
Sacred Heart University
DigitalCommons@SHU

Computer Science & Information Technology
Faculty Publications Computer Science & Information Technology

11-2005

On Learning Languages from Positive Data and a
Limited Number of Short Counterexamples
Sanjay Jain
National University of Singapore

Efim Kinber
Sacred Heart University, kinbere@sacredheart.edu

Follow this and additional works at: http://digitalcommons.sacredheart.edu/computersci_fac

Part of the Programming Languages and Compilers Commons

This Article is brought to you for free and open access by the Computer Science & Information Technology at DigitalCommons@SHU. It has been
accepted for inclusion in Computer Science & Information Technology Faculty Publications by an authorized administrator of
DigitalCommons@SHU. For more information, please contact ferribyp@sacredheart.edu.

Recommended Citation
Jain, Sanjay and Kinber, Efim, "On Learning Languages from Positive Data and a Limited Number of Short Counterexamples" (2005).
Computer Science & Information Technology Faculty Publications. Paper 28.
http://digitalcommons.sacredheart.edu/computersci_fac/28

http://digitalcommons.sacredheart.edu/?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.sacredheart.edu/?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.sacredheart.edu?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.sacredheart.edu/computersci_fac?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.sacredheart.edu/computersci_fac?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.sacredheart.edu/computersci?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.sacredheart.edu/computersci_fac?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.sacredheart.edu/computersci_fac/28?utm_source=digitalcommons.sacredheart.edu%2Fcomputersci_fac%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ferribyp@sacredheart.edu

T H E N A T I O N A L U N I V E R S I T Y
o f S I N G A P O R E

S c h o o l o f C o m p u t i n g
Lower Kent Ridge Road, Singapore 119260

TR21/05

On Learning Languages from Positive Data and
 a Limited Number of Short Counterexamples

Sanjay JAIN and Efim KINBER

November 2005

T e c h n i c a l R e p o r t

Foreword

This technical report contains a research paper, development or
tutorial article, which has been submitted for publication in a
journal or for consideration by the commissioning organization.
The report represents the ideas of its author, and should not be
taken as the official views of the School or the University. Any
discussion of the content of the report should be sent to the
author, at the address shown on the cover.

JAFFAR, Joxan

Dean of School

On Learning Languages from Positive Data

and a Limited Number of Short

Counterexamples

Sanjay Jain a,1 and Efim Kinber b

a School of Computing, National University of Singapore, Singapore 117543.
Email: sanjay@comp.nus.edu.sg

b Department of Computer Science, Sacred Heart University, Fairfield, CT
06432-1000, U.S.A. Email: kinbere@sacredheart.edu

Abstract

We consider two variants of a model for learning languages in the limit from positive
data and a limited number of short negative counterexamples (counterexamples are
considered to be short if they are smaller that the largest element of input seen
so far). Negative counterexamples to a conjecture are examples which belong to
the conjectured language but do not belong to the input language. Within this
framework, we explore how/when learners using n short (arbitrary) negative coun-
terexamples can be simulated (or simulate) using least short counterexamples or
just ‘no’ answers from a teacher. We also study how a limited number of short
counterexamples fairs against unconstrained counterexamples, and also compare
their capabilities with the data that can be obtained from subset, superset, and
equivalence queries (possibly with counterexamples). A surprising result is that just
one short counterexample can sometimes be more useful than any bounded num-
ber of counterexamples of arbitrary size. Most of results exhibit salient examples of
languages learnable or not learnable within corresponding variants of our models.

1 Introduction

Our goal in this paper is to explore how limited amount of negative data, rela-
tively easily available from a teacher, can help learning languages in the limit.
There is a long tradition of using two popular different paradigms for exploring
learning languages in the limit. One paradigm, learning languages from full
positive data (all correct statements of the language), was introduced by Gold

1 Supported in part by NUS grant number R252-000-127-112.

Preprint submitted to Elsevier Science 21 November 2005

in his classical paper [Gol67]. In this model,TxtEx, the learner stabilizes in
the limit to a grammar generating the target language. In another popular
variant of this model, TxtBc, defined in [CL82] and [OW82] (see also [Bār74]
and [CS83]) almost all conjectures outputted by the learner are correct gram-
mars describing the target language. The second popular paradigm, learning
using queries to a teacher (oracle) was introduced by D. Angluin in [Ang88].
In particular, D. Angluin considered three types of queries: subset, superset,
and equivalence queries — when a learner asks if a current hypothesis gener-
ates a subset or a superset of the target language, or, respectively, generates
exactly the target language. If the answer is negative, the teacher may provide
a counterexample showing where the current hypothesis errs. This model has
been used for exploring language learning primarily in the situation when no
data was available in advance (see, for example, [LZ04b], [LZ04a]). In [JK05a],
the two models were combined together: a learner gets full positive data and
can query the teacher if the current conjecture is correct. On one hand, this
model reflects the fact that a learner, during a process of acquisition of a new
language, potentially gets access to all correct statements. On the other hand,
this model adds another important tool, typically available, say, to a child
learning a new language: a possibility to communicate with a teacher.

In this context, subset queries are of primary interest, as they provide negative
counterexamples if the learner errs, while other types of queries may provide
positive ‘counterexamples’ eventually available on the input anyway (still, as
it was shown in [JK05b], the sequel paper to [JK05a], superset and equivalence
queries can make some difference even in presense of full positive data). Con-
sequently, one can consider the learner for NCEx model as defined in [JK05a]
(and its variant NCBc corresponding to TxtBc — NC here stands for ‘neg-
ative counterexamples’), as making a subset query for each of its conjectures.
When a learner tests every conjecture, potentially he/she can get indefinite
number of counterexamples (still this number is, of course, finite if the learner
learns the target language in the limit correctly). In [JK05b] the authors ex-
plored learning from positive data and bounded amount of additional negative
data. In this context, one can consider three different scenarios of how subset
queries and corresponding negative counterexamples (if any) can be used:

— only a bounded number (up to n) of subset queries is allowed during
the learning process; this model was considered in [JK05b] under the name
SubQn;

— the learner makes subset query for every conjecture until n negative answers
have been received; that is, the learner can ask potentially indefinite number
of questions (however, still finite if the learning process eventually gives a
correct grammar), but he is charged only when receiving a negative answer;
this model was considered in [JK05b] under the name NCn;

2

— the learner makes subset queries for conjectures, when deemed necessary,
until n negative answers have been received; in the sequel, we will refer to
this model as GNCn, where GNC denotes ‘generalized model of learning via
negative counterexamples’.

Note that the GNCn model combines the features of the first two (we will
also demonstrate that it is stronger than each of the first two).

All three models SubQn, NCn, and GNCn provide certain complexity mea-
sure (in the spirit of [GM98]) for learning languages that cannot be learned
from positive data alone.

Negative counterexamples provided by the teacher in all these models are of
arbitrary size. Some researchers in the field considered other types of negative
data available for learners from full positive data. For example, negative data
provided to learners in the model considered in [BCJ95] is preselected – in
this situation just a very small amount of negative data can greatly enhance
learning capabilities. A similar model was considered in [Mot91].

In this paper we explore models SubQn, NCn, and GNCn when the teacher
provides a negative counterexample only if there is one whose size does not
exceed the size of the longest statement seen so far. While learning from full
positive data and negative counterexamples of arbitrary size can be interesting
and insightful on its own right, providing arbitrary examples immediately (as
it is assumed in the models under consideration) may be somewhat unrealistic
— in fact, it may significantly slow down learning process, if not making it
impossible. On the other hand, it is quite realistic to assume that the teacher
can always reasonably quickly provide a counterexample (if any), if its size is
bounded by the largest statement on the input seen so far. Following notation
in [JK05b], we denote corresponding variants of our three models by BSubQn,
BNCn, and BGNCn, respectively. Following [Ang88] and [JK05b] we also
consider restricted variants of the above three models - when the teacher,
responding to a query, answers just ‘no’ if a counterexample of the size not
exceeding the size of the largest statement seen so far exists — not providing
the actual example; otherwise, the teacher answers ‘yes’. To reflect this variant
in the name of a model, we, following [JK05b], add the prefix Res to its name
(for example, ResBNCn). It must be noted that, as it is shown in [JK05b],
BSubQn does not provides any advantages over learning just from positive
data. Therefore, we concentrate on BNCn, BGNCn and their Res variants.

Our first goal in this research was to explore relationships between these two
models as well as their restricted variants. Following [JK05a] and [JK05b], we
also consider Res variants for models SubQn, NCn, and GNCn as well as
their variants when the least (rather than arbitrary) counterexample is pro-
vided — in this case we use the prefix L (for example, LNCn). Consequently,

3

we explore relationships between B-models and models using limited number
of queries (including those getting just answers ‘yes’ or ‘no’), or limited number
of arbitrary or least counterexamples, or just answers ‘no’. In this context, we,
in particular, demonstrate advantages that our B-variants of learning (even
ResB) can have over GNCn in terms of the number of mind changes needed
to arrive to the right conjecture. We consider also learning with bounded num-
ber of two other types of queries, superset and equivalence, and discuss how
their capabilities in the presense of full positive data fair against B and ResB
types of learning with bounded numbers of counterexamples/‘no’ — answers
(as it was noted above, even though superset and equivalence queries may pro-
vide positive ‘counterexamples’, there are circumstances when this can help
even in the presense of full positive data - see, for example, Theorems 19 and
22 in [JK05b]).

Most of our results provide salient examples of classes learnable (or not learn-
able) within corresponding models.

The paper has the following structure. In Section 2 we introduce necessary
notation and definitions needed for the rest of the paper. In particular, we de-
fine some variants of the classical Gold’s model of learning from texts (positive
data): TxtEx — when the learner stabilizes to a correct (or nearly correct)
conjecture generating the target language, and TxtBc — its behaviorally
correct counterpart. In Section 3 we define learnability from positive data via
uniformly bounded number via queries to the teacher (oracle). In particular,
we define learning via queries returning the least or no counterexamples (just
the answers ‘yes’ or ‘no’ in the latter case). In all these models the learning
algorithm is ‘charged’ for every query that it makes. This section also gives
the reader general understanding of how learning from positive data via subset
queries works.

In Section 4, for both major models of learnability in the limit, TxtEx and
TxtBc, we define two variants of learning from positive data and a uniformly
bounded number of counterexamples: NCn and GNCn, where the learner
makes subset queries and is ‘charged’ for every negative answer from a teacher
(rather than for every query, as in the query model in Section 3). We then
define the main models considered in this paper: BNCn and BGNCn, as well
as ResB variants of both. We also formally define the L variant for all these
models. In addition, we establish some useful facts regarding the model GNC,
as it is introduced in this paper for the first time.

In Section 5 we explore relationships between different bounded negative coun-
terexample models. In particular, we study the following two problems: under
which circumstances, (a) B-learners receiving just answers ‘yes’ or ‘no’ can
simulate the learners receiving short (possibly, even least) counterexamples;
(b) learners receiving arbitrary short counterexamples can simulate the ones

4

receiving the least short counterexamples. First, we note that in all variants of
the paradigms TxtEx and TxtBc, an LBNCn-learner can be always simu-
lated by a ResBNC2n−1-learner: 2n−1 ‘no’ answers are enough to simulate n

explicit negative counterexamples (similar fact holds also for the LBGNCn-
learners). Moreover, for the Bc∗ type of learnability (when almost all conjec-
tures contain any finite number of errors), the number 2n − 1 in the above
result drops to n (Theorem 27; note that, for learning via limited number of
arbitrary or least counterexamples, the number 2n − 1 could not be lowered
even for Bc∗-learners, as shown in [JK05b]). On the other hand, the num-
ber 2n − 1 of negative answers/counterexamples cannot be lowered for the
learning types Ex∗ (when any finite number of errors in the limiting correct
conjecture) and Bcm (when the number of errors in almost all conjectures
is uniformly bounded by some m) for both tasks (a) and (b). Namely, there
exist LBNCnEx-learnable classes of languages that cannot be learned by
BGNC2n−2Bcm or BGNC2n−2Ex∗-learners (Theorem 24) and there exist
BNCnEx-learnable classes that cannot be learned by ResBNC2n−2Bcm or
ResBNC2n−2Ex∗-learners (Theorem 25 and Theorem 26). We also show that
a LBNCEx∗-learner can be always simulated by a ResBNCBc-learner —
when the number of negative answers/counterexamples is unbounded.

In Section 6 we explore relationships between our models when the counterex-
amples considered are short or unconstrained. First, we demonstrate how short
counterexamples can be of advantage over unconstrained ones while learning
from positive data and a bounded number of counterexamples. A somewhat
surprising result is that sometimes one ‘no’ answer, just indicating that a short
counterexample exists, can do more than any number n of arbitrary (or even
least) counterexamples used by (the strongest) LGNCnBc∗-learners (Theo-
rem 33). We also show that sometimes a ResBNC1Ex-learner can use just one
mind change (and one ‘no’ answer witnessing existence of a short counterexam-
ple) to learn classes of languages not learnable by any GNCEx-learner using
any bounded number of mind changes and an unbounded (finite) number of
arbitrary counterexamples (Theorem 35). On the other hand, least counterex-
amples used by NC-type learners make a difference: any LBNCEx-learner
using at most m mind changes and any (unbounded) number of counterexam-
ples can be simulated by a LNCm-learner using at most m mind changes and
at most m least counterexamples.

In Section 7 we study how learning via limited number of short counterexam-
ples fairs against learning via finite number of subset, superset, and equivalence
queries (note that, as shown in [JK05b], if answers ‘no’/counterexamples to
queries are of B-type (i.e. constrained to be short), then they do not give
any advantage over regular learnability by TxtEx or TxtBc-learners, thus
we consider here only queries returning arbitrary or least counterexamples
or just ‘no’ answers assuming existence of a counterexample). In some cases,
just one query, providing only the answer, without associated counterexample,

5

can give one a learning advantage compared to any number n of least short
counterexamples used by BNCnBc or BGNCnBc-learners (sometimes even
making errors in almost all correct conjectures). On the other hand Bcm and
Ex∗-learners using any finite number of superset queries can be simulated by
ResBNCBc-learners making just one error in almost all correct conjectures
if an unbounded number of ‘no’ answers is allowed (Theorem 42). Conversely,
one restricted ‘no’ answer (just assuming existence of a short counterexample)
can sometimes do better than any (unbounded) number of queries of any type
while getting least counterexamples.

2 Notation and Preliminaries

Any unexplained recursion theoretic notation is from [Rog67]. The symbol
N denotes the set of natural numbers, {0, 1, 2, 3, . . .}. Symbols ∅, ⊆, ⊂, ⊇,
and ⊃ denote empty set, subset, proper subset, superset, and proper superset,
respectively. D0, D1, . . . , denotes a canonical recursive indexing of all the finite
sets [Rog67, Page 70]. We assume that if Di ⊆ Dj then i ≤ j (the canonical
indexing defined in [Rog67] satisfies this property). Cardinality of a set S

is denoted by card(S). Im denotes the set {x | x ≤ m}. The maximum and
minimum of a set are denoted by max(·), min(·), respectively, where max(∅) =
0 and min(∅) = ∞. L1∆L2 denotes the symmetric difference of L1 and L2,
that is L1∆L2 = (L1 − L2) ∪ (L2 − L1). For a natural number a, we say that
L1 =a L2, iff card(L1∆L2) ≤ a. We say that L1 =∗ L2, iff card(L1∆L2) < ∞.
Thus, we take n < ∗ < ∞, for all n ∈ N . If L1 =a L2, then we say that L1 is
an a-variant of L2.

We let 〈·, ·〉 stand for an arbitrary, computable, bijective mapping from N ×N

onto N [Rog67]. We assume without loss of generality that 〈·, ·〉 is mono-
tonically increasing in both of its arguments. We define π1(〈x, y〉) = x and
π2(〈x, y〉) = y. We can extend pairing function to multiple arguments by us-
ing 〈i1, i2, . . . , ik〉 = 〈i1, 〈i2, 〈. . . , 〈ik−1, ik〉〉〉〉.

We let {Wi}i∈N denote an acceptable numbering of all r.e. sets. Symbol E will
denote the set of all r.e. languages. Symbol L, with or without decorations,
ranges over E . By L, we denote the complement of L, that is N − L. Symbol
L, with or without decorations, ranges over subsets of E . By Wi,s we denote
the set Wi enumerated within s steps, in some standard computable method
of enumerating Wi.

We now present concepts from language learning theory. The next definition
introduces the concept of a sequence of data.

Definition 1 (a) A sequence σ is a mapping from an initial segment of N

6

into (N ∪ {#}). The empty sequence is denoted by Λ.

(b) The content of a sequence σ, denoted content(σ), is the set of natural
numbers in the range of σ.

(c) The length of σ, denoted by |σ|, is the number of elements in σ. So, |Λ| = 0.

(d) For n ≤ |σ|, the initial sequence of σ of length n is denoted by σ[n]. So,
σ[0] is Λ.

Intuitively, #’s represent pauses in the presentation of data. We let σ, τ , and
γ, with or without decorations, range over finite sequences. We denote the
sequence formed by the concatenation of τ at the end of σ by στ . Sometimes
we abuse the notation and use σx to denote the concatenation of sequence σ

and the sequence of length 1 which contains the element x. SEQ denotes the
set of all finite sequences.

Definition 2 [Gol67] (a) A text T for a language L is a mapping from N

into (N ∪ {#}) such that L is the set of natural numbers in the range of T .
T (i) represents the (i + 1)-th element in the text.

(b) The content of a text T , denoted by content(T), is the set of natural
numbers in the range of T ; that is, the language which T is a text for.

(c) T [n] denotes the finite initial sequence of T with length n.

Definition 3 [Gol67] A language learning machine from texts is an algorith-
mic device which computes a mapping from SEQ into N .

We let M, with or without decorations, range over learning machines. M(T [n])
is interpreted as the grammar (index for an accepting program) conjectured by
the learning machine M on the initial sequence T [n]. We say that M converges
on T to i, (written: M(T)↓ = i) iff (∀∞n)[M(T [n]) = i].

There are several criteria for a learning machine to be successful on a language.
Below we define some of them. All of the criteria defined below are variants
of the Ex-style and Bc-style learning described in the Introduction; in addi-
tion, they allow a finite number of errors in almost all conjectures (uniformly
bounded, or arbitrary).

Definition 4 [Gol67,CL82] Suppose a ∈ N ∪ {∗}.

(a) M TxtExa-identifies a text T just in case (∃i | Wi =a content(T))
(∀∞n)[M(T [n]) = i].

(b) M TxtExa-identifies an r.e. language L (written: L ∈ TxtExa(M)) just
in case M TxtExa-identifies each text for L.

7

(c) M TxtExa-identifies a class L of r.e. languages (written: L ⊆
TxtExa(M)) just in case M TxtExa-identifies each language from L.

(d) TxtExa = {L ⊆ E | (∃M)[L ⊆ TxtExa(M)]}.

Definition 5 [CL82] Suppose a ∈ N ∪ {∗}.

(a) M TxtBca-identifies a text T just in case (∀∞n)[WM(T [n]) =a L].

(b) M TxtBca-identifies an r.e. language L (written: L ∈ TxtBca(M)) just
in case M TxtBca-identifies each text for L.

(c) M TxtBca-identifies a class L of r.e. languages (written: L ⊆
TxtBca(M)) just in case M TxtBca-identifies each language from L.

(d) TxtBca = {L ⊆ E | (∃M)[L ⊆ TxtBca(M)]}.

For a = 0, we often write TxtEx and TxtBc, instead of TxtEx0 and TxtBc0,
respectively.

Definition 6 [Ful90] σ is said to be an TxtEx-stabilizing sequence for M on
L, iff (i) content(σ) ⊆ L, and (ii) for all σ′ such that σ ⊆ σ′ and content(σ′) ⊆
L, M(σ) = M(σ′).

Definition 7 [BB75,OSW86] For a ∈ N ∪ {∗}, σ is said to be an TxtExa-
locking sequence for M on L, iff (i) content(σ) ⊆ L, (ii) for all σ ′ such that
σ ⊆ σ′ and content(σ′) ⊆ L, M(σ) = M(σ′), and (iii) WM(σ) =a L.

Theorem 8 [BB75,OSW86] Suppose M TxtExa-identifies L. Then, there
exists an TxtExa-locking sequence for M on L.

Definition 9 (Based on [BB75,OSW86]) For a ∈ N ∪ {∗}, σ is said to be an
TxtBca-locking sequence for M on L, iff (i) content(σ) ⊆ L, and (ii) for all
σ′ such that σ ⊆ σ′ and content(σ′) ⊆ L, WM(σ′) =a L.

Theorem 10 (Based on [BB75,OSW86]) Suppose M TxtBca-identifies L.
Then, there exists a TxtBca-locking sequence for M on L.

Similar stabilizing sequence/locking sequence results can be obtained for cri-
teria of inference discussed below.

We let INIT = {L | (∃i)[L = {x | x ≤ i}]}.

For any L, let cyl(L) = {〈i, x〉 | i ∈ L, x ∈ N}. Let cyl(L) = {cyl(L) | L ∈ L}.

Let CYLi denote the language {〈i, x〉 | x ∈ N}.

8

Let FINITE denote the class of all finite languages.

The following proposition is useful in proving many of our results.

Proposition 11 [Gol67] Suppose L is an infinite language, S ⊆ L, and L−S

is infinite. Let C0 ⊆ C1 ⊆ · · · be an infinite sequence of finite sets such that
⋃

i Ci = L. Then {L} ∪ {S ∪ Ci | i ∈ N} is not in TxtBc∗.

3 Learning with Queries

In this section we define learning with queries. The notions in this section is
essentially from [JK05b]. The kind of queries considered are

(i) subset queries, i.e., for a queried language Q, ‘is Q ⊆ L?’, where L is the
language being learned;

(ii) equivalence queries, i.e., for a queried language Q, ‘is Q = L?’, where L is
the language being learned;

(iii) superset queries, i.e., for a queried language Q, ‘is Q ⊇ L?’, where L is
the language being learned.

In the model of learning, the learner is allowed to ask queries such as above
during its computation. If the answer to query is ‘no’, we additionally can
have the following possibilities:

(a) Learner is given an arbitrary counterexample (for subset query, counterex-
ample is a member of Q − L; for equivalence query the counterexample is
a member of L∆Q; for superset query the counterexample is a member of
L − Q);

(b) Learner is given the least counterexample;

(c) Learner is just given the answer ‘no’, without any counterexample.

We would often also consider bounds on the number of queries. We first for-
malize the definition of a learner which uses queries.

Definition 12 [JK05b] A learner using queries, can ask a query of form ‘Wj ⊆
L?′ (‘Wj = L?′, ‘Wj ⊇ L?′) on any input σ. Answer to the query is ‘yes’ or ‘no’
(along with a possible counterexample). Then, based on input σ and answers
received for queries made on prefixes of σ, M outputs a conjecture (from N).

We assume without loss of generality that on any particular input σ, M asks
at most one query. Also note that the queries we allow are for recursively

9

enumerable languages, which are posed to the teacher using a grammar (index
in an acceptable numbering of all recursively enumerable languages) for the
language.

We now formalize learning via subset queries.

Definition 13 [JK05b] Suppose a ∈ N ∪ {∗}.

(a) M SubQaEx-identifies a language L (written: L ∈ SubQaEx(M)) iff for
any text T for L, it behaves as follows:

(i) The number of queries M asks on prefixes of T is bounded by a (if a = ∗,
then the number of such queries is finite). Furthermore, all the queries are
of the form ‘Wj ⊆ L?’

(ii) Suppose the answers to the queries are made as follows. For a query
‘Wj ⊆ L?’, the answer is ‘yes’ if Wj ⊆ L, and the answer is ‘no’ if Wj−L 6= ∅.
For ‘no’ answers, M is also provided with a counterexample, x ∈ Wj − L.
Then, for some k such that Wk = L, for all but finitely many n, M(T [n])
outputs the grammar k.

(b) M SubQaEx-identifies a class L of languages (written: L ⊆
SubQaEx(M)) iff it SubQaEx-identifies each L ∈ L.

(c) SubQaEx = {L | (∃M)[L ⊆ SubQaEx(M)]}.

LSubQaEx-identification and ResSubQaEx-identification can be defined
similarly, where for LSubQaEx-identification the learner gets the least coun-
terexample for ‘no’ answers, and for ResSubQaEx-identification, the learner
does not get any counterexample along with the ‘no’ answers.

For a, b ∈ N ∪ {∗}, for I ∈ {Exb,Bcb}, one can similarly define
SubQaI, SupQaI, EquQaI, LSubQaI, LSupQaI, LEquQaI, ResSubQaI,
ResSupQaI, and ResEquQaI.

For identification with queries, where there is a bound n on the number of
queries asked, we will assume without loss of generality that the learner never
asks more than n queries, irrespective of whether the input language belongs
to the class being learned, or whether the answers given to earlier queries are
correct.

10

4 Learning with Negative Counterexamples to Conjectures

In this section we define two models of learning languages from positive data
and negative counterexamples to conjectures. Both models are based on the
general idea of learning from positive data and subset queries for the conjec-
tures.

Intuitively, for learning with negative counterexamples to conjectures, we may
consider the learner being provided a text, one element at a time, along with
a negative counterexample to the latest conjecture, if any. (One may view this
counterexample as a response of the teacher to the subset query when it is
tested if the language generated by the conjecture is a subset of the target
language). One may model the list of counterexamples as a second text for
negative counterexamples being provided to the learner. Thus the learning
machines get as input two texts, one for positive data, and other for negative
counterexamples.

We say that M(T, T ′) converges to a grammar i, iff for all but finitely many
n, M(T [n], T ′[n]) = i.

First, we define the basic model of learning from positive data and negative
counterexamples to conjectures. In this model, if a conjecture contains ele-
ments not in the target language, then a counterexample is provided to the
learner. NC in the definition below stands for ‘negative counterexample’.

Definition 14 [JK04] Suppose a ∈ N ∪ {∗}.

(a) M NCExa-identifies a language L (written: L ∈ NCExa(M)) iff for all
texts T for L, and for all T ′ satisfying the condition:

T ′(n) ∈ Sn, if Sn 6= ∅ and T ′(n) = #, if Sn = ∅,

where Sn = L ∩ WM(T [n],T ′[n])

M(T, T ′) converges to a grammar i such that Wi =a L.

(b) M NCExa-identifies a class L of languages (written: L ⊆ NCExa(M)),
iff M NCExa-identifies each language in the class.

(c) NCExa = {L | (∃M)[L ⊆ NCExa(M)]}.

For LNCExa criteria of inference, we consider providing the learner with
the least counterexample rather than an arbitrary one. The criteria LNCExa

of learning can thus be defined similarly to NCExa, by requiring T ′(n) =
min(Sn), if Sn 6= ∅ and T ′(n) = #, if Sn = ∅ in clause (a) above (instead of
T ′(n) being an arbitrary member of Sn).

11

Similarly, one can define ResNCExa, where the learner is just told that the
latest conjecture is or is not a subset of the input language, but is not provided
any counterexamples in the case of ‘no’ answer.

For BNCExa criteria of inference, we update the definition of Sn in clause (a)
of the definition of NCExa-identification as follows: Sn = L ∩ WM(T [n],T ′[n]) ∩
{x | x ≤ max(content(T [n]))}.

We can similarly define the criteria of inference ResBNCExa, and LBNCExa,
NCBca, LNCBca, ResBca, BNCBca, ResBNCBca and LBNCBca. We
refer the reader to [JK04] for more details, discussion and results about the
various variations of NCI-criteria.

Similarly, one can define the models BSubQaI for the learning via a finite
number of subset queries. However, we will not consider these criteria of learn-
ing, as they have been shown to be same as I in the paper [JK05b].

For n ∈ N , one may also consider the model, NCnI, where, for learning a
language L, the NCI learner is provided counterexamples only for its first n

conjectures which are not subsets of L. For remaining conjectures, the answer
provided is always #. In other words, the learner is ‘charged’ only for the first
n negative counterexamples, and the subset queries for later conjectures are
not answered. Following is the formal definition.

Definition 15 [JK05b] Suppose a ∈ N ∪ {∗}, and m ∈ N .

(a) M NCmExa-identifies a language L (written: L ∈ NCmExa(M)) iff for
all texts T for L, and for all T ′ satisfying the condition:

T ′(n) ∈ Sn, if Sn 6= ∅ and card(content(T ′[n])) < m; T ′(n) = #, if Sn = ∅
or card(content(T ′[n])) ≥ m,

where Sn = L ∩ WM(T [n],T ′[n])

M(T, T ′) converges to a grammar i such that Wi =a L.

(b) M NCmExa-identifies a class L of languages (written: L ⊆ NCmExa(M)),
iff M NCmExa-identifies each language in the class.

(c) NCmExa = {L | (∃M)[L ⊆ NCmExa(M)]}.

For a ∈ N ∪ {∗} and I ∈ {Exa,Bca}, one can similarly define BNCmI,
LBNCmI, ResBNCmI and LNCmI, ResNCmI and NCmBca.

GNCI-identification model is same as the model of NCI-identification, except
that counterexamples are provided to the learner only when it explicitly re-
quests for such via a ‘is this conjecture a subset of the target language’ question
(which we refer to as conjecture-subset question). This clearly doesn’t make a

12

difference if there is no bound on the number of questions asked resulting in
counterexamples. However when there is a bound on number of counterexam-
ples, then this may make a difference, as the GNC-learner may avoid getting a
counterexample on some conjecture by not asking the conjecture-subset ques-
tion. Thus, we will only deal with GNC model when there is a requirement of
a bounded number of counterexamples. For a ∈ N ∪ {∗} and I ∈ {Exa,Bca},
one can define GNCmI, LGNCmI, ResGNCmI and BGNCmI, LBNCmI,
ResBGNCmI, similarly to NC variants.

Note a subtle difference between models LBGNCn and LGNCn: in the
model LBGNCn, the teacher provides the shortest counterexample only if
it is smaller than some element of the input, whereas there is no such require-
ment for LGNCn (the same is true also for NC-variant).

In the rest of the section, we establish some useful facts about GNC-style
learners (without requirement for counterexamples being short), as this model
is defined here for the first time.

Proposition 16 (a) LNCnI ⊆ LGNCnI.

(b) NCnI ⊆ GNCnI.

(c) ResNCnI ⊆ ResGNCnI.

(d) LSubQnI ⊆ LGNCnI.

(e) SubQnI ⊆ GNCnI.

(f) ResSubQnI ⊆ ResGNCnI.

Proof. (a), (b) and (c) follow from definition. As subset queries made by
a query learner can be made by a GNC learner (by using the query as its
conjecture and making the conjecture-subset query), without getting any other
counterexamples (d), (e) and (f) also follow.

Corollary 17 ResGNC1Ex − LNCnBc∗ 6= ∅.

Proof. [JK05b] showed that ResSubQ1Ex−LNCnBc∗ 6= ∅. Corollary now
follows from Proposition 16.

Theorem 18 [JK05b]

(a) ResGNC1Ex − LSubQnBc∗ 6= ∅.

(b) ResGNC1Bc − LSubQ∗Bc∗ 6= ∅.

13

(c) ResGNC1Ex − LEquQnBc∗ 6= ∅.

(d) ResGNC1Ex − LSupQ∗Bc∗ 6= ∅.

Proof. [JK05b] showed these diagonalizations for ResNC1Ex. Theorem
now follows using Proposition 16.

(a), (b) above is strongest possible as ResSubQ∗Exa = NCExa (see
[JK05b]), and thus, ResSubQ∗Exa contains ResGNCExa. Similarly, (c)
above is strongest as LEquQ∗Ex contains E (see [JK05b]).

[JK05b] showed ResEquQ1Ex ∩ ResSupQ1Ex − NCBc 6= ∅, which also
gives us ResEquQ1Ex∩ResSupQ1Ex−GNCBc 6= ∅ and ResEquQ1Ex∩
ResSupQ1Ex−GNCEx∗ 6= ∅ (note that LNCEx∗ ⊆ NCBc, [JK05a], and
GNC model is same as NC model for unbounded number of counterexam-
ples).

Similarly the proof of ResSupQ1Ex − LNCnBcm 6= ∅ in [JK05b] (based on
the proof of (ResEquQ1Ex∩ResSupQ1Ex)−NCBc 6= ∅ there), can also be
used to show that (ResSupQ1Ex∩ResEquQ1Ex)−LGNCnBcm 6= ∅. Note
that this is strongest possible result for superset queries, as ResSupQ∗Bc∗ =
TxtBc∗ ⊆ LGNC0Bc∗, and ResEquQnBc∗ ⊆ ResSubQnBc∗ ⊆
ResGNCnBc∗. (In contrast, note that ResEquQ1Ex − ResLNCnBc∗ 6= ∅
[JK05b]).

Theorem 19 EquQ2Ex − LGNCnBc∗ 6= ∅.

Proof. Let L = {L | (∃i)[L ⊆ CYLi and [L = Wi or (∃j)[L = Wi ∪
{〈i, 〈j, x〉〉 | x ∈ N}] or card(L) < ∞]]}.

It is easy to verify that L ∈ EquQ2Ex, as a learner can output a grammar for
∅, until an element in the input appears. If this element is of form 〈i, x〉, then
the learner asks an equivalence query for Wi. If true, then the learner knows
the input language. Otherwise, learner gets a counterexample 〈i, 〈j, x〉〉 for
some j, x. Then the learner asks the query for the language Wi ∪ {〈i, 〈j, x〉〉 |
x ∈ N}. If the answer is yes, then the learner again knows the input language.
Otherwise the input language must be finite, and one can easily learn it.

Suppose by way of contradiction that M LGNCnBc∗-identifies L. Then by
Kleene recursion theorem there exists an e such that We may be defined as
follows. We assume without loss of generality that M would not ask any more
conjecture-subset question after having received n counterexamples, on all
inputs, even those outside the class.

Let σ0 = σ′
0 = Λ. Let W s

e denote We enumerated before stage s. Let S0 = ∅.
Intuitively, Ss denotes the set of elements we have decided to be out of We.

14

Stage s

Invariants we have are
(a) content(σs) ⊆ W s

e ⊆ CYLe − Ss and content(σ′
s) ⊆ Ss.

(b) |σs| = |σ′
s|, and σ′

s has at most n non-# entries.
(c) The counterexamples, when present, are correct in the sense that, for

w < |σs|, σ′
s(w) ∈ {#} ∪ (WM(σs[w],σ′

s[w]) − We).
(d) If one treats # > any member of N , then σ′

r#
∞ is lexicographically

larger than σ′
r+1#

∞. Note that this along with (b) implies that number
of stages is finite.

1. Dovetail steps 2 and 3 until one of them succeeds. If step 2 succeeds, before
step 3 does, if ever, then go to step 4. If step 3 succeeds, before step 2
does, if ever, then go to step 5.

2. Search for a w < |σs| such that M(σs[w], σ′
s[w]) asks a conjecture-subset

question and WM(σs[w],σ′
s[w])−W s

e contains an element z < σ′
s(w) (where

we take # to be ∞).
3. Search for a σ ⊇ σs such that content(σ) ⊆ CYLe − Ss, and

M(σ, σ′
s#

|σ|−|σs|) asks a conjecture-subset query and W
M(σ,σ′

s#
|σ|−|σs|)

enumerates an element z not in W s
e ∪ content(σ).

4. If step 2 succeeds, then let σs+1 = σs[w]#, and σ′
s+1 = σ′

s[w] · z. Let
Ss = Ss ∪ {z}. W s+1

e = W s
e and go to stage s + 1.

5. If step 3 succeeds, then let σs+1 = σ#, and σ′
s+1 = σ′

s#
|σ|−|σs| · z. Let

Ss = Ss ∪ {z}. Let Ws+1 = Ws ∪ content(σ) and go to stage s + 1.
End stage s

It is easy to see that invariants are satisfied. Thus the number of stages is
finite. Let s be the last stage that is executed. As step 2 did not succeed,
answers given by σ′

s form correct least counterexample sequence for σs, for any
language L such that W s

e ⊆ L ⊆ CYLe − Ss. Furthermore, as step 3 did not
succeed, for any σ ⊇ σs such that content(σ) ⊆ CYLe−Ss, if M(σ, σ′

s#
|σ|−|σs|)

asks a conjecture-subset question, then W
M(σ,σ′

s#
|σ|−|σs|) ⊆ W s

e ∪ content(σ).
It follows that for any text T extending σs for a language L such that W s

e ⊆
L ⊆ CYLe − Ss, σ′

s#
∞ is a valid sequence of counterexamples. Let j be any

number such that Ss does not contain any element of form 〈e, 〈j, x〉〉. Thus, M
needs to TxtBc∗ identify We ∪ {〈e, 〈j, x〉〉 | x ∈ N} and all finite subsets of it
which contain We, without getting any more counterexamples. An impossible
task by Proposition 11.

Theorem 20 (a) (ResNCn+1Ex ∩ ResSubQn+1Ex ∩ ResEquQn+1Ex) −
LGNCnBc∗ 6= ∅.

(b) LGNCnEx − GNC2n−2Bc∗ 6= ∅.

(c) GNCnEx − ResGNC2n−2Bc∗ 6= ∅.

15

(d) LGNCnI ⊆ ResGNC2n−1I.

Proof. (a) [JK05b] showed that (ResNCn+1Ex ∩ ResSubQn+1Ex ∩
ResEquQn+1Ex)−LNCnBc∗ 6= ∅. The proof can be easily modified to show
part (a).

(b) Theorem 24 below shows LBNCn − BGNC2n−2Bc∗ 6= ∅, using a class
Cn. Cn can easily be seen to be in LGNCnEx. The diagonalization can be
modified to show that Cn 6∈ GNCnBc∗. Essentially, instead of looking for
a counterexample below the largest value in the input, we look for any pos-
sible counterexample. Here even diagonalization against Bc∗ works, as Bc∗-
identification is enough to guarantee the existence of σ at steps 2.2 and 4.2.
We omit the details.

(c) [JK05b] showed that NCnEx − ResNC2n−2Bc∗ 6= ∅. This proof can be
easily modified to show that GNCnEx−ResGNC2n−2Bc∗ 6= ∅. We omit the
details.

(d) [JK05b] showed that LNCnI ⊆ ResNC2n−1I. Similar proof shows this
result also.

Thus, below we will deal only with separations/simulations where at least one
of the party involves bounded negative counterexamples.

5 Relations Among Bounded Negative Counterexample Models

In this section we establish relationships between B-variants of NC and GNC-
models when any short, or the least short counterexamples, or just the ‘no’
answers about existence of short counterexamples are used.

First we establish that, similarly to the known result about NC-model
([JK05b]), number of counterexamples matters to the extent that n + 1 ‘no’
answers used by BNCEx-style learners can sometimes do more that n least
counterexamples obtained by LBGNCBc∗-style learners.

Theorem 21 ResBNCn+1Ex − LBGNCnBc∗ 6= ∅.

Proof. Proof of ResNCn+1Ex − LNCnBc∗ 6= ∅ in [JK05b] can easily be
modified to show this result.

The next result gives advantages of GNC model.

Theorem 22 For all n,m ∈ N , ResBGNC1Ex − LBNCnBcm 6= ∅.

16

ResBGNC1Ex − LBNCnEx∗ 6= ∅.

Proof. Proof of ResSubQ1Ex − LNCnBc∗ from [JK05b] can be easily
adopted to prove this theorem (however, only for Ex∗ and Bcm cases. The
proof for Bc∗ case does not carry over). We omit the details.

Our main results in this section deal with the following problems: if and under
which conditions, (a) B-learners receiving just ‘yes’ or ‘no’ answers can simu-
late learners receiving short (or, possibly, even least short) counterexamples,
and (b) learners using arbitrary short counterexamples can simulate the ones
receiving the least short counterexamples. We establish that, for both tasks
(a) and (b), for the Bcm and Ex∗ types of learnability, 2n−1 is the upper and
the lower bound on the number of negative answers/examples needed for such
a simulation. These results are similar to the corresponding results in [JK05b]
for the model NC, however, there is also an interesting difference: as it will
be shown below, for Bc∗-learnability, the bound 2n− 1 can be lowered to just
n (for NCBc∗-learners, the lower bound 2n − 1 still holds).

First we establish the upper bound 2n − 1 for both tasks (a) and (b).

Theorem 23 (a) LBNCnI ⊆ ResBNC2n−1I.

(b) LBGNCnI ⊆ ResBGNC2n−1I.

Proof. Proof of LNCnI ⊆ ResNC2n−1I from [JK05b] can be used to show
this theorem also.

Our next result shows that, for the Bcm and Ex∗ types of learnability, the
bound 2n− 1 is tight in the strongest sense for the task (b). Namely, we show
that BNC-learners using n least short counterexamples cannot be simulated
by BGNC-learners using 2n − 2 (arbitrary short) counterexamples.

Theorem 24 Suppose n ≥ 1.

(a) LBNCnEx − BGNC2n−2Bcm 6= ∅.

(b) LBNCnEx − BGNC2n−2Ex∗ 6= ∅.

Proof. This proof is a modification of the proof of LNCnEx−NC2n−2Bc∗ 6=
∅ from [JK05b]. We give details as there are some subtlities and also the result
does not carry over for Bc∗.

Let
E = {〈0, x, y〉 | x, y ∈ N}.
Li,k = {〈i, k, x〉 | x ∈ N}.

17

Xi = Li,0.
Y

j
i = {〈i, 0, x〉 | x < 3j} ∪ Li,j+1.

Z
j,k
i = {〈i, 0, x〉 | x < 3j + 1} ∪ {〈i, j + 1, x〉 | x ≤ k}.

U
j
i = {〈i, 0, x〉 | x < 3j + 2}.

Li = {Xi} ∪ {Y j
i | j ∈ N} ∪ {U j

i | j ∈ N} ∪ {Zj,k
i | j, k ∈ N}.

Cn = {L | (∃A | card(A) ≤ n, 0 6∈ A)[L is formed by picking one language
from each Li, i ∈ A, and then taking the union of these languages along
with E]}.

Intuitively, each L ∈ Li is either Xi or contains an initial segment of Xi, and
the least element from Xi − L indicates the form of L (i.e., whether it is Y

j
i ,

Z
j,k
i or U

j
i , for some j, k). This allows for easy learnability when one gets n

least counterexamples. However, it will be shown below that (2n−2) negative
answers are not enough for learning the above class. E has been added to
the languages just to ensure that the language is infinite, and thus negative
counterexamples from Xi, if present, can eventually be obtained (because they
become smaller than the largest element of the input at some point).

A learner can LBNCnEx-identify the class Cn as follows. On input (σ, σ′), do
as follows.

Let A = {i > 0 | (∃x, y)[〈i, x, y〉 ∈ content(σ)]}. Let A′ = {i | (∃j)[〈i, 0, 3j〉 ∈
content(σ′)]}. Let A′′ = {i | (∃j)[〈i, 0, 3j + 1〉 ∈ content(σ′) or 〈i, 0, 3j + 2〉 ∈
content(σ′)]}.

It would be the case that for input from Cn the sets A′, A′′ are disjoint subsets
of A (see below). For i ∈ A′, let ji be such that 〈i, 0, 3ji〉 ∈ content(σ′).

Output a (standard) grammar for the language:

E ∪
⋃

i∈A−A′−A′′

Xi ∪
⋃

i∈A′

Y
ji

i ∪
⋃

i∈A′′

[content(σ) ∩ {〈i, x, y〉 | x, y ∈ N}]

Now consider any input language L ∈ Cn. By induction, on length of the
input, we claim that counterexamples received would only be of the form
〈i, 0, z〉, where i > 0. Furthermore, for any given i, there is at most one such
counterexample of the form 〈i, 0, z〉 that the learner will receive — ensuring
that A′, A′′ are disjoint as claimed earlier.

Now, consider any i > 0 such that the input language L contains a language
from Li as its subset. The first time an element of form 〈i, x, y〉, for the given
i, appears in the input, Xi would be included in the conjectured language. We
consider the following cases.

Case 1: There is no counterexample ever received from Xi.

18

In this case the language from Li, which is a subset of L, must be Xi.
Furthermore, for any future input, we will never have a counterexample of
form 〈i, x, y〉, and thus i will never be placed in A′, A′′. Thus, Xi would be
contained in the conjectured language.

Case 2: There is a counterexample of form 〈i, 0, 3j〉.

In this case the language from Li which is a subset of L must be Y
j
i . Also,

i will be placed in A′. Furthermore, we will never have a counterexample
of form 〈i, x, y〉, for any future input. Thus, Y

j
i would be contained in the

conjectured language.

Case 3: There is a counterexample of form 〈i, 0, 3j + 1〉 or 〈i, 0, 3j + 2〉.

In this case the language from Li, which is a subset of L, must be finite. Also,
i will be placed in A′′. Furthermore, we will never have a counterexample
of form 〈i, x, y〉, for any future input, due to the form of conjectures made
by the learner.

From the above cases, it is easy to verify that induction hypothesis would be
satisfied, and eventually the learner would converge to a grammar for L. Thus,
Cn ∈ LBNCnEx.

We now show that Cn 6∈ BGNC2n−2Bcm or BGNC2n−2Ex∗. So suppose by
way of contradiction M BGNC2n−2Bcm-identifies (BGNC2n−2Ex∗-identifies)
L.

Let Im denote the set {x | x ≤ m}. Initially, let σ0 = Λ, σ′
0 = Λ. Intuitively, σ′

s

would denote the sequence of counterexamples/# provided to M on input σs.
Let A0 = ∅, S0 = {0}. Intuitively, A =

⋃

As plus (one more element) would
mimic the A as in the definition of Cn. Ss would denote the set of elements
we have decided not to be in A (elements i of Ss represent the spoiled Li,
due to some counterexamples used earlier, or i = 0 (note that E is already
committed to be in the diagonalizing language)). As we build up the set A,
we would also freeze the languages Fr ∈ Lr, for r ∈ As, such that Fr ⊆ L, the
diagonalizing language being constructed.

For s ≤ n − 2, inductively define σs+1, σ′
s+1, As+1, Ss+1, and Fr for r ∈ As+1,

as follows.
(* The construction is non-effective. *)

(* Following invariants will be satisfied:
(a) As ∩ Ss = ∅.
(b) card(As) = s. Ss is finite.
(c) content(σs) ⊆ E ∪

⋃

r∈As
Fr.

(d) For r ∈ As, Fr ∈ Lr.

19

(e) Counterexamples/Answers given to M via σ′ are consistent with
any language L such that E ∪

⋃

r∈As
Fr ⊆ L ⊆ E ∪

⋃

r∈As
Fr ∪

⋃

r 6∈Ss∪As
{〈r, x, y〉 | x, y ∈ N}.

*)
1. Let i be a member of N − (Ss ∪ As).
2. If there exists a σ ⊇ σs such that content(σ) ⊆ Xi ∪ E ∪

⋃

r∈As
Fr, and

one of the following is satisfied:
2.1. (W

M(σ,σ′
s#

|σ|−|σs|) ∩ Imax(content(σ))) − (Xi ∪ E ∪
⋃

r∈As
Fr) 6= ∅, and

M(σ, σ′
s#

|σ|−|σs|) asks a conjecture-subset question.
2.2. Not 2.1, and for some j ∈ N and k′ ≥ 3j + 3,

(i) max(content(σ) − {max(content(σ))}) < 〈i, 0, 3j〉, and
(ii) max(content(σ)) ∈ E, and
(iii) 〈i, 0, k′〉 ∈ (W

M(σ,σ′
s#

|σ|−|σs|) ∩ Imax(content(σ))), and

(iv) M(σ, σ′
s#

|σ|−|σs|) asks a conjecture-subset question, and
(v) M(σ[w], σ′

s#
w−|σs|) does not ask a conjecture-subset ques-

tion for w ≤ min({t | σ(t) = max(content(σ))}) < |σ|.
3. Then, pick smallest such σ (we will argue below that there must exist such

a σ).
If step 2.1, succeeded then fix 〈i′, j′, k′〉 ∈ (W

M(σ,σ′
s#

|σ|−|σs|) ∩
Imax(content(σ))) − (Xi ∪ E ∪

⋃

r∈As
Fr), and let j > max(content(σ)) be

such that j + 1 6= j ′.
If step 2.2. succeeded then let 〈i′, j′, k′〉 = 〈i, 0, k′〉, where k′ is as found in

step 2.2 and fix j as found in step 2.2.
Let τ = σ# and τ ′ = σs#

|σ|−|σs|〈i′, j′, k′〉.
(* Note that answers given by τ ′ are consistent with invariant (e) for

Fi = Y
j
i , or Fi = Z

j,k
i for any k, as step 2.1 and 2.2 did not succeed on

any proper prefix of σ. *)
4. If there exists a σ ⊇ τ such that content(σ) ⊆ Y

j
i ∪

⋃

r∈As
Fr, and

M(σ, τ ′#|σ|−|τ |) asks a conjecture-subset question, and
WM(σ,τ ′#|σ|−|τ |)−Imax(content(σ)) contains an element of form 〈i′′, j′′, k′′〉 such

that one of the following conditions is satisfied:
4.1. 〈i′′, j′′, k′′〉 6∈ Y

j
i ∪

⋃

r∈As
Fr,

4.2. Not 4.1 and for some k′′ > max({k | 〈i, j + 1, k〉 ∈ content(σ)}),
〈i, j + 1, k′′〉 ∈ (W

M(σ,τ ′#|σ|−|τ ′|) ∩Imax(content(σ))).
5. Then, pick a shortest such σ (we will argue below that there must exists

such a σ).
If 4.1 holds,

Let Fi = Y
j
i .

Let σs+1 = σ# and σ′
s+1 = τ ′#|σ|−|τ |〈i′′, j′′, k′′〉.

If 4.2 holds,
Let Fi = Z

j,k
i , for k = max({x | 〈i, j + 1, x〉 ∈ content(σ)}).

Let σs+1 = σ# and σ′
s+1 = τ ′#|σ|−|τ |〈i′′, j′′, k′′〉.

(* Note that we give counterexample 〈i′′, j′′, k′′〉 to WM(σ,τ ′#|σ|−|τ |). *)
(* Note that answers given by σ′

s+1 are consistent with invariant (e) for

20

each of above choice of Fi, as step 4.1 and 4.2 did not succeed on any
proper prefix of σ. *)

6. Let As+1 = As ∪ {i}.
Let Ss+1 = Ss ∪ [{i′, i′′} − (As ∪ {i})].

End

It is easy to verify that the invariants are maintained by the construction.
Specially note that the invariant (e) is maintained as explained by comments
in the construction above.

We first claim that the above construction finishes for every s ≤ n − 2 (i.e.,
σn−1, σ

′
n−1 get defined). If not, then let s be least such that σs, σ

′
s get defined

but σs+1, σ
′
s+1 do not. Now consider the construction above while trying to

define σs+1, σ
′
s+1.

Suppose the ‘If’ statement at step 2 does not hold. Now M must
BGNC2n−2Bcm-identify (BGNC2n−2Ex∗-identify) the language L = Xi ∪
E∪

⋃

r∈As
Fr, which is a member of Cn. Suppose γ is a BGNC2n−2Bcm-locking

sequence (BGNC2n−2Ex∗-locking sequence) for M on L, where the answers
provided beyond σ′

s are always # (i.e., yes whenever the conjecture-subset
question is asked). Without loss of generality assume that W

M(γ,σ′
s#

|γ|−|σ′
s|)

contains L − Imax(γ), except for maybe m elements (this clearly holds
for BGNC2n−2Bcm-identification; for BGNC2n−2Ex∗-identification, one can
just take an appropriate extension of γ to ensure this). Let j be such that
3j + 2 > max({x | 〈i, 0, x〉 ∈ content(γ)}). Let H be an increasing text for
U

j
i ∪ E ∪

⋃

r∈As
Fr. Let G be a text for a subset of E such that G(w) >

max({〈i, 0, 3j ′ + 3 + m + 1〉} ∪ content(γ)), where j ′ > j and 3j ′ > max({t |
〈i, 0, t〉 ∈ content(H[w + 1])}). Then, on text T = γG(0)H(0)G(1)H(1) . . .,
with T ′ = σ′

s#
∞, if M never asks a conjecture-subset question beyond γ,

then M does not BGNC2n−2Bcm (BGNC2n−2Ex∗)-identify U
j
i . On the other

hand, if M does ask a question at (T [|γ| + 1 + 2w + v], T ′[|γ| + 1 + 2w + v]),
where 2w + v is minimal such number with w ∈ N and v ∈ {0, 1}, then
T [|γ| + 1 + 2w + v] qualifies as being σ in step 2.2. (To see this note that,
for some j ′, G(w) > 〈i, 0, 3j ′ + 3 + m + 1〉, where j ′ > j and 3j ′ > max({t |
〈i, 0, t〉 ∈ content(H[w + 1])}), and WM(T [|γ|+1+2w+v],T ′[|γ|+1+2w+v]) misses out
at most m of {〈i, 0, 3j ′ + 3 + x〉 | x ≤ m + 1} due to the locking sequence
property of γ on L).

So assume step 2.1 or 2.2 did succeed. Suppose If statement at step 4 does
not hold. Now M must BGNC2n−2Bcm-identify (BGNC2n−2Ex∗-identify)
the language L = Y

j
i ∪ E ∪

⋃

r∈As
Fr, which is a member of Cn. Suppose

γ is a BGNC2n−2Bcm-locking sequence (BGNC2n−2Ex∗-locking sequence)
for M on L, where the answers provided beyond τ ′ are always # (i.e., yes
whenever the conjecture-subset question is asked). Without loss of generality

21

assume that W
M(γ,τ ′#|γ|−|τ ′|) contains L−Imax(γ), except for maybe m elements

(this clearly holds for BGNC2n−2Bcm-identification; for BGNC2n−2Ex∗-
identification, one can just take an appropriate extension of γ to ensure this).
Let k be such that k > max({x | 〈i, j + 1, x〉 ∈ content(γ)}). Let H be an
increasing text for Z

j,k
i ∪E ∪

⋃

r∈As
Fr. Let G be a text for a subset of E such

that G(0) > 〈i, j +1, k +m+1〉. Then, on text T = σsG(0)H(0)G(1)H(1) . . .,
with T ′ = τ ′#∞, if M never asks a conjecture-subset question beyond γ, then
M does not BGNC2n−2Bcm (BGNC2n−2Ex∗)-identify Z

j,k
i . On the other

hand, if M does ask a question at T [w], T ′[w], where w > |γ| is minimal, then
T [w] qualifies as being σ in step 4.2. (as WM(T [w],T ′[w]) misses out at most m

elements in {〈i, j+1, x〉 | k < x ≤ k+m+1}, due to locking sequence property
of γ on L).

Thus, σn−1, σ
′
n−1 must get defined. Now, on the input (σn−1, σ

′
n−1), M has

already received 2n − 2 negative counterexamples (2 counterexamples each
during the definition of σs+1, for s < n− 1). Let i ∈ N − (An−1 ∪ Sn−1). Now,
M needs to BGNC2n−2Bc∗-identify Fi ∪ E ∪

⋃

r∈An−1
Fr, for every possible

Fi ∈ Li, without receiving any more counterexamples. This is impossible, as
by Proposition 11, no machine can TxtBc∗-identify Xi ∪E ∪

⋃

r∈An−1
Fr, and

U
j
i ∪ E ∪

⋃

r∈An−1
Fr, for all j.

Now we show that the bound 2n − 1 on the number of negative answers is
tight for Bc and Ex∗ types of learnability when ResBNC-learners try to
simulate BNCn-learners. In fact, we show this in the strongest possible way:
there are BNCnEx-learners that cannot be simulated by ResBNC2n−2Bcm

or ResBNC2n−2Ex∗-learners (our next theorem does it just for Bc rather
than for Bcm; the case of Bcm is addressed in Theorem 26).

Theorem 25 BNCnEx − (ResBNC2n−2Bc ∪ ResBNC2n−2Ex∗) 6= ∅.

Proof. We assume without loss of generality that pairing function is in-
creasing in all its arguments. Recall that 〈x, y, z〉 = 〈x, 〈y, z〉〉. Thus, CYLj =
{〈j, x, y〉 | x, y ∈ N}, and 〈·, ·, ·〉 is increasing in all its arguments.

Consider L defined as follows.

For each L ∈ L, there exists a set S, card(S) ≤ n, such that the following
conditions hold.

(1) L ⊆
⋃

j∈S CYLj.

(2) L∩CYLj ∩{〈j, 0, x〉 | x ∈ N} contains exactly one element for each j ∈ S.
Let this element be 〈j, 0, 〈pj , qj〉〉.

(3) For each j ∈ S

22

(3.1) Wpj
is a grammar for L ∩ CYLj or

(3.2) Wpj
6⊆ L and Wpj

−L consists only of elements of form 〈j, 1, 2x〉 or only
of elements of form 〈j, 1, 2x + 1〉. Furthermore at least one such element is
smaller than max(L). If this element is of form 〈j, 1, 2z〉, then Wqj

= L∩CYLj.
Otherwise, L ∩ CYLj is finite.

Intuitively, L may be considered as being divided into upto n parts, each part
being subset of a cylinder, where each part satisfies the property as given in
(2) and (3).

Above class of languages can be seen to be in BNCnEx as follows. On input
σ, for each j such that content(σ) contains an element of CYLj, find pj and
qj as defined in condition 2 above (if σ does not contain any element of form
〈j, 0, 〈pj , qj〉〉, then grammar for ∅ is output on σ). Then for each of these j,
learner computes a grammar for:

(a) Wpj
(if it has not received any counterexample from CYLj),

(b) Wqj
(if the negative counterexample from CYLj is of form 〈j, 1, 2z〉), and

(c) content(T) ∩ CYLj, otherwise.

Then, the learner outputs a grammar for the union of the languages enumer-
ated by the grammars computed for each j above. It is easy to verify that
the above learner gets at most one counterexample from each CYLj such that
CYLj intersects with the input language, and thus BNCnEx-identifies L.

Let Im = {x | x ≤ m}. Suppose by way of contradiction that M
ResBNC2n−2Bc (ResBNC2n−2Ex∗)-identifies L.

In the construction below in the definition of τi, we will give the exact coun-
terexample to M. This is for ease of presentation (and only gives extra power
to M). (However, while exploring the different possibilities, for τi+1, we will
not give the exact value of negative counterexample; these counterexamples
only get finalized when τi+1 actually gets defined.)

Initially let τ0 = τ ′
0 = Λ. We will aim to inductively define τi+1, τ

′
i+1 for i = 0 to

i = n− 2 below. Intuitively, τ ′
i denotes the negative counterexamples received

by M on conjectures made on input τi.

τi, τ
′
i (if defined) will satisfy the following properties.

(A) |τi| = |τ ′
i | and τi ⊆ τi+1 and τ ′

i ⊆ τ ′
i+1 (if defined).

(B) content(τi) ∩ content(τ ′
i) = ∅.

(C) τ ′
i contains at least 2i no answers.

23

(D) Let Si = {j | (content(τi) ∪ content(τ ′
i)) ∩ CYLj 6= ∅}. Then answers re-

ceived by M (as given by τ ′
i) are consistent with any language L such

that content(τi) ⊆ L ⊆ content(τi) ∪
⋃

j 6∈Si
CYLj. (Thus, for each σ ⊆ τi,

either M receives a counterexample from Imax(content(σ)) − content(τi) or
WM(σ,τ ′

i
[|σ|]) does not contain any element from Imax(content(σ))−content(τi)).

(E) When defined, content(τi+1)−content(τi) is a subset of some CYLj and forms
L ∩ CYLj for the diagonalizing language L (and thus this part satisfies
(2) (giving pj, qj) and ((3.1) or (3.2)) above (in fact it satisfies (3.2))).

For i ≤ n− 2, we will inductively define τi+1 (and τ ′
i+1), non-effectively, based

on a case analysis below.

So suppose τi has been defined. Pick a j 6∈ Si such that 〈j, 0, 0〉 >

max(content(τi)). By implicit use of Kleene Recursion Theorem [Rog67] choose
a pj, qj such that Wpj

,Wqj
can be defined as follows.

Definition of Wpj
,Wqj

1. Enumerate 〈j, 0, 〈pj , qj〉〉 into Wpj
.

Dovetail steps 2 and 3, until step 2 exits. Here we assume that each indi-
vidual iteration in for loop of step 2 (the portion between ‘Atomic and
End Atomic’) is atomic, and executed at one go without intermediate
execution of step 3 (note that this is fine, as each iteration of the for
loop is finite).

2. For t = 1 to ∞ Do:
Atomic:

If there exists a σ ⊇ τi, such that
(a) max(content(σ)) ≤ t,
(b) |σ| ≤ t,
(c) content(σ) ⊆ (content(τi)∪Wpj

enumerated upto now), and
(d) W

M(σ,τ ′
i
#|σ|−|τi|) enumerates, within i steps, an element in

Imax(content(σ)) − (content(τi)∪Wpj
enumerated upto now).

Then pick least such σ, stop dovetailing step 3 and proceed to step
2.1

End Atomic
End For

2.1. Enumerate {〈j, 1, 2x + 1〉 | x ∈ N} − Imax(content(σ)) into Wpj
and exit the

construction.
3. Let W s

pj
and W s

qj
denote Wpj

and Wqj
enumerated before stage s.

We will also (try to) define σs, αs, γs, zs, rs, ys in each of the stages below.
Invariants (when the corresponding values are defined):

(F) content(τi) ∪ W s
pj
⊆ content(σs) ⊆ content(τi) ∪ Wpj

.
(G) τi ⊆ σs ⊆ αs ⊆ σs+1.
(H) αs ⊆ γs.
(I) ys is always even, and rs ∈ {ys + 1, rs = ys + 3}.

24

(J) Wpj
will not contain any of zs’s, except maybe zt for the last

stage t which is executed (see step 3.3).
(K) W

M(αs,τ ′
i
#|αs|−|τi|) enumerates 〈j, 1, ys〉, which is in

Imax(content(αs)) − content(αs).
(L) max(content(αs[|αs| − 1])) < 〈j, 1, ys〉 < 〈j, 1, rs〉 <

max(content(αs)) and 〈j, 1, rs〉 belongs to W s+1
pj

.
(M) 〈j, 1, rs〉 and 〈j, 1, ys〉 are not in content(γs).
(N) W

M(γs,τ ′
i
#|αs|−|τi|‘no′#|γs|−|αs|−1) enumerates zs ∈ Imax(γs) −

content(γs).
Begin Stage s

3.1 If s = 0, then let σ0 be an extension of τi such that content(σ0) =
content(τi) ∪ W 0

pj
. Otherwise, let σs be proper extension of αs−1

such that content(σs) = W s
pj
∪ content(αs−1).

Let xs = 1 + max({x | 〈j, 1, x〉 ∈ W s
pj

∪ W s
qj
} ∪ {zt | t < s} ∪

content(σs)).
(* Intuitively, xs is large enough so that the construction below does

not interfere with earlier enumerations. *)
Enumerate more and more of 〈j, 1, 2x〉 such that 2x > xs into Wpj

,
until a αs ⊇ σs, and an even ys > xs are found such that:

(* Note that 2x > xs ensures that 〈j, 1, 2x〉 is not of form zt for any
t < s. *)

(i) content(αs) ⊆ content(τi) ∪ Wpj
enumerated upto now;

(ii) 〈j, 1, ys〉 ∈ W
M(αs,τ ′

i
#

|αs|−|τ ′
i
|
)
− content(αs);

(iii) 〈j, 1, ys〉 > max(content(αs[k])), where k = |αs| − 1;
(iv) max(content(αs)) ≥ 〈j, 1, ys + 4〉.

If and when such αs, ys are found, proceed to step 3.2.
3.2. Enumerate Wpj

enumerated until now except for 〈j, 1, ys〉 into Wqj
.

Enumerate more and more of {〈j, 1, 2x〉 | 2x 6= ys} into Wqj
, until a

γs ⊃ αs and zs ∈ N are found such that:
(i) content(γs) ⊆ content(τi) ∪ Wqj

(enumerated until then)
(ii) zs ∈ W

M(γs,τ ′
i
#|αs|−|τi|‘no′#|γs|−|αs|−1) ∩ ((Imax(content(γs)) −

(content(γs)∪Imax(content(αs))∪Wpj
enumerated upto now))∪

{〈j, 1, ys〉}).
(* ‘no’ above is the no answer (without explicitly stating the

value of counterexample). *)
(* Note that by considering zs not to come from

Imax(content(αs)) (except for 〈j, 1, ys〉), we have made sure
that the answers to conjectures between τi (inclusive) and
αs (exclusive) are all #, as long as step 2 does not succeed.
Furthermore we also ensured that Wpj

would not contain
zs, except for the case when zs = 〈j, 1, ys〉. *).

If and when such γs and zs are found proceed to step 3.3.
3.3 If zs = 〈j, 1, ys〉, then stop enumerating Wqj

, and wait until step 2
succeeds.

25

Else enumerate 〈j, 1, rs〉 into Wpj
, where rs = ys + 1 or rs = ys + 3,

and 〈j, 1, rs〉 6= zs, and proceed to step 3.4.
3.4 If there exists a t ≤ s, W

M(αt,τ
′
i
#|αt|−|τi|) enumerates 〈j, 1, rt〉 within

s steps, then wait until step 2 succeeds.
Otherwise proceed to stage s + 1.

End stage s

We now define τi+1, τ
′
i+1 based on a case analysis.

Case 1: Step 2 succeeds in exiting.

In this case let σ be as found in step 2 above.

Let σ′ be an extension of τ ′
i defined as follows. For |τi| ≤ m ≤ |σ|, define

σ′(m) =















#, if WM(σ[m],σ′[m]) ∩ Imax(content(σ[m])) ⊆ content(τi) ∪ Wpj
;

w, otherwise, where w is the least element in

(WM(σ[m],σ′[m]) ∩ Imax(content(σ[m]))) − (content(τi) ∪ Wpj
).

Note that the above answers/counterexamples (as given by σ ′ on input σ#) are
consistent with any language L such that content(τi)∪(Wpj

∩Imax(content(σ))) ⊆
L ⊆ content(τi)∪Wpj

. Furthermore, on some γ such that τi ⊂ γ ⊆ σ, M does
receive a no answer (as it will do so on σ, if not before).

Now, let τi+1 = α · 〈j, 1, 2y + 1〉, where α is the smallest extension of σ# such
that for some k, |σ| + 1 ≤ k ≤ |α|, (i) content(τi) ∪ (Wpj

∩ Imax(content(σ))) ∪
(Wpj

− {〈j, 1, 2x + 1〉 | x ∈ N}) ⊆ content(α) ⊆ content(τi) ∪ Wpj
, and (ii)

W
M(α[k],σ′#k−|σ′|) contains an element in Imax(content(α[k])) − content(α), and (iii)

〈j, 1, 2y + 1〉 6∈ Imax(content(α)) is a large number such that Wpj
− Imax(content(α))

contains an element smaller than 〈j, 1, 2y + 1〉 (this is to ensure that Wpj

indeed satisfies 3.2, and has an element of form 〈j, 1, 2x + 1〉 which is smaller
than maximum element in the diagonalizing language).

Note that there exists such a α (satisfying (i) and (ii)). To see this, suppose
otherwise. Let γ ⊇ σ# be a ResBNC2n−2Bc (ResBNC2n−2Ex∗)-locking se-
quence for M on content(τi)∪Wpj

, where the counterexample/answers beyond
σ′ are always # (note that if α, as claimed, does not exist, then there must ex-
ist such a locking sequence γ, as all the answers beyond σ# are always ‘yes’).
Without loss of generality assume that content(γ) ⊇ content(τi) ∪ (Wpj

∩
Imax(content(σ)))∪ (Wpj

−{〈j, 1, 2x + 1〉 | x ∈ N}). Let w > max(content(γ)) be
such that 〈j, 1, 2w +3〉 ∈ Wpj

and W
M(γ,σ′#|γ|−|σ′|) contains 〈j, 1, 2w +1〉. Note

that there exists such a w as γ is a locking sequence for M on content(τi)∪Wpj
.

Now taking α = γ · 〈j, 1, 2w + 3〉 satisfies (i) and (ii) as 〈j, 1, 2w + 1〉 6∈
content(α), but 〈j, 1, 2w + 1〉 ∈ W

M(α,σ′#|α|−|σ′|) (as γ was ResBNCnBc
(ResBNCnEx∗)-locking sequence for M on content(τi) ∪ Wpj

).

26

So let α and τi+1 be as claimed.

Define τ ′
i+1 as an extension of σ′ such that for |σ′| ≤ m < |τi+1|,

τ ′
i+1(m) =















#, if WM(τi+1[m],τ ′
i+1

[m]) ∩ Imax(content(τi+1[m])) ⊆ content(τi+1);

w, otherwise, where w is the least element in

WM(τi+1[m],τ ′
i+1

[m]) ∩ Imax(content(τi+1[m])) − content(τi+1);

It is easy to verify that invariants (A), (B) are maintained. Also invariant (C)
is maintained as M would receive at least two counterexamples for conjectures
between τi (inclusive) and τi+1 (exclusive) for the language content(τi+1) (one
at σ or before, and one between σ# and α, due to property (ii) in the definition
of α). (D) follows easily from definition of τ ′

i+1, and (E) holds as (Wpj
−

{〈j, 1, 2x+1〉 | x ∈ N}) ⊆ content(τi+1), thus Wpj
−content(τi+1) ⊆ {〈j, 1, 2x+

1〉 | x ∈ N} and condition 3.2 is satisfied (note that Wpj
is infinite).

Case 2: Not Case 1, and there exist infinitely many stages in step 3.

Let L = content(τi) ∪ Wpj
. Now, Wpj

contains all elements of form 〈j, 1, rs〉.
However, for all t, W

M(αt,τ
′
i
#|αt|−|τi|) does not contain 〈j, 1, rt〉 (otherwise, at

some stage step 3.4 would have succeeded in finding such a t). Note here
that

⋃

s αs =
⋃

s σs is a a text for L, and τ ′
i#

∞ is a valid sequence of an-
swers/counterexamples to M on input

⋃

s σs as step 2 did not succeed. Thus,
M does not ResBNC2n−2Bc (ResBNC2n−2Ex∗)-identify L ∈ L.

Case 3: Not Case 1, and Stage s starts but does not end.

Now consider the execution in stage s. We first claim that step 3.1 succeeds
in finding αs as required. To see this, suppose otherwise. Let γ ⊇ σs be a
ResBNC2n−2Bc (ResBNC2n−2Ex∗)-locking sequence for M on content(τi)∪
Wpj

, where the counterexample/answers beyond τ ′
i are always # (note that

as step 2 did not succeed, there must exist such γ, as all the answers be-
yond τi are ‘yes’ whenever conjecture-subset questions are asked). Here with-
out loss of generality we assume that W

M(γ,τ ′
i
#|γ|−|τi|) ⊇ Wpj

− Imax(content(γ))

(for ResBNC2n−2Bc-learnability this clearly holds; for ResBNC2n−2Ex∗-
learnability we could just replace γ by some extension (contained in Wpj

∪
content(τi)) such that this property is satisfied). Let m be an even number
which is bigger than xs +max(content(γ)). Then γ · 〈j, 1,m+4〉 would qualify
for being αs, as 〈j, 1,m〉 > max(content(γ)) and γ had the locking sequence
property as mentioned above (and thus, W

M(γ·〈j,1,m+4〉,τ ′
i
#|γ|−|τi|+1) contained

〈j, 1,m〉) allowing one to take ys = m in step 3.1.

In a similar way one can argue that step 3.3 also is reached. (Here we will need
to use Wqj

instead of Wpj
and use αs instead of σs, and use τ ′

i#
|αs|−|τi|‘no′

27

instead of τ ′
i in the previous argument about reaching step 3.2; rest of the

argument is essentially the same).

So assume step 3.3 is reached and consider the following subcases.

SubCase 3.1: zs 6= 〈j, 1, ys〉.

Thus, step 3.4 must have succeeded in finding a t ≤ s, such that
W

M(αt,τ
′
i
#|αt|−|τi|) enumerates 〈j, 1, rt〉.

Fix such a t.

Let X = (content(γt) ∪ Wpj
) − {〈j, 1, rt〉}. Note that X does not contain zt.

Let τi+1 = α#, where α is an extension of γt such that content(α) = X.

Define τ ′
i+1 to be extension of τ ′

i#
|αt|−|τi|〈j, 1, rt〉 as follows. For |αt| < m <

|τi+1|

τ ′
i+1(m) =















#, if WM(τi+1[m],τ ′
i+1

[m]) ∩ Imax(content(τi+1[m])) ⊆ content(τi+1);

w, otherwise, where w is the least element in

WM(τi+1[m],τ ′
i+1

[m]) ∩ Imax(content(τi+1[m])) − content(τi+1);

Note here that answers as given by τ ′
i+1 are correct on prefixes of αt as step 2

did not succeed and max(content(αt[|αt| − 1])) < 〈j, 1, ys〉 < 〈j, 1, rs〉.

It is easy to verify that invariants (A), (B) are maintained. Also invariant (C)
is maintained as M would receive at least two counterexamples between τi

(inclusive) and τi+1 (exclusive) for the language content(τi+1) (one at αt and
one at γt or before). (D) follows easily from definition of τ ′

i+1, and (E) holds as
Wpj

−content(τi+1) contains exactly 〈j, 1, rt〉. Thus, condition 3.2 in definition
of L is satisfied.

SubCase 3.2: zs = 〈j, 1, ys〉.

In this case let X = content(τi)∪Wqj
. Let τi+1 = α#, where α is an extension

of γs such that content(α) = X.

Define τ ′
i+1 to be extension of τ ′

i#
|αs|−|τi|〈j, 1, ys〉 as follows. For |αs| < m <

|τi+1|

τ ′
i+1(m) =















#, if WM(τi+1[m],τ ′
i+1

[m]) ∩ Imax(content(τi+1[m])) ⊆ content(τi+1);

w, otherwise, where w is the least element in

WM(τi+1[m],τ ′
i+1

[m]) ∩ Imax(content(τi+1[m])) − content(τi+1);

28

Note here that answers as given by τ ′
i+1 are correct on prefixes of αs as step 2

did not succeed, and max(content(αs[|αs| − 1])) < 〈j, 1, ys〉.

It is easy to verify that invariants (A), (B) are maintained. Also invariant (C)
is maintained as M would receive at least two counterexamples between τi

(inclusive) and τi+1 (exclusive) for the language content(τi+1) (one at αs and
one at γs or before). (D) follows easily from definition of τ ′

i+1, and (E) holds
as Wpj

− content(τi+1) has exactly the element 〈j, 1, ys〉, and condition 3.2 is
satisfied.

Above cases complete the construction of τi+1.

Now once τn−1 has been defined, then we have that 2n − 2 counterexamples
have already been provided to M based on τ ′

n−1. Now, choose j 6∈ Sn−1. Let
pj, qj be such that Wpj

= {〈j, 0, 〈pj , qj〉〉} ∪ {〈j, 1, 2x + 1〉 | x ∈ N}.

Now M needs to TxtBc∗-identify content(τi) ∪ Wpj
as well as content(τi) ∪

{〈j, 1, 2x + 1〉 | x ≤ w + 1, x 6= w}, for all possible w, from any text ex-
tending τn−1 without receiving any further counterexamples beyond τn−1. An
impossible task by Proposition 11.

This proves the theorem.

One can extend the above proof to show that BNCnEx−ResBGNC2n−2Bc 6=
∅. The main problem to address is that in the search for αs and γs, the learner
may not be asking conjecture-subset questions, but still converge to a grammar
for content(τi)∪Wpj

and content(τi)∪Wqj
, in steps 3.1 and 3.2. To address this

do the last step (i.e., the set Wpj
used after τn−1 is defined), first. That is, ini-

tially we (temporarily) assume that Wpsp
= {〈0, 0, 〈psp, qsp〉〉}∪{〈0, 1, 2x+1〉 |

x ∈ N} is already a subset of the diagonalizing language. Correspondingly, we
will look for counterexamples only outside Wpsp

. Furthermore, in step 3.1 we
search for αs such that (in addition to (i), (ii) and (iv) of step 3.1, where (i)
now is updated to include allow αs to contain members of Wpsp

), there exists
an ks such that 〈j, 1, ys〉 > max(content(αs[ks])), and M(αs[k], τ ′

i#
k−|τ ′

i
|) asks

a conjecture-subset question for k = |αs|, but does not ask a conjecture-subset
question for ks < k < |αs|. This is just to ensure similar properties as before
when the first conjecture-subset question is asked by M beyond αs[ks]. Update
in step 3.2 is simpler as we just take care of Wpsp

as mentioned above.

Analysis remains same except that

— in the argument in case 1 for claiming that α exists, one now needs to
consider the least extension of γ · 〈j, 1, 2w +3〉 (containing elements only from
content(γ) ∪ {〈j, 1, 2w + 3〉} ∪ Wpsp

) on which a question is asked.

29

— in case 3, where we argue that step 3.3. is reached needs to be modified.
We again consider the locking sequence γ for content(τi) ∪ Wpj

∪ Wpsp
, and

argue as follows. Let X = Wpj
∪content(τi)∪(Wpsp

∩Imax(content(γ)))∪{〈0, 1, 2∗
max(content(γ)) + 3〉}, and H be an increasing text for X. Then, either no
conjecture-subset question is asked by M beyond γ for the text γ · 〈j, 1,m +
4〉 ·H(0) · 〈j, 1,m+4+6〉 ·H(1) · 〈j, 1,m+4+2∗6〉H(2) · · · , (in which case the
learner does not identify X which is in L) or the first time beyond γ when a
conjecture-subset question is asked, also gives us αs fulfilling the requirements
as in step 3.1. Similar (though simpler) argument works for the search of γs.
We omit the details.

One can modify the above proof to show the following.

Theorem 26 BNCnEx − ResBNC2n−2Bcm 6= ∅.

Above theorem can be proved by considering m+1 elements 〈j, 1, rk
s 〉, k ≤ m,

instead of just 〈j, 1, rs〉 as in the Proof of Theorem 25 (note that in 3.1 (iv),
one would correspondingly need αs(|αs|) to be larger than 〈j, 1, ys + 2m + 2〉,
so that we are able to use appropriate m values at step 3.3 Else clause.) We
omit the details.

Interestingly, if we consider behaviorally correct learners that are allowed to
make any finite number of errors in almost all correct conjectures, then n short
(even least) counterexamples can be always substituted by just n ‘no’ answers.
(For the model NC, the lower bound 2n − 1 for the simulation by Res-type
learners still holds even for Bc∗-learnability, as shown in [JK05b]).

Theorem 27 For all n ∈ N , LBGNCnBc∗ ⊆ ResBNCnBc∗.

Proof. First note that one can simulate a LBGNCnBc∗ learner M by a
LBNCnBc∗ learner M′ as follows. If M(σ, σ′) does not ask a conjecture-subset
question, then M′(σ, σ′) is a grammar for WM(σ,σ′)−{x | x ≤ max(content(σ))};
otherwise M′(σ, σ′) = M(σ, σ′). It is easy to verify that on any input text T ,
M′ gets exactly the same counterexamples as M does, and all conjectures of
M′ are finite variants of corresponding conjectures of M. Thus, any language
LBGNCnBc∗-identified by M is LBNCnBc∗-identified by M′.

Hence, it suffices to show LBNCnBc∗ ⊆ ResBNCnBc∗.

Suppose M LBNCnBc∗-identifies L. Define M′ as follows. Suppose T is the
input text.

The idea is for M′ to output max(content(T [m])) + 1 variations of grammar
output by M on T [m]. These grammars would be for the languages: WM(T [m])−
{x | x 6= i and x ≤ max(content(T [m′]))}, where T [m′] is the input seen by
M′ when generating this i-th variant (where 0 ≤ i ≤ max(content(T [m]))).

30

These grammars would thus allow M′ to determine the least counterexample,
if any, that M’s output on T [m] would have generated.

Formally conjectures of M′ will be of form P (j,m, i, s), where WP (j,m,i,s) =
Wj − {x | x 6= i and x ≤ s}.

We assume that M outputs ∅ until it sees at least one element in the input.
This is to avoid having any counterexamples until input contains at least one
element (which in turn makes the notation easier for the following proof).

On input T [0], conjecture of M′ is P (M(Λ, Λ), 0, 0, 0).

Suppose M′(T [m], T ′[m]) = P (M(T [r], T ′′[r]), r, i, s). Then we define
M′(T [m + 1], T ′[m + 1]) as follows. The invariants we will have
is: If M′(T [m], T ′[m]) = P (M(T [r], T ′′[r]), r, i, s), then, (i) s =
max(content(T [m])), (ii) r ≤ m, (iii) i ≤ max(content(T [r])), (iv) T ′′[r] is
the sequence of least counterexamples for M on input T [r] (for the language
content(T)), and (v) WM(T [r],T ′′[r]) − L does not contain any element < i.
Invariants are clearly satisfied for m = 0.

Now M′(T [m + 1], T ′[m + 1]) is defined as follows.

If T ′(m) is ‘no’ answer, then let T ′′(r) = i, and let M′(T [m + 1], T ′[m + 1]) =
P (M(T [r + 1], T ′′[r + 1]), r + 1, 0, max(content(T [m + 1]))).

Else if i = max(content(T [r])), then let T ′′(r) = #, and let M′(T [m+1], T ′[m+
1]) = P (M(T [r + 1], T ′′[r + 1]), r + 1, 0, max(content(T [m + 1]))).

Else, M′(T [m+1], T ′[m+1]) = P (M(T [r], T ′′[r]), r, i+1, max(content(T [m+
1]))).

Now it is easy to verify that invariant is maintained. It also follows that T ′′

constructed as above is correct. Moreover, each restricted ‘no’ answer in T ′

corresponds to a least counterexample in T ′′. Thus, M′ gets exactly as many
counterexamples as M does, and M′ conjectures are ∗-variants of the conjec-
tures of M (except that each conjecture of M is repeated finitely many times
by M′, with finite variations). It follows that M′ ResBNCnBc∗-identifies
L.

Corollary 28 LBNCnBc∗ = BNCnBc∗ = ResBNCnBc∗ = LBGNCnBc∗ =
BGNCnBc∗ = ResBGNCnBc∗.

Our next result in this section shows how BNCBc-learners using just answers
‘yes’ or ‘no’ can simulate LBNCEx∗-learners getting unbounded number of
negative answers/counterexamples.

31

Proposition 29 LBNCEx∗ ⊆ ResBNCBc.

Proof. As LBNCEx∗ = BNCEx∗ (see [JK05a]) and ResBNCBc =
BNCBc (proof of ResNCBc = NCBc in [JK05a], shows this also) it suffices
to show that BNCEx∗ ⊆ BNCBc.

Suppose M BNCEx∗-identifies L. Define M′ as follows. M′ on input σ sim-
ulates M. (We will argue below that counterexamples for any conjectures of
M are available to M′ too, so the counterexample text for M can be created
using the counterexample text for M′).

If M on input σ (with the appropriate counterexamples) outputs a grammar
p, then M′ outputs grammar H(p, σ) defined as follows. Let Sp denote the set
of counterexamples M′ has received for the conjectures H(p, ·) that M′ has
made upto now (note that p might have been output by M on some proper
prefixes of σ too).

Let Im = {x | x ≤ m}.

WH(p,σ) = content(σ)∪((Wp∩Imax(content(σ)))−Sp)∪(Wp−Imax(content(σ)))∩Xp,|σ|,

where Xp,m is N , if card(Wp) ≥ m, and ∅ otherwise. Note that if M would have
received a counterexample to its conjecture p, then either Sp is non-empty, or
M′ would also have received a counterexample to its conjecture H(p, σ). Thus
counterexample text for M can be constructed by M′.

We now argue that M′ would BNCBc-identify L. Let T be the input text for
L ∈ L. Suppose T ′ is the counterexample text prepared for M by M′ in the
above simulation. Then, clearly M(T, T ′) would converge to some grammar p

which is a finite variant of L. Now if L is finite, then Wp is also finite. Thus,
for all but finitely many initial segments of T , M′ would output a grammar
for WH(p,σ) = content(σ) ∪ ((Wp ∩ Imax(content(σ))) − Sp) (as Xp,m is empty for
all but finitely many m). Thus, all the errors of omission of Wp are patched,
as well as any errors of commission are patched (errors of commission which
are bigger than max(content(σ)) are clearly not output; errors of commission
which are smaller than max(content(σ)) eventually go into Sp and are thus
patched too).

If L is infinite, then all the errors of omission of Wp are patched, as well as
any errors of commission are patched (all errors of commission in this case
eventually go into Sp).

It follows that M′ BNCBc-identifies L.

Proposition 30 (Based on [CL82]) Suppose X is an infinite language. Then
L = {L ⊆ X | card(X − L) ≤ 2n + 1} 6∈ TxtBcn.

32

Theorem 31 For all m,n ∈ N ,

(a) TxtEx2n+1 − LBGNCmBcn 6= ∅.

(b) ResBNCmEx2n ⊆ ResBNCmBcn.

(c) BNCmEx2n ⊆ BNCmBcn.

(d) LBNCmEx2n ⊆ LBNCmBcn.

(e) ResBGNCmEx2n ⊆ ResBGNCBcn.

(f) BGNCmEx2n ⊆ BGNCmBcn.

(g) LBGNCmEx2n ⊆ LBGNCmBcn.

Proof. (a) Let L = {L | m ≤ card(N − L) ≤ m + 2n + 1}. It is easy to
verify that L ∈ TxtEx2n+1 (one eventually outputs a grammar for N − S,
where S is the set of least m elements missing from the input). Suppose
by way of contradiction that M LBGNCmBcn-identifies L. Define σi, σ

′
i,

i ≤ m, by induction on i, as follows. σ0 = σ′
0 = Λ. By induction we will

have that answers given by σ′
i on σi are consistent with any L such that

content(σ) ⊆ L ⊆ N − content(σ′
i). Furthermore, content(σ′

i) is at least i.
Now let σi+1 = σ#, where σ is the smallest extension, if any, of σi such
that M(σ, σ′

i#
|σ|−|σ′

i
|) asks a conjecture-subset question and W

M(σ,σ′
i
#

|σ|−|σ′
i
|
)
−

content(σ) contains an element in Imax(content(σ)). If σi+1 gets defined, then
σ′

i+1 = σ′
i#

|σi+1|−|σi|−1z, where z = min(W
M(σ,σ′

i
#

|σ|−|σ′
i
|
)
− content(σ)). It is

easy to verify that invariants are satisfied. Now, let r ≤ m be maximum such
that σr is defined. Then for any extension σ of σr, such that content(σ) ⊆
N − content(σ′

r), M gets ‘#’ answers (as either it does not ask conjecture-
subset question or W

M(σ,σ′
r#|σ|−|σ′

r|)
− content(σ) does not contain an element

in Imax(content(σ))). Thus, now M needs to TxtBcn-identify all languages in L
which contain content(σr) but do not contain content(σ′

r), an impossible task
by Proposition 30.

(b–g) This proof is based on [CL82] proof of TxtEx2n ⊆ TxtBcn (see
[JORS99] for a proof). We give the details for completeness. Suppose M
ResBNCEx2n-identifies L. Define M′ as follows.

Let P (e, A,B) be such that WP (e,A,B) = A∪(We−S), where S is the set of least
n elements in We−B (if We−B does not contain at least n elements, then we
just take S to be We −B). By induction on length of input, it will be easy to
verify that M′ receives exactly the same counterexamples at exactly the same
inputs as M does (for GNC models, M′ asks questions on the same inputs
as M does). Now on input (σ, σ′), if M′ has already received m counterexam-
ples/‘no’ answers, then M′ outputs P (M(σ, σ′), content(σ), content(σ)). Oth-

33

erwise, M′ outputs P (M(σ, σ′), content(σ), Imax(content(σ))).

It is easy to verify that M′ receives exactly the same counterexample sequence
as M (as before getting m counterexamples, the grammar output by M′ enu-
merates the same elements in Imax(content(σ)) − content(σ), as enumerated by
the grammar output by M). Now consider any text T for a language L ∈ L,
with T ′ being corresponding sequence of counterexamples. Suppose M(T, T ′)
converges to e. Let S ′ = We − L. Suppose t is such that

(i) M(T [t], T ′[t]) = e, for all t′ ≥ t,

(ii) L − We ⊆ content(T [t]),

(iii) T ′(x) = #, for all x ≥ t, and

(iv) for all x ≤ max(S ′), if x ∈ L, then x ∈ content(T [t]).

Now, consider the following cases.

Case 1: We − L contains at least n elements.

In this case, for all t′ ≥ t, S as computed by P (M(T [t′], T ′[t′]), content(T [t′]), B),
(where B = content(σ) or Imax(content(σ)), based on whether M′ gets m or
smaller number of counterexamples), consists of least n elements in S ′. Furthe-
more, all elements in L−We ⊆ content(T [t′]). Thus, card(WM(T [t′],T ′[t′]∆L) =
card(S ′) − n ≤ n.

Case 2: We − L contains < n elements.

In this case, for all t′ ≥ t, S as computed by P (M(T [t′], T ′[t′]), content(T [t′]), B),
(where B = content(σ) or Imax(content(σ)), based on whether M′ gets m or
smaller number of counterexamples), is a superset of S ′. Furthemore, all
elements in L − We ⊆ content(T [t′]). Thus, card(WM(T [t′],T ′[t′]∆L) = n −
card(S ′) ≤ n.

In either case, M′ would Bcn-identify the input (in appropriate counterexam-
ple model).

6 Effects of Counterexamples Being Constrained/Not-Constrained
to be Short

In this section we explore how, within the framework of our models, short
counterexamples fair against arbitrary or least counterexamples (this includes
also the cases when just answers ‘no’ are returned instead of counterexamples).

34

First, we use a result from [JK05b] to establish that one answer ‘no’ used by
an NCEx-learner can sometimes do more than unbounded number of least
(short) counterexamples used by Bc∗-learners.

Theorem 32 [JK05b] ResNC1Ex − LBGNCBc∗ 6= ∅.

([JK05a] actually showed ResNC1Ex − LBNCBc∗ 6= ∅, however the above
result follows as for unbounded number of counterexamples, GNC model does
not give any advantage over NC model).

The next result is somewhat surprising. It shows that one short counterex-
ample can sometimes give a learner more than any bounded number of least
counterexamples. The proof features a Ex-learner using just one negative an-
swer that cannot be simulated by an LNCnBc∗-learner for any n.

Theorem 33 ResBNC1Ex − LGNCnBc∗ 6= ∅.

Proof. Assume without loss of generality that 〈·, ·〉 is monotonically increas-
ing in both its arguments. Note that this implies 〈i, 0〉 ≥ i.

Let A
j
k = {〈k, x〉 | x ≤ j}.

Let

L = {L | (∃S | card(S) < ∞)(∃f : S → N)[
1. [k, k′ ∈ S ∧ k < k′] ⇒ [〈k, f(k)〉 < 〈k′, 0〉] ∧

2. [L = CYLmax(S) ∪
⋃

k∈S−max(S) A
f(k)
k or

L = {〈max(S), f(max(S) + 2)〉} ∪
⋃

k∈S A
f(k)
k]

]}.

To see that L ∈ BNC1Ex consider the following learner. On input σ, if
no counterexamples are yet received, then the learner first computes k =
max({j | 〈j, x〉 ∈ content(σ)}). Then it outputs a grammar for L = CYLk ∪
(content(σ) − CYLk). If there is a counterexample (say 〈k, x〉) that has been
received, then the learner outputs a grammar for content(σ). It is easy to
verify that the above learner BNC1Ex-identifies L.

Now suppose by way of contradiction that some M LGNCnBc∗-identifies L.
Let σ0 = σ′

0 = Λ, k0 = 0. Inductively define σi+1, σ′
i+1, f(i), ki+1 (for i < n) as

follows.

Let σ be smallest extension of σi, if any, such that content(σ) ⊆ CYLki
∪

⋃

i′<i A
f(i′)
ki′

and M asks a conjecture-subset question on (σ, σ′
i#

|σ|−|σi|) and

35

W
M(σ,σ′

i
#|σ|−|σi|) contains an element which is not in CYLki

∪
⋃

i′<i A
f(i′)
ki′

or is

larger than max(content(σ)).

If there is such a σ, then let σi+1 = σ#, and σ′
i+1 = σ′

i#
|σ|−|σi|w (where w is

the least element in W
M(σ,σ′

i
#|σ|−|σi|) which is not in CYLki

∪
⋃

i′<i A
f(i′)
ki′

or is

larger than max(content(σ))). Let f(i) = max({y | 〈ki, y〉 ∈ content(σ)}). Let
ki+1 be such that ki+1 > 〈ki, f(i)〉 and no element from CYLki+1

is present in
content(σ′

i+1).

Let m be largest value such that σm, σ′
m are defined above. Now, M has

to TxtBc∗-identify both CYLkm
∪

⋃

i<m A
f(km)
km

and Ar
km

∪ {〈km, r + 2〉} ∪
⋃

i<m A
f(ki)
ki

, for all possible r, without any further counterexamples. An im-
possible task by Proposition 11.

The above is the strongest possible result, as ResNCI contains LBNCI (as
shown in [JK05a]).

We now consider the complexity (mind change) advantages of having only
short counterexamples. For this purpose, we need to modify the definition of
learner slightly, to avoid biasing the number of mind changes. (This modifica-
tion is used only for the rest of the current section).

Definition 34 A learner is a mapping from SEQ to N ∪ {?}.

A learner M TxtExn-identifies L, iff it TxtEx-identifies L, and for all texts
T for L ∈ L, card({m |? 6= M(T [m]) 6= M(T [m + 1])}) is bounded by n.

One can similarly define the mind changes bounds for learners receiving coun-
terexamples.

Our next result demonstrates that there exists a TxtEx-learnable language
(that is, learnable just from positive data — without any subset queries) that
can be learned by a BNC1Ex-learner using just one negative answer and at
most one mind change and cannot be learned by Ex-learners using any number
of arbitrary counterexamples and any bounded number of mind changes.

Theorem 35 There exists a L such that

(a) L ∈ ResBNC1Ex1.

(b) L ∈ TxtEx, and thus in NCEx and GNCEx.

(c) For all m, L 6∈ NCExm.

(d) For all m, L 6∈ GNCExm.

36

Proof. Let Ln = {x | x < n or x = n + 1}.

Let L = {Ln | n ∈ N}.

Consider the following learner. Initially output a grammar for N . If and when
a ‘no’ answer is received, output a grammar for Ln, where n is the only coun-
terexample received. It is easy to verify that above learner ResBNC1Ex1-
identifies L.

It is also easy to verify that L ∈ TxtEx as one could output, in the limit on
text T , a grammar for Ln, for the least n such that n 6∈ content(T).

We now show that L 6∈ NCExm. As the number of counterexamples are not
bounded, it follows that L 6∈ GNCExm.

Suppose by way of contradiction that M NCExm-identifies L. Then consider
the following strategy to construct a diagonalizing language.

We will construct the diagonalizing language in stages. Construction is non-
effective. We will try to define ls and us, and segments σs, σ

′
s (σ′

s is the sequence
of counterexamples), for s ≤ m + 1.

The following invariants will be satisfied.

(A) us − ls = 4m+3−s.

(B) M on proper prefixes of σs has made s different conjectures.

(C) content(σs) ⊆ {x | x < ls}.

(D) None of the conjectures made by M on proper prefixes of σs are for the
language Lr, for ls ≤ r ≤ us.

(E) |σ′
s| = |σs|.

(F) For r < |σs|, σ′
s(r) = #, implies WM(σs[r],σ′

s[r]) ⊆ {x | x < ls}.

(G) For r < |σs|, σ′
s(r) 6= #, implies σ′

s(r) ∈ WM(σs[r],σ′
s[r]), and σ′

s(r) > us +1.

Initially, we let l0 = 0 and u0 = l0 + 4m+3, and σ0 = σ′
0 = Λ. Note that

invariants are satisfied.

Stage s (for s = 0 to s = m)
1. Let T be a text for Lls which extends σs.
2. Let t ≥ |σs|, be the least value, if any, such that M(T [t], T ′[t]) is a conjec-

ture different from any conjecture M(T [w], T ′[w]), for w < |σs|, where

37

T ′(w) =



























σ′
s(w), if w < |σs|;

#, if w ≥ |σs| and M(T [w], T ′[w]) =?;

T ′(r), if w ≥ |σs| and M(T [w], T ′[w]) = M(T [r], T ′[r]),

for some r < |σs|.

(* Note that, in this step, we do not need definition of T ′(w) when
M(T [w], T ′[w]) makes a new conjecture at or beyond σs. For first such
w (which is t found above) T ′(w) will be defined below). *)

If and when such a t is found, proceed to step 3.
3. Suppose j = M(T [t], T ′[t]).

If Wj contains an element z ≥ ls + 3(us−ls)
4

, then
Let ls+1 = ls + us−ls

4
.

Let us+1 = ls + 2(us−ls)
4

.
Let σs+1 = T [t]#.
Let σ′

s+1 = T ′[t]z.
(* Note thus that M(T [t], T ′[t]) is not a correct grammar for Lr,

where ls+1 ≤ r ≤ us+1. *)
Else,

Let ls+1 = ls + 3(us−ls)
4

.
Let us+1 = us.
Let σs+1 = T [t]#.
Let σ′

s+1 = T ′[t]#.
(* Note thus that M(T [t], T ′[t]) is not a correct grammar for Lr,

where ls+1 ≤ r ≤ us+1. *)
End stage s

It is easy to verify that invariants are satisfied. (A) clearly holds by definition
of ls+1 and us+1 in step 3. (B) holds as one extra new conjecture is found at
stage s, before proceeding to stage s+1. (C) holds, as ls+1 ≥ ls+

us−ls
4

> ls+2,
and content(T) as defined in step 1 is a subset of Lls . (D) holds by induction,
and noting that the conjecture at T [t] as found in step 2 of stage s, is made
explicitly wrong by appropriate choice of ls+1 and us+1 in step 4. (E) easily
holds by construction. (F) and (G) hold by the definition of σ′

s+1 at step 3.

Now, if step 2 does not succeed at a stage s ≤ m, then clearly M does
not NCEx-identify Lls . On the other hand if stage m does complete then
M has already made m + 1 different conjectures (and thus at least m mind
changes) on prefixes of σm+1, which are not grammars for Llm+1

. Thus, M
cannot NCExm-identify Llm+1

.

Let X = {x | x > 0}. If we consider the class L = {Ln | n > 0} ∪ {X},
then we can get the above result using class preserving learnability (that is,

38

the learner always uses grammars from the numbering defining the target
class of languages for its conjectures, see [ZL95] for formal definition) for
ResBNC1Ex.

Theorem 36 (a) LBNCExm ⊆ LNCmExm.

(b) LBGNCExm ⊆ LGNCmExm.

Proof. We only show part (a). Part (b) can be done similarly.

Suppose M LBNCExm-identifies L. On input σ, M′ simulates M, providing it
with counterexample z for a grammar p iff z ≤ max(content(σ)) and M′ itself
had earlier received such a counterexample z for grammar p. Then, M′ outputs
the latest conjecture of M, if M′ has not as yet received any counterexample
for this conjecture (otherwise M′ just outputs ?).

It is easy to verify that M′ LNCmExm-identifies L — number of mind changes
is bounded by the number of mind changes of M, and the number of coun-
terexample received is atmost one per conjecture (with none for the final
conjectures). Theorem follows.

7 Comparison of Learning Via Limited Number of Short Coun-
terexamples and Finite Number of Queries

In this section we compare capabilities of BGNC and BNC-learners with
the learners using a finite number of subset, equivalence and superset queries
returning counterexamples of arbitrary or least size or just answers ‘yes’ or
‘no’ (as it was established in [JK05b], bounded number of negative answers to
such queries returning short counterexamples does not add any advantages to
TxtEx or TxtBc-learners, even if a finite number of errors is allowed in the
final correct conjectures).

7.1 Query models versus short negative counterexamples

First, we refer to some facts established in [JK05b].

Theorem 37 [JK05b] For I ∈ {ResSubQ1Ex,ResNC1Ex,ResEquQ1Ex},
I − LBNCBc∗ 6= ∅.

As LBNCBc∗ = LGNCBc∗, we immediately have I − LGNCBc∗ 6= ∅, for
I ∈ {ResSubQ1Ex,ResNC1Ex,ResEquQ1Ex}.

39

For the superset queries, one can only get a slightly weaker result: learners
using just one query of this type and getting answer ‘yes’ or ‘no’ can sometimes
do better that GNCBc-learners making just bounded number of errors in
almost all correct conjectures.

Theorem 38 ResSupQ1Ex − LBGNCnBcm 6= ∅.

Proof. Proof of ResSupQ1Ex−LNCnBcm 6= ∅ (based on cylinderification
of class in ResSupQ1Ex − LNCnBc 6= ∅) in [JK05b] can easily be modified
to give this result.

Also, one superset query can sometimes do better than Bc or Ex∗-learners
using unbounded number of short least counterexamples.

Theorem 39 ResSupQ1Ex − LBNCBc 6= ∅.

Proof. [JK05b] showed ResSupQ1Ex − LNCBc 6= ∅. As LBNCBc ⊆
LNCBc, theorem follows.

As LBNCBc = LBGNCBc, we also have ResSupQ1Ex−LBGNCBc 6= ∅.

Corollary 40 ResSupQ1Ex − LBNCEx∗ 6= ∅.

Note that Theorem 39 cannot be strengthened as Theorem 42 below shows.
(Here also note that LSupQ∗Bc∗ ⊆ TxtBc∗ [JK05b].)

To prove our next result, Theorem 42, we need the following technical lemma.

Lemma 41 Suppose M SupQ∗Bc∗-identifies L, and N ∈ L. Then, there
exists a finite set SN such that for all L ∈ L, SN ⊆ L ⇒ L =∗ N — in
particular, L is infinite.

Proof. Let σ be a SupQ∗Bc∗-locking sequence for M on N (i.e., for any τ

such that σ ⊆ τ , (i) M does not ask any questions beyond σ on τ , and (ii) M
on τ outputs a grammar for finite variant of N .)

Let SN = content(σ) ∪ {x | x is a counterexample provided to some question
of M on a prefix of σ, when learning the language N}. Now let L ⊇ SN be
a member of L. Then, for any text T for L, which extends σ, by hypothesis
about σ, we have that M does not ask any questions beyond σ, and only out-
puts grammars for finite variant of N . As M SupQ∗Bc∗-identifies L, lemma
follows.

Next theorem shows that ResBNCBc1 learners, making just one error in al-
most all correct conjectures and using a finite number of negative short coun-

40

terexamples, can simulate any Bcm-learner using a finite number of superset
queries.

Theorem 42 SupQ∗Bcm ⊆ ResBNCBc1.

Proof. Suppose M SupQ∗Bcm-identifies L. If N ∈ L, then let SN be as
given by Lemma 41. Otherwise let SN = N .

Define M′ as follows. We will define M′ as just outputting a sequence of con-
jectures on input T and receiving answers of yes/no for each of its conjectures
being subset/not subset of input (restricted to maximum element of the input
data). Let (Qq

1, Q
q
2), q ∈ N , be ordering of all pairs of finite sets such that each

pair of finite sets appears infinitely often in the ordering. Intuitively, each pair
is a guess at the set of questions asked by M on input T which are to be
answered as yes/no for the input language.

M′(T)
Let p = 0, q = 0.
Stage s

1. If no ‘no’ answer has yet been received, then
If SN 6⊆ content(T [s]) and content(T [s]) is an initial segment of N ,

then output a grammar for content(T [s]) and go to stage s + 1.
Else output a grammar for N and go to stage s + 1.

Else let z be the least element not present in content(T [s]), and go to step
2.

2. (* Here we know that input language is not N , and it seems that the least
missing data is z. *)

For each j ∈ Q
q
2, let xj be least element such that xj ∈ content(T [s])−Wj,s

(if there is no such xj for some j ∈ Q
q
2, then go to stage s + 1, with

value of q = q + 1, and p unchanged).
Dovetail steps 3 and 4.

3. If it is ever found that z ∈ content(T) or xj ∈ Wj for some j ∈ Q
q
2 or

M(T) (in the simulation at step 4) asks a question beyond T [s] or asks
a question of form ‘is Wj ⊇ L’, for j 6∈ Q

q
1 ∪ Q

q
2, then stop step 4 and

go to stage s + 1, with q = q + 1 and p unchanged.
4. Below let gt denote the conjecture output by M(T [t]), where questions of

form ‘is Wj ⊇ L’ for j ∈ Q
q
1 are given ‘yes’ answers, and questions of

form ‘is Wj ⊇ L’ for j ∈ Q
q
2 are given ‘no’ answers with counterexample

xj. (If M asks a question outside Q
q
1 ∪Q

q
2, then step 3 would eventually

force the construction to go to stage s + 1.)
Go to substage s.
Substage t

4.1 Output p. If Wp as a conjecture of M′ generates an answer ‘no’, then
go to stage s + 1, with p = p + 1, and q unchanged.

41

4.2 Output a grammar for the language A, where:

A =



























content(T [t]), if content(T [t]) 6⊆
⋂

j∈Q
q
1
Wj;

content(T [t]) ∪ {z}, if content(T [t]) ⊆
⋂

j∈Q
q
1
Wj

and card(Wgt
) ≤ t;

content(T [t]) ∪ Wp ∪ {z}, otherwise.

If A is a subset of input language, then go to stage s + 1, with
q = q + 1 and p unchanged.

4.3 Output a grammar for the language B where:

B =



























content(T [t]), if content(T [t]) 6⊆ Wp;

content(T [t]) ∪ {z}, if content(T [t]) ⊆ Wp

card(Wgt
) ≤ t;

content(T [t]) ∪ Wp ∪ {z}, otherwise.

If B is a subset of input language, then go to stage s + 1, with
p = p + 1 and q unchanged.

Otherwise go to substage t + 1.
End substage t.

End Stage s

Now suppose a text T for L ∈ L is given.

If L = N , then clearly M′ will never leave step 1, and for all but finitely many
s output a grammar for N .

If L 6= N , but L ∈ INIT, then also M′ will never leave step 1, and for all but
finitely many s, output a grammar for L.

Otherwise, M will eventually get a counterexample in step 1 (as otherwise,
M′ will almost always output a grammar for N in step 1, and the input is
neither N nor in INIT — eventually leading to a counterexample).

Now, let z be minimal element which does not belong to L. Now note that for
all stages s such that minimal element missing in T [s] is not z, M′ will change
stage either due to step 1, or due to step 3. Thus, eventually the value of z as
computed in step 2 will indeed be minimal element missing from content(T),
and this value will not change thereafter.

We first claim that there are finitely many stages. First note that, after z

in the construction achieves its final value, if p achieves a value such that
Wp = L, it will never change its value (as the conjecture at step 4.1 will
not contain a counterexample, and conjecture of B at step 4.3 will produce a

42

counterexample). Thus value of p eventually stabilizes. Furthermore, at every
stage after first counterexample is received in step 1, a change of stage is
accompanied by increment in value of either p or q. Thus, we have that either
there are finitely many stages or there exists a stage s such that at stage s

value of q is such that (i) Q
q
1, Q

q
2 are respectively the set of j such that M

asks a question of form ‘is Wj ⊇ L’ on T and gets yes/no answers where the
counterexamples provided are the least ones, and (ii) M does not ask any
questions beyond T [s], and (iii) for each j ∈ Q

q
2, min(L−Wj) ∈ content(T [s]),

and (iv) for each j ∈ Q
q
2, {x | x ∈ L, x < min(L − Wj)} ⊆ Wj,s, and (v)

(∀y < z)[y ∈ content(T [s − 1])] and (∃y > z)[y ∈ content(T [s − 1])], and (vi)
value of p has achieved its final value before stage s, and M′ has received a
counterexample before stage s.

Now we claim that M′ will not go beyond stage s. It has already received
a counterexample, so step 1 would not change the stage. At stage s step 3
would not succeed by hypothesis (i) to (v) above. In step 4.2, in each substage,
counterexample would be provided for the conjecture A (as z or some value
< z). Steps 4.1, 4.3 do not change the stage, as p has stabilized.

Thus, let s be the last stage that is executed. Now since step 3 never succeeds,
we have that M will not ask any more questions beyond T [s], and all the
answers given to M on questions asked on prefixes of T [s] in the simulation at
step 4 are correct (otherwise either step 3 would succeed, or first clause in the
definition of A at step 4.2 would ensure that M does not get a counterexample
in some substage t).

Now if L is finite, then for all but finitely many substages card(Wgt
) ≤ t,

and content(T [t]) = L, and hence M′ would output a conjecture for L ∪ {z}.
On the other hand if L is infinite, then for all but finitely many substages t,
card(Wgt

) > t, and hence M′ would output a conjecture for Wp∪{z}. Here note
that Wp ⊆ L (as step 4.1 did not produce a counterexample at each substage)
and Wp ⊇ L (as at step 4.3, conjecture of B produced a counterexample in
each substage).

It follows that M′ eventually outputs conjectures for L or L ∪ {z}. Thus, M′

BNC1Bc1-identifies L.

In fact above proof showed that
⋃

m∈N SupQ∗Bcm(M) is contained in
BNCBc1(M′). Thus, we also have the following.

Theorem 43 SupQ∗Ex∗ ⊆ ResBNCBc1.

43

7.2 Short negative counterexample versus query models

Conversely, one ‘no’ answer, assuming existence of a short counterexample,
can sometimes do better than any number queries of any type returning least
counterexamples (for the model LSubQ we have two different variants of a
solution to the problem in question).

Theorem 44 [JK05b]

(a) ResBNC1Ex − LSubQnBc∗ 6= ∅.

(b) ResBNC1Bc − LSubQ∗Bc∗ 6= ∅.

(c) ResBNC1Ex − LEquQnBc∗ 6= ∅.

(d) ResBNC1Ex − LSupQ∗Bc∗ 6= ∅.

Proof. [JK05b] showed these diagonalizations for ResNC1 instead of
ResBNC1 above. The proof there also works for ResBNC1I.

(a), (b) above is strongest possible for diagonalization from BNC
model against SubQ model, as ResSubQ∗Exa = NCExa =
LNCExa [JK05b,JK05a] and LBNCExa ⊆ LNCExa [JK05a], and thus,
ResBNCExa ⊆ LBNCExa ⊆ ResSubQ∗Exa. Similarly, (c) above is
strongest as E ∈ LEquQ∗Ex [JK05b].

References

[Ang88] D. Angluin. Queries and concept learning. Machine Learning, 2:319–342,
1988.

[Bār74] J. Bārzdiņš. Two theorems on the limiting synthesis of functions. In
Theory of Algorithms and Programs, vol. 1, pages 82–88. Latvian State
University, 1974. In Russian.

[BB75] L. Blum and M. Blum. Toward a mathematical theory of inductive
inference. Information and Control, 28:125–155, 1975.

[BCJ95] G. Baliga, J. Case, and S. Jain. Language learning with some negative
information. Journal of Computer and System Sciences, 51(5):273–285,
1995.

[CL82] J. Case and C. Lynes. Machine inductive inference and language
identification. In M. Nielsen and E. M. Schmidt, editors, Proceedings of the
9th International Colloquium on Automata, Languages and Programming,

44

volume 140 of Lecture Notes in Computer Science, pages 107–115.
Springer-Verlag, 1982.

[CS83] J. Case and C. Smith. Comparison of identification criteria for machine
inductive inference. Theoretical Computer Science, 25:193–220, 1983.

[Ful90] M. Fulk. Prudence and other conditions on formal language learning.
Information and Computation, 85:1–11, 1990.

[GM98] W. Gasarch and G. Martin. Bounded Queries in Recursion Theory.
Birkhauser, 1998.

[Gol67] E. M. Gold. Language identification in the limit. Information and Control,
10:447–474, 1967.

[JK04] S. Jain and E. Kinber. Learning languages from positive data and negative
counterexamples. In Shai Ben-David, John Case, and Akira Maruoka,
editors, Algorithmic Learning Theory: Fifteenth International Conference
(ALT’ 2004), volume 3244 of Lecture Notes in Artificial Intelligence, pages
54–68. Springer-Verlag, 2004.

[JK05a] S. Jain and E. Kinber. Learning languages from positive data and negative
counterexamples. Journal of Computer and System Sciences, 2005. To
appear.

[JK05b] S. Jain and E. Kinber. Learning languages from positive data and a finite
number of queries. Information and Computation, 2005. To appear.

[JORS99] S. Jain, D. Osherson, J. Royer, and A. Sharma. Systems that Learn: An
Introduction to Learning Theory. MIT Press, Cambridge, Mass., second
edition, 1999.

[LZ04a] S. Lange and S. Zilles. Comparison of query learning and Gold-style
learning in dependence of the hypothesis space. In Shai Ben-David,
John Case, and Akira Maruoka, editors, Algorithmic Learning Theory:
Fifteenth International Conference (ALT’ 2004), volume 3244 of Lecture
Notes in Artificial Intelligence, pages 99–113. Springer-Verlag, 2004.

[LZ04b] S. Lange and S. Zilles. Replacing limit learners with equally powerful
one-shot query learners. In John Shawe-Taylor and Yoram Singer, editors,
Proceedings of the Seventeenth Annual Conference on Learning Theory,
volume 3120 of Lecture Notes in Artificial Intelligence, pages 155–169.
Springer-Verlag, 2004.

[Mot91] T. Motoki. Inductive inference from all positive and some negative data.
Information Processing Letters, 39(4):177–182, 1991.

[OSW86] D. Osherson, M. Stob, and S. Weinstein. Systems that Learn: An
Introduction to Learning Theory for Cognitive and Computer Scientists.
MIT Press, 1986.

[OW82] D. Osherson and S. Weinstein. Criteria of language learning. Information
and Control, 52:123–138, 1982.

45

[Rog67] H. Rogers. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, 1967. Reprinted by MIT Press in 1987.

[ZL95] T. Zeugmann and S. Lange. A guided tour across the boundaries
of learning recursive languages. In K. Jantke and S. Lange, editors,
Algorithmic Learning for Knowledge-Based Systems, volume 961 of
Lecture Notes in Artificial Intelligence, pages 190–258. Springer-Verlag,
1995.

46

	Sacred Heart University
	DigitalCommons@SHU
	11-2005

	On Learning Languages from Positive Data and a Limited Number of Short Counterexamples
	Sanjay Jain
	Efim Kinber
	Recommended Citation

	1:

