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Learning Languages from Positive Data and
Negative Counterexamples

Sanjay Jain*! Efim Kinber?

1 School of Computing, National University of Singapore, Singapore 117543. Email:
sanjay@comp.nus.edu.sg
? Department of Computer Science, Sacred Heart University, Fairfield, CT
06432-1000 U.S.A. Email: kinbere@sacredheart.edu

Abstract. In this paper we introduce a paradigm for learning in the
limit of potentially infinite languages from all positive data and negative
counterexamples provided in response to the conjectures made by the
learner. Several variants of this paradigm are considered that reflect dif-
ferent conditions/constraints on the type and size of negative counterex-
amples and on the time for obtaining them. In particular, we consider
the models where 1) a learner gets the least negative counterexample; 2)
the size of a negative counterexample must be bounded by the size of
the positive data seen so far; 3) a counterexample can be delayed indefi-
nitely. Learning power, limitations of these models, relationships between
them, as well as their relationships with classical paradigms for learning
languages in the limit (without negative counterexamples) are explored.
Several surprising results are obtained. In particular, for Gold’s model of
learning requiring a learner to syntactically stabilize on correct conjec-
tures, learners getting negative counterexamples immediately turn out
to be as powerful as the ones that do not get them for indefinitely long
time (or are only told that their latest conjecture is not a subset, with-
out any specific negative counterexample). Another result shows that for
behaviourally correct learning (where semantic convergence is required
from a learner) with negative counterexamples, a learner making just one
error in almost all its correct conjectures has the “ultimate power”: it can
learn the class of all recursively enumerable languages. Yet another result
demonstrates that sometimes positive data and negative counterexam-
ples provided by a teacher are not enough to compensate for full positive
and negative data.

1 Introduction

Defining a computational model adequately describing learning languages is an
important long-standing problem. In his classical paper [Gol67], M. Gold intro-
duced two major computational models for learning languages. One of them,
learning from texts, assumes that the learner receives all positive language data,
i.e., all correct statements of the language. The other model, learning from infor-
mants, assumes that the learner receives all correct statements of the languages,
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as well as all other (incorrect) statements, appropriately labeled as incorrect,
that can be potentially formed within the given alphabet. In both cases, a suc-
cessful learner stabilizes at a correct description of the target language, i.e., a
grammar for the target language. J. Barzdin [B74] and J. Case and C. Smith
[CS83] introduced a different, more powerful model called behaviorally correct
learning. A behaviorally correct learner almost always outputs conjectures (not
necessarily the same) correctly describing the target language. An important
feature of all these models is that they describe a process of learning in the
limit: the learner stabilizes to the correct conjecture (or conjectures), but does
not know when it happens. The above seminal models, doubtless, represent cer-
tain important aspects of the process of learning potentially infinite targets. On
the other hand, when we consider how a child learns a language communicating
with a teacher, it becomes clear that these models reflect two extremes of this
process: positive data only is certainly less than what a child actually gets in the
learning process, while informant (the characteristic function of the language) is
much more than what a learner can expect.

D. Angluin, in another seminal paper [Ang88], introduced a different impor-
tant learning paradigm, i.e., learning from queries to a teacher (oracle). This
model, explored in different contexts, including learning languages (see, for ex-
ample, [LNZ02]), addresses a very important tool available to a child (or any
other reasonable learner), i.e., queries to a teacher. However, in the context of
learning languages, this model does not adequately reflect the fact that a learner,
in the long process of acquisition of a new language, potentially gets access to
all correct statements.

In this paper, we combine learning from positive data and learning from
queries into a computational model, where a learner gets all positive data and can
ask a teacher if a current conjecture (a grammar) does not generate wrong state-
ments (questions of this kind can be formalized as subset queries, cf. [Ang88]). If
the conjecture does generate a wrong statement, then the teacher gives an exam-
ple of such a statement (a negative counterexample) to the learner. In our main
model, we assume that the teacher immediately provides a negative counterex-
ample if it exists. However, in practical situations, a teacher may obviously need
a lot of time to determine if the current conjecture generates incorrect state-
ments. Therefore, we consider two more variants of our main model that reflect
this problem. In the first variant, the teacher is not able to provide a negative
counterexample unless there is one whose size does not exceed the size of the
longest statement seen so far by the learner. In the second variant, the teacher
may delay providing a negative counterexample indefinitely (and, eventually,
may even simply answer that the conjecture is wrong, i.e., without providing
any negative counterexamples!). Interestingly, while the former model is shown
to be weaker than the main model, the latter one turns out to be as power-
ful as the main model (in terms of capabilities of a learner; we do not discuss
complexity issues)!



Our goal in this paper is to explore the new models of learning languages,
their relationships, and how they fair in comparison with other popular learning
paradigms.

The paper is structured as follows. In Section 2 we introduce necessary no-
tation and basic definitions needed for the rest of the paper. In particular, we
define some variants of the classical Gold’s model of learning from texts (positive
data) and informants (both positive and negative data), TxtEx and InfEx, as
well as its behaviorally correct counterpart TxtBc and InfBc.

In Section 3 we define our four models for learning languages from texts
and negative counterexamples. In the first, basic, model, a learner is provided
a negative counterexample every time when it outputs a hypothesis containing
elements not belonging to the target language. The second model is a variant of
the basic model when a learner receives the least negative counterexample. The
third model takes into account complexity constraints on the teacher. Namely,
the learner receives a negative counterexample only if there exists one whose
size is bounded by the size of the longest positive example seen in the input
so far. The fourth model slightly relaxes the constraint of the model three: the
size of the negative counterexample must be bounded by the value of some
function applied to the size of the longest positive example in the input. We
also introduce non-recursive variants of all four models - when the learner is not
necessarily computable.

Section 4 is devoted to Ex-style learning from positive data and negative
counterexamples: the learner eventually stabilizes to a correct grammar for the
target language. First, in order to demonstrate the power of our basic model, we
show that any indexed class of recursively enumerable languages can be learned
by a suitable learner in this model. Then we show that the second model is equiv-
alent to the basic model: providing the least negative counterexample does not
enhance the power of a learner. Our next major result (Theorem 3) is somewhat
surprising: we show that there is a class of languages learnable from informants
and not learnable in our basic model. This means that sometimes negative coun-
terexamples are not enough - the learner must have access to all statements not
belonging to the language! (This result follows from a more general result for
Bec-style learning proved in Section 6). In particular, this result establishes cer-
tain constraints on the learning power of our basic model. We also establish a
hierarchy of learning capabilities in our basic model based on the number of er-
rors that learner is allowed to have in the final hypothesis. Then we consider the
two models with restricted size of negative counterexamples (described above).
We show that these models are different and weaker than our basic model. Still
we show that these models are quite powerful: firstly, if restricted to the classes
of infinite languages, they are equivalent to the basic model, and, secondly there
are learnable classes in these models that cannot be learned in classical Be-
model (without negative counterexamples) - even if an arbitrary finite number
of errors is allowed in the correct conjectures. In the end of the section we demon-
strate that a non-recursive learner in our basic model can learn the class of all
recursively enumerable languages. In fact, non-recursive learning with negative



counterexamples turns out to be equivalent to non-recursive learning from in-
formants (in contrast to Theorem 3 for computable learners mentioned above).

In Section 5 we introduce the concept of a locking sequence similar to the
one defined in [BB75] for the classical Ex-style learning. As in the case of the
classical Ex-model, locking sequences turn out to be useful in characterizing
learnability within our model. In particular, locking sequences are employed in
our next major surprising result presented in this section. This result (Theo-
rem 16) demonstrates that models of learning from positive data and negative
counterexample where the teacher may indefinitely delay providing a negative
counterexample (we define four natural versions of them) are still equivalent to
the basic model with no delays!

Section 6 is devoted to our Be-style models. As in the case of Ex-style learn-
ing, we show that providing the least negative counterexample does not enhance
the power of a learner. We also show that learning with restricted size of negative
counterexamples is weaker than the basic model in this setting. In particular,
we show that there exists an indexed class of recursively enumerable languages
that cannot be learned with negative counterexamples of restricted size (note
that all such classes are learnable in our basic Ex-style model as stated in The-
orem 1). Then we show that languages learnable in our basic Be-style model
(without errors) are Be-learnable from informants. In the end we establish one
of our most surprising results. First, we demonstrate that the power of our basic
Bec-style model is limited: there are classes of recursively enumerable languages
not learnable in this model if no errors in almost all (correct) conjectures are
allowed. On the other hand, there exists a learner that can learn all recursively
enumerable languages in this model with at most one error in almost all correct
conjectures! (The learner here needs to find answers to undecidable questions
concerning comparison of target and hypothesis languages; the teacher cannot
always provide negative counterexamples to the languages different from the tar-
get (for example when the conjecture is a subset of the target language), however,
by possibly making just one deliberate error, the learner finds a way to encode
its questions into conjectures so that the teacher is forced to provide negative
counterexamples giving out the necessary information). Based on similar ideas,
we obtain some other related results - in particular, that, with one error allowed
in almost all correct conjectures, the class of all infinite recursively enumerable
languages is learnable in the model with restricted size of negative counterex-
amples. To prove these results, we developed a new type of learning algorithms,
where a learner makes deliberate error in its conjectures to force a teacher to
answer questions not directly related to the input language. In contrast to the
case with no errors, we also show that when errors are allowed, Bc-learning from
informants is a proper subset of our basic model of Be-learning with errors and
negative counterexamples (Corollary 7).



2 Notation and Preliminaries

Any unexplained recursion theoretic notation is from [Rog67]. The symbol N
denotes the set of natural numbers, {0,1,2,3,...}. Symbols 0, C, C, D, and
D denote empty set, subset, proper subset, superset, and proper superset, re-
spectively. Cardinality of a set S is denoted by card(S). The maximum and
minimum of a set are denoted by max(-), min(-), respectively, where max(f) = 0
and min(f) = co. L1 AL, denotes the symmetric difference of L; and Lo, that is
LiALy = (Ly — Ly)U(Ly — Ly). For a natural number a, we say that L; =2 Lo,
iff card(L1 AL2) < a. We say that Ly =* Lo, iff card(L1ALs) < oo. Thus, we
take n < *x < 0o, for all m € N. If L; =% Lo, then we say that L; is an a-variant
of Lg.

We let (-, -} stand for an arbitrary, computable, bijective mapping from N x N
onto N [Rog67]. We assume without loss of generality that (-, -} is monotonically
increasing in both of its arguments. We define 7 ((z,y)) = z and 73 ((z,y)) = v.

By ¢ we denote a fixed acceptable programming system for the partial com-
putable functions mapping N to N [Rog67,MY78]. By ¢; we denote the partial
computable function computed by the program with number ¢ in the p-system.
Symbol R denotes the set of all recursive functions, that is total computable func-
tions. By @ we denote an arbitrary fixed Blum complexity measure [Blu67,HU79]
for the p-system. A partial recursive function &(-,) is said to be a Blum com-
plexity measure for ¢, iff the following two conditions are satisfied:

(a) for all 7 and z, ®(i,z)] iff p;(x)].-

(b) the predicate: P(i,z,t) = @(i,z) < t is decidable.

By convention we use @; to denote the partial recursive function A\z.$(3, x).
Intuitively, &;(z) may be thought as the number of steps it takes to compute
pi(x).

By W; we denote domain(y;). W; is, then, the recursively enumerable (r.e.)
set/language (C N) accepted (or equivalently, generated) by the ¢-program i.
We also say that ¢ is a grammar for W;. Symbol £ will denote the set of all
r.e. languages. Symbol L, with or without decorations, ranges over £. By xr we
denote the characteristic function of L. By L, we denote the complement of L,
that is NV — L. Symbol £, with or without decorations, ranges over subsets of £.
By W; s we denote the set {z < s | §;(z) < s}.

‘We now present concepts from language learning theory. The next definition
introduces the concept of a sequence of data.

Definition 1. (a) A sequence ¢ is a mapping from an initial segment of N into
(N U{#}). The empty sequence is denoted by A.

(b) The content of a sequence o, denoted content(c), is the set of natural
numbers in the range of o.

(c) The length of o, denoted by |o|, is the number of elements in o. So,
|4] = 0.

(d) For n < |o|, the initial sequence of o of length n is denoted by o[n]. So,
o[0] is A.



Intuitively, #’s represent pauses in the presentation of data. We let o, T,
and ~, with or without decorations, range over finite sequences. We denote the
sequence formed by the concatenation of 7 at the end of o by 7. Sometimes we
abuse the notation and use oz to denote the concatenation of sequence o and
the sequence of length 1 which contains the element z. SEQ denotes the set of
all finite sequences.

Definition 2. [Gol67] (a) A text T for a language L is a mapping from N into
(N U {#}) such that L is the set of natural numbers in the range of T. T'(7)
represents the (¢ + 1)-th element in the text.

(b) The content of a text T, denoted by content(T'), is the set of natural
numbers in the range of T'; that is, the language which T is a text for.

(¢) T'[n] denotes the finite initial sequence of T with length n.

Definition 3. A language learning machine from texts [Gol67] is an algorithmic
device which computes a mapping from SEQ into V.

Definition 4. We say that a recursive function I is an informant for L iff for
all z, I(z) = xr(z).

Intuitively, informants give both all positive and all negative data on the lan-
guage being learned. I[n] is the first n elements of the informant I. One can
similarly define language learning machines from informants.

We let M, with or without decorations, range over learning machines. M(T[n])
(or M(I[n])) is interpreted as the grammar (index for an accepting program) con-
jectured by the learning machine M on the initial sequence T'[n] (or I[n]). We
say that M converges on T to ¢, (written: M(T)| = 1) iff (V*°n)[M(T[n]) = i].
Convergence on informants is similarly defined.

There are several criteria for a learning machine to be successful on a lan-
guage. Below we define some of them. All of the criteria defined below are variants
of the Ex-style and Bc-style learning described in the Introduction; in addition,
they allow a finite number of errors in almost all conjectures (uniformly bounded,
or arbitrary).

Definition 5. [Gol67,CL82] Suppose a € N U {x}.

(a) M TxtEx®-identifies a text T just in case (3i | W; =2 content(T))
(v*n)[M(T[n]) = 1.

(b) M TxtEx“-identifies an r.e. language L (written: L € TxtEx*(M)) just
in case M TxtEx“-identifies each text for L.

() M TxtEx®-identifies a class L of r.e. languages (written: £ C
TxtEx?(M)) just in case M TxtEx"-identifies each language from L.

(d) TxtEx® ={LC & | (IM)[L C TxtEx*(M)]}.

Definition 6. [CL82] Suppose a € N U {x}.

(a) M TxtBc®-identifies a text T just in case (V°n)[Wwi(rpn)) =* L]-

(b) M TxtBc®-identifies an r.e. language L (written: L € TxtBc®*(M)) just
in case M TxtBc®-identifies each text for L.



(c) M TxtBc“-identifies a class L of r.e. languages (written: £ C
TxtBc”?(M)) just in case M TxtBc®-identifies each language from L.
(d) TxtBc® = {L£ C & | (IM)[L C TxtBc*(M)]}.

Definition 7. [Gol67,CL82] Suppose a € N U {x}.

(a) M InfEx”-identifies L (written: L € InfEx”(L)), just in case for infor-
mant [ for L, (3i | W; =2 L) (V*°n)[M(I[n]) = 1]

(b) M InfEx®-identifies a class L of r.e. languages (written: £ C InfEx*(M))
just in case M InfEx“-identifies each language from L.

(c) InfEx® ={L C & | (IM)[L C InfEx*(M)]}.

Definition 8. [CL82] Suppose a € N U {*}.

(a) M InfBc”-identifies L (written: L € InfBc®(L)), just in case for infor-
mant I for L, (V*°n)[Wnmrm)) = L]

(b) M InfBc”-identifies a class L of r.e. languages (written: £ C InfBc”(M))
just in case M InfBc®-identifies each language from L.

(c) InfBc” = {L£ C & | (IM)[L C InfBc*(M)]}.

For ¢ = 0, we often write TxtEx, TxtBc,InfEx, InfBc instead of
TxtEx?, TxtBc?, InfEx’, InfBc, respectively.

L is said to be an indezxed family of languages iff there exists an indexing
Ly, Ly, ... of languages in £ such that the question z € L; is uniformly decidable
(i.e., there exists a recursive function f such that f(i,z) = xr,(z)).

We let INIT = {L | (F)[L ={z | z <i}]}

3 Learning with Negative Counterexamples

In this section we define four models of learning languages from positive data
and negative counterexamples. Intuitively, for learning with negative counterex-
amples, we may consider the learner being provided a text, one element at a
time, along with a negative counterexample to the latest conjecture, if any. (One
may view this negative counterexample as a response of the teacher to the subset
query when it is tested if the language generated by the conjecture is a subset
of the target language). One may model the list of negative counterexamples as
a second text for negative counterexamples being provided to the learner. Thus
the learning machines get as input two texts, one for positive data, and other
for negative counterexamples.

We say that M(T,T") converges to a grammar ¢, iff for all but finitely many
n, M(T[n],T'[n]) = 1.

First, we define the basic model of learning from positive data and negative
counterexamples. In this model, if a conjecture contains elements not in the
target language, then a counterexample is provided to the learner. NC in the
definition below stands for negative counterexample.

Definition 9. Suppose a € N U {x}.
(a) M NCEx*®-identifies a language L (written: L € NCEx*(M)) iff for all
texts T for L, and for all 7" satisfying the condition:



T/(n) € S, if Sp # 0 and T'(n) = #, if S, =0,
where S, = LN WM(T[n],T’[n])

M(T,T") converges to a grammar ¢ such that W; = L.

(b) M NCEx*®-identifies a class L of languages (written: £ C NCEx®(M)),
iff M NCEx“-identifies each language in the class.

(c) NCEx* = {L | (3M)[£ C NCEx*(M)]}.

We next consider the case when the learner gets the least negative counterex-
ample, rather than any negative counterexample. LNC in the definition below
stands for least negative counterexample.

Definition 10. Suppose a € N U {x}.
(a) M LNCEx"-identifies a language L (written: L € LNCEx*(M)) iff for
all texts T for L, and for all T" satisfying the condition:

T'(n) = min(S,), if S, # 0 and T'(n) = #, if S, = 0,
where S,, = LN WM(T[n],T’[n])

M(T,T") converges to a grammar ¢ such that W; =* L.

(b) M LNCEx"-identifies a class L of languages (written: £ C
LNCEx"(M)), iff M LNCEx"“-identifies each language in the class.

(c) LNCEx® = {£ | (3M)[£ C LNCEx*(M)]}.

We next consider complexity constraints on the negative counterexample.
The negative counterexample is provided only if there exists one such coun-
terexample < the maximum positive element seen in the input so far. This ad-
dresses some complexity constraints the teacher may have. BNC below stands
for bounded negative counterexample.

Definition 11. Suppose a € N U {*}.
(a) M BNCEx"-identifies a language L (written: L € BNCEx"(M)) iff for
all texts T for L, and for all 7" satisfying the condition:

T'(n) € Sy, if Sp # 0 and T'(n) = #, if S, =0,
where S, = LN Wz, 1/[n)) N {2 | £ < max(content(T'[n]))}

M(T,T") converges to a grammar 4 such that W; =2 L.

(b) M BNCEx"-identifies a class L of languages (written: £ C
BNCEx"“(M)), iff M BNCEx"-identifies each language in the class.

(c) BNCEx® = {£ | (3M)[£ € BNCEx"*(M)]}.

The following is a generalization of Definition 11 where the negative counterex-
ample is within some recursive factor of maximum positive element seen so far.
Let INCFUNC = {h € R | (Vz)[h(z) > z] A (Vz)[h(z) < h(z + 1)]}).
INCFUNC is class of non-decreasing functions which are greater than the
identity function.
BFNC below stands for bounded by a function negative counterexample.



Definition 12. Suppose a € N U {x}. Suppose h € INCFUNC.
(a) M BF"NCEx"-identifies a language L (written: L € BF"NCEx*(M))
iff for all texts T for L, and for all 7" satisfying the condition:

T'(n) € S, if Sp # 0 and T'(n) = #, if S, =0,
where S, = L N\ Wy (rn), 1)) N {2 | © < h(max(content(T'[n])))}

M(T,T") converges to a grammar ¢ such that W; =* L.

(b) M BF"NCEx“-identifies a class L of languages (written: £ C
BF"NCEx®(M)), iff M BF"NCEx"-identifies each language in the class.

(c) BF"NCEx® = {£ | (3M)[£ C BF"NCEx*(M)]}.

(d) BFNCEx* = U, crvorunc BF"NCEx®.

Similarly one can define NCBc®, LNCBc?, BNCBc® and BFNCBc* cri-
teria of inference.

We may also similarly define variants NRNCEx?, NRLNCEx®,
NRBNCEx?, NRBFNCEx" where the learner is allowed to be non-recursive.
(Prefix NR to a criteria denotes that learner is allowed to be non-recursive).

Proposition 1. Suppose a € N U {x}.
(i) TxtEx® C BNCEx® C BF"NCEx® C NCEx® C LNCEx".
(ii) TxtBc® C BNCBc® C BF'NCBc® C NCBc® C LNCBc".

4 Ex-type Learning With Negative Counterexamples

We first show an example of what can be achieved by using positive data and
negative counterexamples in the context of indexed families of languages. Our
theorem improves a classical result that every indexed family is learnable from
informants. Note that there exist indexed family not in TxtEx; thus Ex-learning
without negative counterexample is weaker than NCEx.

Theorem 1. Suppose L is an indexed family. Then L € NCEx.

Proof. Suppose Ly, L1,... is an indexed family. On input (o, 7), M outputs a
grammar for L;, for the least ¢ such that content(o) C L; and L;Ncontent(7) = (.

Suppose T is a text for L, and j is the least number such that L; = L. Then,
for all k < j, either

(i) L € L, thus for large enough n, content(T'[n]) € L, and thus M would
not output Lg as its conjecture, or

(ii) Ly — L # 0, thus the first time Ly, is output there will a negative coun-
terexample, and thus L would not be conjectured by M thereafter.

Moreover, L; always passes both the tests (content(7'[n]) C L, and none of
the negative counterexamples are in L;). Thus, eventually M, on text T and
any sequence of valid negative counterexamples, will converge to a grammar for
L;.

We now illustrate another difference between NCEx learning and TxtEx
learning.



Theorem 2. Suppose L € NCEx and L is a recursive language. Then LU{L} €
NCEx.

Proof. Suppose £ and L are as in the hypothesis. An NCEx-learner can learn
L U{L} as follows. It first outputs a grammar for L and waits until:

(1) it receives a negative counterexample or

(ii) and element in the text not belonging to L (note that this can be recur-
sively checked as L is recursive).

If none of above happens, then clearly input language must be L and the
learner identifies it. If one of (i) or (ii) succeeds, then the learner continues with
the strategy to NCEx-identify £. It follows that £ U {L} € NCEx. |

Note that above does not hold for TxtEx-identification as {F' | F is finite} U
{L} ¢ TxtEx for any infinite language L [Gol67].

Also note that Theorem 2 doesn’t generalize to taking r. e. language (instead
of recursive language) L, as witnessed by £L = {{AU{z}} |z ¢ A}, and L = A,
where A is any non-recursive r.e. set. Here note that £ € TxtEx, but £ U {L}
is not in NCEx.

Proposition 2. Suppose a € N U {x}. Suppose h € INCFUNC.
(a) LNCEx® C NCEx"“.
(b) NCEx® C InfEx".
(c) NCEx” C LNCEx".
(d) BF"NCEx® C NCEx".
(e) BNCEx® C BF*NCEx®.
(f) TxtEx® C BNCEx“.

Proof. (a) Note that, for any grammar %, one can get the least negative coun-
terexample from arbitrary negative counterexample y by conjecturing grammars
for the following languages: Wy N {z | z < z}, for all different values of z < y.
Note that this search introduces extra mind changes; however this is ok, since
for Ex-type learning, the learner makes only finitely many mind changes.

(b) Note that from an informant one can determine in the limit a negative
counterexample, if any, for any grammar . Since for Ex-type learning the learner
only makes finitely many conjectures, part (b) follows.

(c), (d), (e) and (f) easily follow from relevant definitions. |

The following corollary shows that using least negative counterexamples,
rather than arbitrary negative counterexamples, does not enhance power of a
learner - this is applicable also in case when a learner can make a finite bounded
number of mistakes in the final conjecture.

Corollary 1. Suppose a € N U {x}. Then, NCEx* = LNCEx"“.

The next result is somewhat surprising. It shows that sometimes negative
counterexamples are not enough: to learn a language, the learner must have
access to all negative examples. (In particular, it demonstrates a limitation on
the learning power of our basic model).



Theorem 3. InfEx — NCEx" # ().

The above result follows from Theorem 17 and Theorem 18.

We now show the error hierarchy for NCEx-learning. That is, learning with
at most n+ 1 errors in almost all conjectures in our basic model is stronger than
learning with at most n errors. The hierarchy easily follows from the following
theorem.

Theorem 4. Suppose n € N.
(a) TxtEx" ' — NCEx" # (.
(b) TxtEx* — |J,,c y NCEx" # .

Proof. (a) Follows from TxtEx""! — InfEx" # () [CL82] and Proposition 2(b).
(b) Follows from TxtEx*—J, . y InfEx" # () [CL82] and Proposition 2(b). |
-

As, by Proposition 2, TxtEx""! C BNCEx"*! C BF'NCEx""!
NCEx""! C LNCEx™"!, the following corollary follows from Theorem 4.

Corollary 2. Supposen € N and h € INCFUNC.
(a) NCEx™ Cc NCEx"*'.
(b)) LNCEx" Cc LNCEx" "',
(c) BNCEx" Cc BNCEx""'.
(d) BF"NCEx" c BF"NCEx""'.

Now we demonstrate yet another limitation on the learning power of our
basic model when an arbitrary finite number of errors is allowed in the final
conjecture: there are languages learnable within the classical Be-style model
(without negative counterexamples) and not learnable in the above variant of
our basic model.

Theorem 5. TxtBc — NCEx* # ()

Proof. Follows from TxtBc — InfEx* # (§ [CL82] and Proposition 2(b). [
We will use the following proposition in some of our theorems.

Proposition 3. [Gol67] Suppose Ly, L1,... and L are such that (i) for all i,
L; C Liy1, and (Z’l) UieN L; = L. Then, L = {L} U {Lz | i € N} & TxtBc*
(even if one allows non-recursive learners).

Now we turn to models where size of negative counterexamples is restricted:
BNCEx and BF"NCEx.

We first show that there are classes of languages learnable in our basic model
that cannot be learned in any of the models that use negative counterexamples
of limited size - even if the learners in the latter models are non-computable.

Theorem 6. NCEx — U, ;ncrync NRBF'NCEx" # 0.



Proof. We assume without loss of generality that pairing function is increasing in
both its arguments. For ; € INCFUNC, let 20 = (i,0). Let 27" = (i, (z?) +
1). Now let L* = {(i,2?) | j < k}, and LN = {(i,z}) | j € N}. For ¢; €
INCFUNC, let L; = {Lf | k € NYU{L}}. Let £ = U;,,,rnorvne Li-

Now we show that £L € NCEx. A learner can first determine ¢ such that
input is a language from class £;. Then the learner can output a grammar for
LzN . If there is no negative counterexample to this conjecture, then we are done;
otherwise the learner can follow the strategy of learning finite languages from
text to learn the input language.

We now claim that £; ¢ NRBFY'NCEx", for any ¢; € INCFUNC.
To see this, note that for learning languages in L;, according to criterion
NRBFY'NCEx"*, the negative information is not useful as every L¥ C LN
and min(LY — L) > ¢;(max(LF)). Thus, £; ¢ NRBF¥*NCEx", follows from
L; ¢ TxtEx"*, even for non-recursive learner (this follows by Proposition 3, as
for all k, L¥ c L*! and Uken LE = LY). |

However, the following theorem shows that if attention is restricted to only
infinite languages, then NCEx and BNCEx behave similarly.

Theorem 7. Suppose L consists of only infinite languages. Then £ € NCEx*®
iff L € BNCEx"“.

Proof. As BNCEx® C NCEx?, it suffices to show that if £L € NCEx® then
L € BNCEx". Suppose M NCEx‘’-identifies £. Define M’ as follows. M’ on
the input text T of positive data for an infinite language L behaves as follows.
Initially let Cntrexmpls = (). Intuitively, Cntrexmpls denotes the set of negative
counterexamples received so far. Initially let NegSet = 0. Intuitively, NegSet
denotes the set of grammars for which we know a negative counterexample. For
Jj € NegSet, ncez(j) would denote a negative counterexample for j. For ease of
presentation, we will let M’ output more than one conjecture (one after another)
at some input point and get negative counterexamples for each of them. This is
for ease of presentation and one can always spread out the conjectures.

Stage s (on input T'[s])

1. Simulate M on T[s], by giving negative counterexamples to any conjectures
j € NegSet by ncez(j). Other grammars get # as counterexample.

2. Let S be the set of conjectures output by M, in the above simulation, on
initial segments of T'[s], and let k be the final conjecture.

3. If k ¢ NegSet, output a grammar for UiestegSet Wi,

Otherwise (i.e., if k € NegSet), output a grammar for [(W}, — Cntrexmpls) U
UieS—NegSet Wil.

4. If there is no negative counterexample, then go to stage s + 1.

5. Else (i.e., there is a negative counterexample) output one by one, for each
1 € § — NegSet, grammar ¢. If a negative counterexample is obtained, then
place 7 in NegSet and define ncez () to be this negative counterexample.

(Note that since M’ is for BNCEx-type learning, negative examples received
would be < max(content(77[s])), if any).



Update Cntrexmpls based on new negative counterexamples obtained.
6. Go to stage s + 1.
End Stage s.

Now let T be a text for infinite language L € L. Let NegSet’ denote the set
of all elements which are ever placed in NegSet in the above construction. For
the text T', let Negr denote the text for negative counterexamples generated as
follows:

Negr(i) = {;cez(M(T[i],Neng», it M(Ti, Negrli) € NegSet
) otherwise.

We claim that Negr denotes a correct text for negative counterexamples (for
NCEx”-model of learning) when M is fed T as the positive data text. Clearly,
if a negative counterexample is provided above then it is correct. So we only
need to consider if there exists an i suchthat M(TT[i], Negr[i]) ¢ NegSet’, but
WM(T[i],Negr[i]) £ L- We claim that this is not possible. To see this suppose,
by way of contradiction, that i is the least number for which this happens.
Then, beyond some stage (by which stage all M(T'[j], Negr[j]) j < %, such that
Wa(T[j],Negr)) € L, have been placed in NegSet), we have that the above con-
struction will output a grammar which enumerates at least Wii(r[i, Negs[i]) (S€€
step 3). Thus, eventually a negative counterexample to W (T[i),Negr[i)) Would
appear due to steps 3 and 5 (as the data in the input text is unbounded, due to
L being infinite set). A contradiction. Thus, Negr denotes a correct sequence of
negative counterexamples to M on text T'.

Thus, since M converges on (T, Negr), we have that for all but finitely many
stages, the simulation of M in step 1 is correct (i.e., M’ provides the correct
negative counterexamples, if any, in the simulation). Thus, for all but finitely
many stages, as M NCEx“-identifies L, the grammar output in step 3 by M’
would be correct (except for possibly a errors of omission, as done by the final
grammar of M) and M’ BNCEx"-identifies L. |

Our next result shows that the model BNCEx, while being weaker than our
basic model, is still quite powerful: there are classes of languages learnable in
this model that cannot be learned in the classical Be-style model even when an
arbitrary finite number of errors is allowed in almost all conjectures.

Theorem 8. BNCEx — TxtBc* # (.

Proof. Let E = {2z | x € N}, the set of even numbers. Let L, = EU{z | < n}.
Consider the class £L = {N} U {L,, | n € N}. Clearly, £L € BNCEx as one can
output a grammar for N until, if ever, there is a negative counterexample. If
and when a negative counterexample is received for NV, one can then follow the
strategy to learn {L,, | n € N} (which is learnable from text alone). However,
as L1 C L3 C Ly... and UieN Lyiy1 = N, we have from Proposition 3 that
L ¢ TxtBc* (even by non-computable learners). |

The next result shows that BF*NCEx allows one to learn a class which is
not learnable in BNCEx model, even if a BNCEx-learner is not computable.



Theorem 9. Suppose h is such that for all x, h(z) > z. Then BF"NCEx —
NRBNCEx*  {.

Proof. Consider £ = INITU{N}. We first show that £ € BF*NCEx. A learner
can output a grammar for N until, if ever, there is a negative counterexample.
(Note that if the input language is {z | £ < n}, for some n, then elements in
{z | n <z < h(n)} # 0, are valid negative counterexamples for the language N,
once element n appears in the input). If and when a negative counterexample is
received for NV, one can then follow the strategy to learn INIT, which is learnable
from text alone.

On the other hand, for NRBNCEx" learnability, there is never a negative
counterexample, as none of the languages in the class have a negative counterex-
ample < maximum element present in the input. Thus, using Proposition 3, we
have that £ ¢ NRBNCEx".

Now we show a hierarchy for BFhNCEx—style learning. If A’ is greater than h
in just infinitely many points, then BF" NCEx contains languages not learnable
in BF*NCEZx, even if a BF*NCEx-learner is non-computable.

Theorem 10. Suppose h,h’ € INCFUNC'. Suppose further that xg,1,... 18
a recursive sequence of increasing numbers such that
(ZZ) fO’l" all i, h(z2i+1) < Toitp2 < h’($2i+1).
Let LN = {.’L‘ | (37,)[.732, S x S .’1,‘21'_’_1]}.
Let Lj = {:L' | (E"L S j)[il?gz S xr S $2i+1]}-
Then, £ ={L; | j € N}U{Ly} € BF* NCEx — NRBF"NCEx".

Proof. Clearly L € BFh’NCEx, as one can output a grammar for Ly until, if
ever, a negative counterexample is received. (Note that if input language is Lj,
then eventually there exists such a negative counterexample as z2;42 € Ly — L;
and zg;j12 < h'(x2j41).) If and when a negative counterexample is received,
the learner can then follow the learning strategy (similar to that for INIT) for
{L; | j € N} (which can be learned from text alone).

On the other hand, for NRBF"NCEx* learnability there is never a negative
counterexample from the set Ly due to the fact that min(Ly—L;) > h(max(L;))
for any j € N. This essentially renders the negative information useless. Thus
£ € NRBF"NCEx* would mean £ € TxtEx* (by non-computable learner),
which is not true by Proposition 3 (as Lj C Lj41 and U;cy Lj = Ln). |

Corollary 3. Suppose h,h' € INCFUNC such that h'(z) > h(z) for infinitely
many z. Then BF* NCEx — NRBF"NCEx* # 0.

Proof. Note that, for any pair of recursive functions h and A’ such that h'(z) >
h(z) for infinitely many x, one can define a recursive sequence of z; such that
hypotheses (i) and (ii) in Theorem 10 hold. This can be done by taking zg = 0
and inductively defining x9;y1,Z2;42 such that z9;411 > z2; and h(zgit1) <
h'(z2i4+1) = T2i4+2. Now corollary follows from Theorem 10.



On the other hand, if A’'(z) < h(z) for all but finitely many z, then clearly
BF"' NCEx" C BF*NCEx".

We now turn our attention to the power of non-computable learners. The
following proposition follows from definitions.

Proposition 4. Suppose a € N.
(a) NRNCEx” C NRLNCEx"“.
(b)) NRBFNCEx”* C NRNCEx"“.
(c) NRBNCEx”* C NRBFNCEx"“.

As the next result shows, a non-computable learner in our basic model has
the “ultimate power”: it can learn all recursively enumerable languages.

Theorem 11. £ € NRNCEx.

Proof. A non-effective learner can search for the least grammar ¢ such that
content(T') C W; and ¢ does not generate a negative counterexample. Thus,
£ € NRNCEx.

As £ € NRInfEx, we have
Corollary 4. NRNCEx = NRInfEx.

Theorem 12. Suppose L is such that:

for any infinite L € L, there exist only finitely many n such that LN{z | z <
n} e L.

Then, L € NRBNCEx.

Proof. Define (possibly nonrecursive) M as follows. On input (T'[n], T'[n]), out-
put the least 7 such that

(i) content(T'[n]) C W},

(ii) content(T"[n]) N W; = 0,

(iii) W; = content(T'[n]) or for some t, content(T'[n]) = W; N {z | z < t} and
content(T'[n]) ¢ L.

We claim that above M would NRBNCEx-identify £. To see this suppose
T is a text for L € L. Let ¢ be the least grammar for L. If L is finite, then let n be
such that content(T'[n]) = L. If L is infinite, then let ¢ be such that for all ¢ > ¢,
W;N{z |z <t'} & L; then let n be such that W; N {z | z < t} C content(T[n]).
Now, for n' > n, 7 satisfies conditions (i)—(iii) above. Thus, M(T'[n']) < i.

Now, for any j < 7, let n’ > n be so large that:

(iv) if L € W;, then T[n'] £ W;,

and

(v) if min(W; — L) < max(L), then min(W; — L) < max(T[n']).

Note that there exists such an n'.

We claim that, any j < i appears at most once as a conjecture beyond T'[n'].
Clearly, if L  W;, then j cannot appear as M’s conjecture beyond T'[n'] due
to (i) and (iv) above. Furthermore, if min(W; — L) < max(L), then j appears
at most once beyond T'[n'] (as then we will get a negative counterexample for



conjecture 7). Thus, for j to appear more than once beyond T[n’], we must have
L C W; and min(W; — L) > max(L). But then L is finite, and W; N {z | <
max(L)} = L. Thus, (iii) above implies that j would not be output by M beyond
T[n'].

Also, since i satisfies (i)—(iii) above, for n” > n', we would have that M
outputs 7. I

Theorem 13. Suppose L is such that:

there ezists an infinite L € L, there exist infinitely many n such that LN {z |
z<n}ecL.

Then, L ¢ NRBNCBc”*.

Proof. Suppose o is a NRBNCBc*-locking sequence for (possibly non-recursive)
M on L. Let t be such that content(c) C LN{z | z <t} and LN{z |z < t} € L.
Now, M cannot NRBNCBc*-identify LN {z | z < t}, on a text T, ¢ C T, for
Ln{z|z <t}

Note that Theorems 12 and 13 give a characterization for NRIN CEx-identification
and also show that NRBNCEx = NRBNCBc*.

One can similarly show:

Theorem 14. Fix h € INCFUNC. Suppose L is such that:

for any infinite L € L, there exist only finitely many n € L such that LN{z |
z<n} €L, but min(L — {z | z < n}) > h(n).

Then, £L € NRBF"NCEx.

Theorem 15. Fizx h € INCFUNC. Suppose L is such that:

there ezists an infinite L € L, for infinitely manyn € L LN{z |z <n} € L,
and min(L — {z | z < n}) > h(n).

Then, £L ¢ NRBF"NCEx.

5 Locking Sequence and Delayed Counterexamples

In this section we introduce the concept of a locking sequence for our Ex-style
learning model. Locking sequence (see [BB75]) is an important tool in under-
standing and characterizing learning languages in the limit. Informally, a locking
sequence is an initial fragment of the input text that is sufficient for a learner to
identify the target language. Once the locking sequence has been inputted, the
learner never changes its mind. Using the concept of locking sequence, we ob-
tain a characterization of NCEx-type learning. Our concept of locking sequence
turns out to be very useful in our following discussion of learning from positive
data and negative counterexamples when counterexamples can be indefinitely
delayed.



For the following, we will often consider giving machine M least valid negative
information, if any. To this end, define a sequence neginputny, i, - as follows:

#, if WM(o’[n],neginputM,L,,,[n]) g La
neginputm,r,-(n) = { , otherwise,
where z = min(WM(a[n},neginputM,L,a[n]) - L)

(for BNCEx, BF"NCEx-identification the first clause above is appropri-
ately modified to check containment only for elements < max(content(c)) or
h(max(content(c))) respectively).

When the input language L is implicit, we also define LNp(o) =
M(o, neginputm,ro[|o]]).

Intuitively, LN above stands for least negative relevant counterexample given.

Definition 13. (o, j)-is said to be a NCEx-stabilizing sequence for M on L iff
(i) content(c) C L,

(ii) WiNwm(o) € L,

iii) For all 7 such that content(7) C L, LNp(0) = LNp(o7).

iv) For all n < |o|, min(WiNy (o]n]) N L) = min(Weny (o[n)),; N L)-

—_~

(For BNCEx-stabilizing sequence above definition is appropriately modified
by changing (ii) and (iv) to

(i") WiNm (o) N {z | £ <max(L)} C L,

(iv’) For all n < |o|, min(WiNy (o) N L N {z | < max(content(c[n]))}) =
min(WiNy (o[n]),; N L N {z | z < max(content(s[n]))}). )
Remark: Recall that W; ; = {z |z < j A ®;(z) < j}. Thus W;; C {z | z < j}.

Note that if (7, j) is a stabilizing sequence for M on L, then so is (77, j'), for
any j' > j, and 7’ D 7 with content(7') C L.

Definition 14. (o, j)-is said to be a NCEx-locking sequence for M on L iff
(1) (o,J) is a stabilizing sequence for M on L, and
(ii) LNp(o) is a grammar for L.

Proposition 5. Suppose M NCEx-identifies L. Then

(a) there exists a NCEx-stabilizing sequence for M on L, and

(b) every NCEx-stabilizing sequence for M on L is also a NCEx-locking
sequence for M on L.

Proof. (a) Consider the process in which M is always given the least neg-
ative conterexample, if any. We first claim that there exists a 7 such that
(i) content(r) C L, (ii) Winp() € L, and (iii) for any 7/ O 7 such that
content(7') C L, LNm(7) = LNm(7'). This follows immediately from the fact
that M NCEx-identifies L. (Otherwise, one can construct a text T such that
(I) M does not converge on T or (II) M makes infinitely many wrong con-
jectures on T'. To see this, let 7" be a text for L. Define 7; as follows. 7 is a
sequence consisting of just 77(0). Inductively define 7;1; as follows. If 7; does not
satisfy the requirements (i)—(iii), then either (I’) for some o extending 7; with



content(c) C L, LNm(7;) # LNm(o), or (II') WirNy, () contains an element
outside L — in this case let o = ;. Now let 7,11 = oT'(i + 1). It immediately
follows that |J;c 7: is a text for L, and LINw(7T') makes infinitely many mind
changes on T or makes infinitely many wrong conjectures on T'.)

Now define j to be the least value such that, for all n < |7|, min(Wrny (r[n]) N
L) = min(WLNM(T[n]M N L)

Now, (7, j) satisfies the definition of being NCEx-stabilizing sequence for M
on L.

(b) Follows from definition of NCEx-identification. |

The following proposition demonstrates how learning in our basic model can
be characterized using locking sequences.

Proposition 6. £ € NCEx iff there exists an M such that for each L € L,
(a) there exists a NCEx-stabilizing sequence for M on L, and
(b) every stabilizing sequence for M on L is a NCEx-locking sequence for
M on L.

Proof. Left to Right direction follows from Proposition 5.

For right to left part note that a NCEx-learner M’ can search for a (o, j)
such that the following properties are satisfied:

(i) content(c) C L,

(ii) WiNm(o) € L,

(iii) For all 7 such that content(r) C L, LNMm(0) = LNMm (o).

(iV) For all n < |0’|, min(WLNM(a[nD N L) = min(WLNM(a[n]),j N L)

Note that a NCEx learner can determine xr,[j] (by conjecturing grammars
for {i}, i < j). Thus, second part of the equality in (iv) above can be effectively
determined, and thus any violation of (iv) can be determined in r.e. sense (by
outputing LN (o[n]) and, if there is a negative counterexample, enumerating
WiLNwm(o[n]) and checking the elements in LN {x | # < j}). Assuming (iv) holds,
negative information needed for calculating Wynm(7), for 7 C o, can also be
effectively found using x[j]. Violation of (ii) can be determined by checking
if conjecturing LNwm(o) leads to a negative example. Violation of (iii) is easy
to check. Thus, in the limit, we can find a stabilizing sequence for M on L, if
any. Hence, a learner can output LNy (o), in the limit, for one such stabilizing
sequence (which gives a grammar for L by clause (b)). |

For BN CEx-identification we have the following characterization. The proof
is similar to the above proposition, except that we need a slight modification
as one may not be able to determine xr[j] from the input (due to extra con-
straints on negative examples). Similar characterization results can be proved
for BF*NCEx-identification also.

Proposition 7. £ € BNCEx iff there exists an M such that for each L € L,
(a) there exists a BN CEx-stabilizing sequence for M on L, and
(b) every stabilizing sequence for M on L is a BNCEx-locking sequence for
M on L.



Proof. Left to Right direction follows by using an analogue of Proposition 5.

For Right to Left direction we proceed similar to Proposition 6, except that
we need to be careful in the sense that one may not be able to obtain xr[j]
from the input, if the input language is finite (due to constraints on the negative
information provided).

Thus, on input 7', a BNCEx learner M’ searches for a (o, j) such that:

(I) content(T") C {z | z < j}, or

(IL.i) content(os) C L,

(ILii) WeNpg (o) N {2 | £ < max(L)} C L,

(IL.iii) For all 7 such that content(r) C L, LNum(0) = LNm(o7).

(ILiv) For all n < ||, min(Winpy (ofs)) NLN{z | z < max(content(c[n]))}) =
min(WiNy (o)), N L N {z | £ < max(content(a[n]))}).

Note that one can do the above search by dovetailing over all pairs (o, j),
such that each pair gets infinitely many chances, and first we check if (I) above
holds, and if not, check if (II) holds. One can find in the limit a (o, j) such that
(I) or (II) holds, if such a (o,j) exists. (Note that, if (I) does not hold for a
particular (o, j), then one can determine x[j], as L contains an element > j.
Thus, one can determine violation of (II) in a way similar to that done in the
proof of Proposition 6).

For any candidate (o, ), if (I) seems to hold, M’ outputs a grammar for
content(T) N {z | x < j}, and if case (II) seems to hold, M’ outputs LNwm(0).
If none of (I) and (II) hold, we move on to the next candidate.

Now, due to checking of the conditions (I) and (II), M’ can only converge
to a conjecture of M on a stabilizing sequence (for M on L), due to success of
(IT) or to a conjecture for finite language due to success of (I). For L € L, in the
former case, by condition (b) in the proposition, we have BN CEx-identification,
and for the latter case we clearly have BNCEx-identification due to explicitly
outputing grammar for the input language, which is finite.

Furthermore, every finite language L would eventually lead to convergence
due to success of (I) or earlier due to some stabilizing sequence for M on L.
Also, every infinite language L € L, would eventually lead to convergence due
to presence of some stabilizing sequence for M on L.

From above, BNCEx identification of £ by M’ follows. |

We now consider several variants of NCEx model where the negative ex-
amples may not appear immediately, nor may they appear for all conjectures
enumerating a non-subset of L. These variants reflect complexity constraints on
the teacher — yet differently from the models with limited size of negative coun-
terexamples. As formal definitions of the models to be presented are technically
rather complex, we proceed below somewhat informally.

Definition 15. Consider the following models for delayed negative counterex-
amples.

D1: The learner eventually receives a negative counterexample for every hy-
pothesis which enumerates a non-subset of L. We do not constrain when this



negative counterexample appears, nor is the negative counterexample tagged
with the hypothesis to which it is a counterexample.

D2: If the learner converges to a hypothesis, and this hypothesis enumerates
a non-subset of L, then the learner will eventually receive a negative coun-
terexample for it (idea here is that abandoned hypothesis may not get negative
counterexample).

Da3: For all m, if the learner outputs a hypothesis at step m which enumer-
ates a non-subset of L, then there exists some negative counterexample for a
hypothesis output at a step > m (here the idea is that once a grammar gets
a negative counterexample, one may consider all previously output non-subset
grammars addressed).

D4: If a grammar is output infinitely often by the learner, and this grammar
enumerates a nonsubset of L, then the learner eventually receives a negative
counterexample for the grammar. We do not constrain when this negative coun-
terexample appears, nor is the counterexample tagged with the hypothesis to
which it is a counterexample.

Clearly, D2 is contained in each of D1, D3 and D4. Thus showing that
NCEx = D2 means the collapsing of all these variants to NCEx. This in
some sense would show that the model we have chosen is reasonably robust.
The following, quite surprising result demonstrates that all the above models do
collapse to NCEx: indefinite delays do not constrain learners if positive data
and negative counterexamples are eventually available!

Theorem 16. NCEx = D2.

Proof. Clearly, D2 C NCEx. We show that NCEx C D2. Suppose M NCEx-
identifies £. We define a D2 learner M’ as follows:

M’ tries to search for a stabilizing sequence for M on L.

M’ on the input text T does the following:

M’ on text T for a language L.

For each pair (o, j):

1.  First determine x[j]. (Note that M’ can determine if a particular el-
ement z is in L or not, by repeatedly outputing a grammar for {z}
until it either receives z in text or z as negative example (one of these
must happen, otherwise M’ converges to grammar for {z} on T', but
does not receive the required positive/negative example). Thus it can
determine x,[j].)

2. If content(o) € content(T), then go to next iteration of the loop (note
that, whether content(o) C content(T'), can be determined similarly
to step 1 above).

3.  Else, assume the following property:

(P1) for all 7 C o, min(Wynp, (r) NL) = min(Wrny (+),j NL)
(This is property (iv) in definition of stabilizing sequence).
and calculate LNy (7), for 7 C o, and



S = {LNm(7) | WiNp(-) € L} (ie., the grammars output by LN
on prefixes of o, for which # was given as negative example).
4. Output a grammar for | J;c g Wi.
5. Idle until at least one of the following is satisfied:
(a) there exists a negative counterexample for |J;.g W;. (This
verifies property (ii) in the definition of stabilizing sequence
and part of property (P1) above (the part where Wiy, () N
L =10)).
(b) assuming (a) does not hold, check if property (P1) above is vi-
olated. (Note that this can be verified, assuming (a) above does
not hold, by enumerating the elements output by LNwm (o[n])).
(c) assuming, (a) and (b) do not hold, check if there exists a 7
such that content(7) C L, and LNm(o) # LNm(o7). (This
verifies property (iii) in stabilizing sequence).
6. If one of (a) to (c) succeed, then go to the next iteration of the For loop.
EndFor

Now note that, if in any iteration of the For loop, (a)—(c) do not succeed,
then we have that (o, j) is a stabilizing sequence of M on L, and L D |J;c g W; 2
WLNm(os) = L. Thus, M’ converges to correct grammar. On the other hand, if
one of (a) to (c) succeed, then (o, ) is not a stabilizing sequence for M on L.

It is now easy to verify that, if there exists a stabilizing sequence for M on
L, then for some such stabilizing sequence (o, j) the conditions (a)—(c) are not
satisfied, and M’ above converges to a grammar for ;g W; (where S is as in
the iteration for (o, j)).

Thus, M’ D2-identifies any language NCEx-identified by M. |

Note that proof for the above theorem did not use the exact negative coun-
terexample, but just the fact that a negative counterexample existed for the
latest conjecture. In other words, our basic (and the most powerful) learning
model is equivalent to the one where a learner gets only answers “yes”or “no” to
the subset queries (when it is tested if the current conjecture generates a subset
of the target language)!

As D4 D D2 and D3 D D2 and D1 D D2, we have that all of these are same
as NCEx.

6 Bec-type Learning With Negative Counterexamples

In this section we explore Be-style learning from positive data and negative
counterexamples. First we show that, for Bc-style learning, similarly to Ex-
style learning, our basic model is equivalent to learning with the least negative
counterexamples.

Proposition 8. (a) NCBc = LNCBec.
(b) LNCBc C InfBc.



Proof. (a) Clearly, NCBc C LNCBc. For LNCBc C NCBc, note that, for any
grammar ¢, one can get the least negative counterexample from arbitrary neg-
ative counterexample y by conjecturing grammars for the following languages:
Wyn{z | z < z}, for all different values of z < y. Note that this search introduces
extra wrong conjectures, however, since in Be-type learning all but finitely many
grammars output are for the input language, this does not hurt the simulation.

(b) Suppose M NCBc-identifies £. Define machine M’ as follows.

For an informant I for L, define text T for L as follows:

re={% 1ot

#, otherwise.

On input I[n], output M(T[n], 7), where 7 is of length n, where for i < n,

#, if Wi, [i),n
(i) = {z <n|I(z)=0}=0;
min(Wairpig,-i),n N {z < n | I(x) = 0}), otherwise.

Now if M LNCBc-identifies L, then for all but finitely many n, the negative
answers given for conjectures of M on T are correct and hence M’ reproduces
the output of M on all except for finitely many initial segments of 7. Thus, M’
InfBc-identifies L.

Our next result shows that, to learn a language, sometimes even for Bc-
style learning, positive data and negative counterexamples are not enough - the
learner must have access to all negative data. In particular, limitations on the
learning power of our basic Be-style model are established.

Theorem 17. InfEx — NCBc # ().

Proof. Let £ = {L | (3e)[min(L) = 2e] A

(i) [L = W, and (Vz > e)[L N {2z, 2z + 1} # 0]].

OR

(i) Gz > e)[LN{2z,22+1} =0, A (Vy > 2z + 1)[y € L]|

}

It is easy to verify that £ € InfEx. A learner can easily find e as above,
and whether there exists x > e such that both 2z,2z + 1 are not in the input
language. This information is sufficient to identify the input language.

We now show that £ ¢ NCBc. Intuitively, the idea is that a learner which
learns a language satisfying clause (ii) above, must output infinitely many gram-
mars properly extending the input seen upto the point of conjecture. By repeat-
edly searching for such input and conjectures, one can identify one element of
each such conjecture as negative counterexample, allowing one to construct W,
as needed for clause (i) as well as diagonalizing out of NCBc. Note that we
needed a pair {2z,2z + 1}, to separate (i) from (ii) as one of the elements may
be needed for giving the negative counterexamples as mentioned above. We now
proceed formally.



Suppose by way of contradiction that machine M NCBc-identifies £. Then
by the Kleene Recursion Theorem [Rog67] there exists a recursive function e
such that W, may be defined as follows.

Initially, let W, = {2e,2e+1} and o¢ be such that content(og) = {2e,2e+1}.
Intuitively Cntrexmpls denotes the set of elements frozen to be outside the di-
agonalizing language being constructed. Initially, Cntrexmpls = {z | z < 2e}.
Intuitively, NegSet is the set of conjectured grammars for which we have found
a negative counterexample (in Cntrexmpls). Initially let NegSet = (. ncex(j)
is a function which gives, for 7 € NegSet, a negative counterexample from
Cntrexmpls. For the following, let 7, be a sequence of length |r| defined as
follows. For i < |7],

(i) = {;;c’ew(M(T[i],%[i])), ft}lzgf;i]é,%[i]) € NegSet;

(where the value of NegSet is as at the time of above usage).

Let zop = 2e + 2. Intuitively, z; is the least even element greater than
max(content(o,) U Cntrexmpls). Also we will have the invariant that at start
of stage s,

(i) every element < z; is either in content(o) or Cntrexmpls and

(ii) content(os) consists of elements enumerated in W, before stage s.

Go to stage 0.

Stage s

1. Dovetail steps 2 and 3 until step 2 or 3 succeed. If step 2 succeeds before step
3, if ever, then go to step 4. If step 3 succeeds before step 2, if ever, then
go to step 5.

Here we assume that if step 3 can succeed by simulating M(7,~,) for s
steps, then step 3 succeeded first (and for the shortest such 7)), otherwise
whichever of these steps succeeds first is taken. (So some priority is given
to step 3 in the dovetailing).

2. Search for a 7 D o, such that
content(7) C content(os) U{z | z > zs + 2},
M(1,~,) & NegSet and
Ww(r,y,) enumerates an element not in content(r).
3. Search for a 7 C o, such that M(7,~,) & NegSet and WM(T,%) enumerates
an element not in content (o).
4. Let 7 be as found in step 2, and j = M(7,~;), and z be the element found
to be enumerated by W} which is not in content(r).

Let NegSet = NegSet U {j}.

Let Cntrexmpls = Cntrexmpls U {z}.

Let ncex(j) = 2.

Let 541 be the least even number > max(content(7) U {zs, z}).

Enumerate {z | z; <z < 541} — {2} in W..

Let 0511 be an extension of 7 such that content(csy1) = W, enumerated
until now.

Go to stage s + 1.



5. Let 7 be as found in step 3, and j = M(1,,), and z be the element found
to be enumerated by W} which is not in content(cs).
Let NegSet = NegSet U {j}.
Let Cntrexmpls = Cntrexmpls U {z}.
Let ncex(j) = 2.
Let 541 be the least even number > max({zs, z}).
Enumerate {z | z; <z < 541} — {2} in W..
Let 0541 be an extension of o5 such that content(csy1) = W, enumerated
until now.
Go to stage s + 1.
End stage s

We now consider the following cases:
Case 1: Stage s starts but does not finish.

In this case let L = W, U{z | ¢ > zs + 2}. Note that, due to non-success
of steps 2 and 3, the negative information given in computation of v, based
on NegSet is correct. Thus, for any text T for L extending o, for n > |os|,
M(T[n],yr[n)) € NegSet or it enumerates only a finite set (otherwise step 2
would succeed). Thus, M does not NCBc-identify L.

Case 2: All stages finish.

Let L = We. Let T = |J,. 0s- Note that T is a text for L. Let Cntrexmpls
denote the set of all elements which are ever placed in Cntrexmpls by the above
construction. Note that eventually, any conjecture j by M on (T, yr) which enu-
merates an element not in L, belongs to NegSet, with a negative counterexample
for it belonging to Cntrexmpls (given by ncez(j)). This is due to eventual suc-
cess of step 3, for all 7 C T, for which M(7,v,) € L (due to priority assigned to
step 3).

If there are infinitely many 7 C T such that M(7,~v,) € L, then clearly, M
does not NCBc-identify L. On the other hand, if there are only finitely many
such 7, then clearly all such 7 would have been handled by some stage s, and
beyond stage s, step 3 would never succeed. Thus, beyond stage s computation of
M(7,7.), as at stage s step 2, is always correct (with negative counterexamples
given, whenever necessary), and step 2 succeeds infinitely often. Thus again
infinitely many conjectures of M on (7,~r) are incorrect (and enumerate an
element of L), contradicting the hypothesis.

From above cases it follows that M does not NCBc-identify L. Theorem
follows. |

Our next result shows that all classes of languages learnable in our basic
Ex-style model with arbitrary finite number of errors in almost all conjectures
can be learned without errors in the basic Bc-style model. Note the contrast
with learning from texts where TxtEx* ' — TxtBc’/ # () [CL82].

Theorem 18. NCEx* C NCBec.

Proof. Suppose M NCEx*-identifies £. Define M’ as follows. M’ on (positive)
input o is obtained by simulating M on input ¢. Suppose M outputs grammar



1. If this is the first time M has output ¢, then M’ also outputs ¢, and passes
to M any negative counterexample obtained. If ¢ has been previously output,
then in the simulation M receives the negative counterexample received the last
time ¢ was output by M’, and M’ outputs a grammar for W; U content(c) — {z |
z has been received by M’ as negative information upto now}. Now, if the
final grammar of M on the input text makes only finitely many errors, then all
these errors are patched by M’ (positive errors are patched due to addition of
content(c); negative errors are patched due to fixing of all negative errors, one
by one, as received by M'). Thus, M’ NCBc-identifies L.

Next theorem establishes yet another limitation on the learning power of
our basic Bc-style learning: some languages not learnable in this model can
be Bce-learned without negative counterexamples if only one error in almost all
conjectures is allowed.

Theorem 19. For alln € N, TxtBc' — NCBc # ()
Proof. Follows from TxtBc' — InfBc # () [CL82] and Proposition 8. |

Now we turn to Be-style learning with limited size of negative counterex-
amples. First, note that Theorem 8 gives us: BNCEx — TxtBc* # (. In other
words, some languages Ex-learnable with negative counterexamples of limited
size cannot be Bc-learned without counterexamples even with an arbitrary fi-
nite number of errors in almost all conjectures. On the other hand, as the next
theorem shows, some languages learnable in our basic Ex-style learning with
negative counterexamples cannot be learned in Be-model with limited size of
negative counterexamples even if an arbitrary finite number of errors is allowed
in almost all conjectures.

Theorem 20. NCEx — BNCBc* # {.

Proof. The class used for separating BF*NCEx — BNCEx in Theorem 9,
INIT U {N}, is not in BNCBc", as negative examples are not relevant and
the class itself is not in TxtBc* by Proposition 3. |

Similarly, from the proof of Theorem 10 we have,

Theorem 21. Suppose h,h' € INCFUNC such that h'(z) > h(z) for infinitely
many z. Then BF" NCEx — NRBF"NCBc* # 0.

Thus, similarly to the Ex-style model, we have a hierarchy on the Be-style
models depending on the recursive factor limiting the size of negative counterex-
amples.

Our next result establishes a limitation on the learning power of Bc-style
learning with negative counterexamples of limited size allowing arbitrary finite
number of errors in almost all conjectures: there are some indexed classes of
languages not learnable in this model (as Theorem 1 showed, all such classes are
Ex-style learnable in the basic model).



Theorem 22. There exists an indexed family not in BNCBc*.

Proof. The class used in Theorem 9, INIT U {N}, is an indexed family not in
BNCBc". i

Corollary 5. InfEx — BNCBc" # (.

Now we establish one of our most surprising results: there exists a Be-style
learner with negative counterexamples, allowing just one error in almost all con-
jectures, with the “ultimate power” - it can learn the class of all recursively
enumerable languages!

Theorem 23. £ € NCBc!.

Proof. First we give an informal idea of the proof. Our learner can clearly test if
a particular Wy C L. Given an arbitrary initial segment of the input 7'[n], we will
want to test if content(7'[n]) € W; for any r.e. set W, C L, where L is a target
language. Of course, the teacher cannot directly answer such questions, since W
might not be the target language (note also that the problem is undecidable).
However, the learner finds a way to encode this problem into a current conjecture
and test if the current conjecture generates a subset of the target language.
In order to do this, the learner potentially makes one deliberate error in its
conjecture! We now proceed formally.

Define M on the input text T as follows. Initially, it outputs a grammar
for N. If it does not generate a negative counterexample, then we are done.
Otherwise, let ¢ be the negative counterexample. Go to stage 0.

Stage s

1. Output grammar s. If it generates a negative counterexample, then go to
stage s + 1.

2. Else,

For n =0 to oo do:
Output a grammar for the language X where:

X = 0, if content(T'[n]) € Wi;
T | WsU{c}, otherwise.

If it does not generate a negative counterexample, then go to stage s+1,
Otherwise continue with the next iteration of For loop.
EndFor
End stage s

We now claim that above M NCBc-identifies £. Clearly, if L = N, then M
NCBc!-identifies L. Now suppose L # N. Let ¢ be the negative counterexample
received by M for N. Let j be the least grammar for L, and T be a text for L.
We claim that all stages s < j will finish, and stage j will not finish. To see this
consider any s < j.



Case 1: W, € L.

In this case note that step 1 would generate a negative counterexample, and
thus we will go to stage s + 1.

Case 2: Not Case 1 (i.e., Wy C L but L € Wy).

In this case, let m be least such that content(T[m]) € W;. Then, in the
iteration of For loop in step 2, with n = m, the grammar output is for ¢. Thus,
there is no negative counterexample, and algorithm proceeds to stage s + 1.

Also, note that in stage s = j, step 1 would not get a negative counterexam-
ple, and since ¢ ¢ L, every iteration of For loop will get a negative counterexam-
ple. Thus, M keeps outputing grammar for W;U{c}. Hence M NCBc'-identifies
L. Thus, we have that M NCBc'-identifies £. |

Since £ € InfBc*, we have

Corollary 6. (a) NCBc' = InfBc*.
(b) For all a € N U {x}, NCBc” = LNCBc".

The following corollary shows a contrast with respect to the case when there
are no errors in conjectures (Proposition 8 and Theorem 17). What a difference
just one error can make! Using the fact that InfBc™ C InfBc* (see [CS83]), we
get

Corollary 7. For all n > 0, InfBc" ¢ NCBc" = NCBc'.

The ideas of the above theorem are now employed to show that all infinite
recursively enumerable languages can be learned in our basic Bc-style model
with negative counterexamples of limited size allowing just one error in almost
all conjectures. Note that, as we demonstrated in Theorem 22, contrary to the
case when there are no limits on the size of negative counterexamples, such
learners cannot learn the class of all recursively enumerable languages.

Theorem 24. Let L ={L € £ | L is infinite }. Then £ € BNCBc'.

Proof. The idea is essentially the same as showing £ € NCBc', (Theorem 23)
except that now

(i) we need to keep conjecturing N until we get negative counterexample, if
any, and

(ii) we need to do step 1 check in every iteration of the For loop in step 2 (to
make sure that every negative counterexample gets a chance, since BNC model
only allows negative counterexample below the maximum element in the input).

We omit the details.

As there exists a class of infinite languages which does not belong to InfBe™
(see [CS83]), we have

Corollary 8. For all n € N, BNCBc! — InfBc™ +# §.

Thus, BNCBc™ and InfBc" are incomparable for m > 0. The above result
does not generalize to InfBc*, as InfBc* contains the class £.



Now, based on the ideas similar to the ones used in Theorem 23, we show
that all classes of languages Bc"-learnable without negative counterexamples
can be Be-learned with negative counterexamples of limited size when one error
in almost all conjectures is allowed.

Theorem 25. For alln € N, TxtBc" C BNCBc'.

Proof. Suppose M TxtBc"-identifies £. Define M’ as follows.
Initially, on input T[m], for m = 0,1,2,..., M’ outputs grammar for the
language:

content(T[m]), if card(Wny(r[m))) < card(content(T[m])) + n;
N, otherwise.

This continues until and unless a negative counterexample is received. Note that
if negative counterexample is never received then either

(i) input is a finite set, and eventually only first case above applies, and thus
M’ is outputing only correct grammars from some point onwards,

or

(ii) input is an infinite member of £, and eventually only second case above
applies, and thus input must be N, and M’ is outputing only correct grammars
from some point onwards,

or

(iii) input is not in L.

So, if above process does not generate a negative counterexample, then we
are done. Otherwise, let ¢ be the negative counterexample. Go to stage 0.

Stage s
For m = s to oo do:
(Note that we start with m = s).
1.  Output a grammar for:

content(T'[m]), if card(Wni(rm))) < card(content(T[m])) + n;
Ws, otherwise.

If it generates a negative counterexample, then go to stage s+1. (note
that negative counterexample can be generated only if the second case
above applied).

2. Output a grammar for:

content(T'[m]), if card(Wn(rm)))
< card(content(T[m])) + n
or content(T'[m]) € Ws;
content(T'[m]) U W, U{c}, otherwise.

L=

If it does not generate a negative counterexample, then go to stage s+1,
Otherwise continue with the next iteration of For loop.
EndFor
End stage s



We now claim that above M NCBc'-identifies £. Let L € £ and T be a
text for L. Based on the discussion before staging construction, assume that we
reach stage 0 (otherwise we are already done).

Now, suppose L is finite and T is a text for L. Then, for some ¢, for all
m > t, content(T[m]) = L and M(T[m]) outputs a grammar for an n-variant of
L. Thus, irrespective of whether we converge to a stage or have infinitely many
stages, eventually only grammar for L would be output by M’, as first clause
applies for all m >t in the staging construction.

So suppose L is infinite and T is a text for L. Then for some t, for all m > t,
M(T'[m]) is a grammar for infinite set. Now note that, any stage j for which
W; # L would be exited (same argument as done in proof of £ € NCBc'
applies here). Furthermore, for any j > t, such that j is a grammar for L, the
stage would not be exited. (We may exit some stages j < s, for which W is
a grammar for L, due to the extra stuff added in clause 1 of step 2). Thus,
eventually we reach a stage s = j such that W; is a grammar for L, and the
construction does not leave stage s. From this point onwards, M only outputs a
grammar for W or for W, U {c}. Theorem follows.

Similarly, one can show
Theorem 26. TxtEx* C BNCBc'.

Similarly to the case of Ex-style learning, BNCBc and NCBc models turn
out to be equivalent for the classes of infinite languages.

Theorem 27. Suppose L consists of only infinite languages. Then L € NCBc
iff L € BNCBec.

Proof. The idea of the proof is similar to the proof of Theorem 7. The main
difference being that we do not patch errors, and the argument about eventu-
ally being able to give right answers in the simulation being based on “finitely
many wrong conjectures done by NCBc-learner”, rather than “finitely many
conjectures by NCEx-learner.” We now proceed formally.

Clearly, if £L € BNCBc, then £ € NCBc. So we only need to show that
if £L € NCBc then £ € BNCBc. Suppose M NCBc-identifies £. Define M’
as follows. M’ on the input text T of positive data for an infinite language L
behaves as follows. Initially let NegSet = ). Intuitively, NegSet denotes the set
of grammars for which we know a negative counterexample. For j € NegSet,
ncez(j) would denote a negative counterexample for j. For ease of presentation,
we will let M’ output more than one conjecture (one after another) at some
input point and get negative counterexamples for each of them. This is for ease
of presentation and one can always spread out the conjectures.

Stage s (on input T'[s])

1. Simulate M on T[s], by giving negative counterexamples to any conjectures
j € NegSet by ncez(j). Other grammars get # as counterexample.

2. Let S be the set of conjectures output by M on initial segments of T'[s].



3. Output a grammar for UiestegSet W;.

4. If there is no negative counterexample, then go to stage s + 1.

5. Else (i.e., there is a negative counterexample), output one by one, elements
of S — NegSet. For each i € S — NegSet, if a negative counterexample is
obtained, then place ¢ in NegSet and define ncez(i) to be this negative

counterexample.
6. Go to stage s+ 1.
End Stage s.

Now suppose T is a text for L € £ and consider the above construction
for M'. Due to output at step 3, eventually any grammar output by M on
text T' (when negative counterexamples are based on NegSet and ncex), which
enumerates a non-subset of L would receive a negative counterexample. Thus,
as M NCBc-identifies L, for all but finitely many stages s, all the answers given
to M in step 1 would be correct. Thus, the grammar output in step 3 would be
correct for all but finitely many stages, and M’ BNCBc-identifies L. |

We now mention some of the open questions regarding behaviourally correct
learning when the size of the negative counterexamples is bounded.
Open Question: Is BNCBc" hierarchy strict?
Open Question: Is TxtBc* C BNCBc!?
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