatinum from Big Elk Creek in Fair Hill
Natural Resources Management Area, Maryland, in late April. All
adults were measured to the nearest 0.1 mm (greatest anterior to
posterior shell length, SL) and dissected under a microscope. If
present, embryos were removed from the mantle cavity and placed
into 500 ml of sterile phosphate buffered solution (PBS). All 56
adults [11.5 mm SL+1.04 (meanxl SD), range 9.8-13.4 mm]
contained offspring in marsupial sacs. However, only 26 adults
contained embryos lying freely within the mantle cavity. A total of
714 embryos were removed from 26 adults. The mean number of
embryos per adult (x1 SD) was 27.5+42.9 (range: 1-212).

All embryos were washed 3 times in PBS and collectively
stored in a petri dish containing 30 ml of Dulbecco’s Modified
Eagle’s Media (DMEM, 4.5 g/L D-Glucose, L-Glutamine and
110 mg/L sodium pyruvate, Gibco BRL). Individual embryos were
randomly assigned to five densities (1, 2, 3, 4, and 5 embryos per
well) in five, 96-well culture plates. Embryos were not grouped
according to maternal source. Each well contained 500 um of DME
and antibiotics. Antibiotics including carbenicillin (50 ug/ml),
gentamicin (50 pg/ml), amphotericin (2.5 pg/ml), and rifampicin
(50 pg/ml) were added to stock DME in order to reduce bacterial
and fungal contamination. Horse serum (Gibco BRL) concentra-
tions (5%, 2.5%, 1.0%, and 0% by volume), hereafter referred to as
nutrient levels or nutrient availability, were randomly assigned to
each well so that each plate had equal numbers of all combinations.
A total of 600 embryos was used in this experiment. There were ten
replicates for each density and nutrient level combination. The
embryos were reared in an incubator at 18°C+2°C. Each day, we
removed 300 pul of media from each well and replaced it with 300 pl
of corresponding fresh sterile media (containing respective amounts
of horse serum/nutrients). Media was replaced each day to avoid a
build-up of metabolic wastes that might kill or inhibit embryonic
development.

Every 2 days, embryos were removed from the incubator and
examined with a Nikon phase contrast microscope (60x) for evi-
dence of embryonic development (hatching, metamorphosis, and/or
embryonic mortality). We define hatching as the rupture of the
oocyte wall and metamorphosis as the transition to adult like fea-
ture (presence of a muscular foot, demibranchs, and shell forma-
tion). These observations allowed us to record time to hatching
(from the beginning of the experiment to hatching), percent
hatching success, time to metamorphosis (from hatching to meta-
morphosis), and percent metamorphosis. The experiment was ter-
minated after 61 days. At this time, all embryos had either meta-
morphosed or started to disintegrate.

The effects of nutrient availability and embryo density on time
to hatching and proportion of embryos hatching were evaluated
using two-way ANOVA (Statview 5.0.1). Because no embryos
completed metamorphosis in the absence of serum, we analyzed
time to metamorphosis and the proportion of embryos completing
metamorphosis using non-parametric statistics (Kruskal-Wallis
ANOVA by ranks). After determining significance, we then used
two-way ANOVA to analyze the effects of these treatments on only
those embryos receiving serum. We used the mean values for each
well as the dependent variable in analyses of time to hatching and
time to complete metamorphosis.

Results

Out of 600 embryos, 388 (65%) hatched 12-28 days af-
ter the initiation of the experiment. The mean time to
hatching per well was 18.7+3.0 (+SD) days. Hatching
success (the proportion of embryos hatching per well) was
not influenced by nutrient availability or embryo density
(ANOVA, df=3, 4, F=0.4, P>0.05). Likewise, there was
no significant effect on the mean time to hatching per well
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Fig. 1 Averaged proportion of embryos of Sphaerium striatinum
per well completing metamorphosis (+SE) plotted as a function of
nutrient availability (0, 1, 2.5, or 5% serum concentration in culture
media) and embryo density (1,2,3.4, or 5 initial embryos per culture
well). No embryos completed metamorphosis in the absence of
nutrients (0% serum). n=10 for all treatment combinations

with respect to nutrient availability or embryo density
(ANOVA, df=3, 4, F=0.9, P>0.05).

In sharp contrast, the proportion of embryos com-
pleting metamorphosis was strongly influenced by nu-
trient availability and embryo density (Fig. 1). In the
absence of nutrients (serum), no embryos completed
metamorphosis. In the presence of nutrients, 26% of the
original 600 embryos and 40% of the 388 embryos that
hatched completed metamorphosis. The proportion of
embryos completing metamorphosis was significantly
higher among embryos receiving more nutrients (Krus-
kal-Wallis ANOVA by ranks, H=73.9, df= 3, P<0.0001),
but the effect of variation in embryo density was not
significant using all the data (Kruskal-Wallis ANOVA by
ranks, H=6.4, df=4, P=0.169). When the treatment lack-
ing nutrients (0% serum) was removed from the analysis,
the decreasing trend in the proportion of embryos com-
pleting metamorphosis with higher embryo densities was
highly significant (Kruskal-Wallis ANOVA by ranks,
H=16.7, df=4, P=0.0022). Two-way ANOVA on the
proportion of embryos completing metamorphosis cor-
roborates this highly significant effect of nutrient level
and embryo density on treatments containing serum
(Table 1).

Time to metamorphosis was shorter with greater nu-
trient availability and lower embryo densities (Fig. 2).
The mean time (+SD) to metamorphosis at the highest
nutrient level and lowest density was 19.0+£2.6 days, but it
was 36.4+1.7 days at the lowest level of nutrient avail-
ability and highest density. Since no embryos completed
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Table 1 Analysis of variance of the effect of nutrient availability
(1, 2.5, or 5% serum concentration in culture media) and Sphaerium
striatinum embryo density (1, 2, 3, 4, or 5 initial embryos per

culture well) on proportion of offspring completing metamorphosis.
The dependent variable was the percentage of embryos that com-
pleted metamorphosis

Source df Sum of squares Mean square F P
Nutrient availability 2 9,864.4 49322 5.1 0.0074
Embryo density 4 26,466.2 6,616.5 6.8 <0.0001
Nutrient x density 8 4,602.2 575.3 0.6 0.7819
Residual 135 1.3x10° 969.3
Total 149 1.7x10°

407 Discussion

30
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B 2 embryos per well B 5 embryos per well

O 3 embryos per well

Fig. 2 Averaged mean time to metamorphosis of embryos per well
(+SE) plotted as a function of nutrient availability (1, 2.5, or 5% %
serum concentration in culture media) and embryo density (1, 2, 3,
4, or 5 initial embryos per culture well). n as follows: 1% (5, 7, 6, 6,
5),2.5% (6, 8,9, 10,9), and 5% (5,9, 7, 10, 10) for 1, 2, 3,4, and 5
embryos per well, respectively

metamorphosis in treatments lacking serum, we only an-
alyzed time to metamorphosis using treatments contain-
ing serum (1%, 2.5%, 5%). Time to metamorphosis was
strongly influenced by nutrient availability and embryo
density (Kruskal-Wallis ANOVA by ranks, H=30.4, df=2,
P=<0.0001 and H=33.5, df=4, P<0.0001, respectively).
Further analysis on time to metamorphosis using only
treatments with serum and two-way ANOVA reveals
highly significant main effects due to both treatments
(Table 2).

Table 2 Analysis of variance of the effect of nutrient availability
(1, 2.5, or 5% serum concentration in culture media) and embryo
density (1, 2, 3, 4, or 5 initial embryos per well) on time to
metamorphosis. The dependent variable was the average time

Our results demonstrate that in vitro development of S.
striatinum is strongly influenced by variation in nutrient
availability and embryo density. The proportion of off-
spring completing metamorphosis increased with corre-
sponding increases in nutrient concentration and de-
creases in embryo density (Fig. 1). Likewise, develop-
mental rates increased with more nutrients and lower
densities (Fig. 2). These manipulations directly influenced
per capita resource availability and resulted in significant
resource limitation at lower nutrient concentrations and
higher embryo densities. We interpret the delayed de-
velopment rates and lower proportions of embryos com-
pleting metamorphosis as evidence for significant com-
petition among embryos. This in vitro evidence supports
earlier speculation about competition for nutrients based
on observations of differential development within mar-
supial sacs. The fact that no embryos completed meta-
morphosis in the absence of nutrients further emphasizes
the importance of these resources during embryonic de-
velopment.

Competition for limited resources can involve ex-
ploitative or interference mechanisms. The former in-
vokes differential utilization of a limited resource as each
embryo interacts with the resource. The latter invokes
various types of interactions (e.g., physical, chemical,
behavioral) in which embryos interfere with one anoth-
er’s access to or utilization of a resource. Sphaeriid
embryos are extremely mobile within marsupial sacs
even in early stages of development (Beekey 2001). It is
plausible that physical interactions between larger and
smaller embryos could impede the intake of nutrients by
smaller embryos. Alternatively, Meier-Brook (1977) sug-
gested brood mortality was a consequence of chemical
inhibition from developing embryos. Such inhibitors

(days) to metamorphosis for all embryos in a single well. Data from
the 0% nutrient treatment were removed prior to analysis. n=113
(number of wells containing embryos that completed metamor-
phosis)

Source df Sum of squares Mean square F P
Nutrient availability 2 948.2 474.1 714 <0.0001
Embryo density 4 921.2 230.3 34.7 <0.0001
Nutrient x density 8 13.1 13.1 1.9 0.0572
Residual 98 650.7 6.6

Total 112 2,533.2




have been documented in tadpoles (Richards 1958; Rose
1960; Akin 1966), but not bivalves. Regardless of the
specific form of competition, there is an obvious ad-
vantage to early hatching and rapid development.

Numerous examples of age/size hierarchies have been
documented across a wide array of taxa: plants (Mock and
Forbes 1995), birds (Lack 1954), mammals (Clutton-
Brock 1991), fish (Ahnesjo 1996), sharks (Springer 1948),
and invertebrates (Desbuquois et al. 2000). Hatching
asynchrony and age/size hierarchies do not directly facil-
itate brood reduction; rather they lead to differential re-
source allocation, deficient levels of provisioning for some
offspring, and offspring mortality (Forbes and Glassey
2000). In this experiment, embryos in various stages of
development were present over all treatments with mul-
tiple embryos. Hatching occurred over a period of 16 days.
While this might be a consequence of mixing eggs at
different stages of development from multiple adults, a
similar pattern can be found in nature. Previous studies on
S. striatinum have documented variation in developmental
stages among embryos within a single marsupial sac
(Okada 1935; Avolizi 1976; Heard 1977; Hornbach et al.
1982; Beekey 2001). Since marsupial sacs are closed after
the initial encapsulation of zygotes (Mackie 1978), vari-
ation in embryonic development in nature must be the
result of differential development.

Egg viability has been previously mentioned as a po-
tential contributor to brood mortality in the Sphaeriidae.
For example, Mackie et al. (1978) demonstrated that in-
creased brood size in Musculium secures was achieved by
an increase in the viability of embryos rather than an
increase in the number of embryos produced. In this ex-
periment, only 65% of the initial 600 eggs we used hat-
ched while 12% of the embryos exhibited no signs of
development, though whether or not they had been fer-
tilized is unknown. An additional 23% of the embryos
exhibited some evidence of development, but failed to
hatch. One might argue that our experiment was not truly
representative of embryonic development under natural
conditions because so many of the eggs failed to hatch.
This loss may be attributable to problems related to our
culture techniques. Embryo viability and development
might have been affected by the production of metabolic
wastes within the culture wells. In vivo these wastes
would be removed by the highly vascularized marsupium.
Our attempt to counteract the production of metabolic
wastes was to remove and replace media throughout the
course of the experiment. Whether or not media re-
placement had an effect on the removal of metabolic
wastes is unknown. Future experiments might resolve this
problem by rearing embryos in a flow-through system.
However, flow-through systems might also disrupt po-
tential chemical interactions among embryos as men-
tioned previously. If we assume that our results are in-
dicative of natural development, then it appears that egg
viability plays a significant role in determining brood size
in Sphaerium as has been documented in the closely re-
lated genus Musculium.
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With respect to theoretical explanations for the con-
tinued production of supernumerary offspring, we con-
clude that both the insurance and “progeny choice” hy-
potheses are applicable to S. striatinum. The degree of
developmental failure observed in this experiment cer-
tainly favors the insurance hypothesis. The production of
supernumerary offspring in S. striatinum ensures that
brood size will not fall below the size imposed by phys-
ical constraints. Competition among offspring within
marsupial sacs would select for the survival of the best-fit
offspring increasing both offspring survivorship in the
external environment and overall reproductive success of
the adult. While resource availability clearly has an im-
pact on offspring development and survivorship, the re-
source-tracking hypothesis lacks merit in this case. In
species with highly predictable brood capacity (a function
of adult size), the production of supernumerary offspring
in response to unpredictable favorable ecological condi-
tions seems unlikely.

In conclusion, we have clearly demonstrated that nu-
trient availability and embryo density affect in vitro off-
spring development in S. striatinum. Increased nutrient
availability and decreased embryo density resulted in
faster development times and a higher proportion of off-
spring completing metamorphosis. Based on observations
from previous studies and our own data, we conclude that
size hierarchies within marsupial sacs are the result of
differential development and perhaps hatching asynchro-
ny. The continued production of supernumerary offspring
in S. striatinum ensures adults ultimately rear broods that
do not fall below the limits set by size-limited brood
capacity. Marsupial sacs are likely to act as competitive
arenas where early hatching provides a competitive ad-
vantage and ensures the survival of the fittest offspring
(Stearns 1987). Finally, brood mortality in S. striatinum is
likely consequence of sibling rivalries over limited re-
sources and developmental failure.
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