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Abstract

Diabetes Mellitus is one of the most common causes of neuropathies, 
which can be caused by molecular imbalances that impair metabolic 
pathways. Studies in rats showed the importance of sirtuins (SIRT), 
deacetylases that use NAD+ as a cofactor, which have a widespread 
function in metabolism, and their relation when food deprived or 
calorie restricted. Additionally, diabetic neuropathy presents different 
structural biomarkers that cause morphological alterations in fibers 
that can be partially treated. SIRT1 is the principal sirtuin, which acts 
on hypothalamus, liver, kidney, among other organs, up regulating or 
down regulating the expression of some genes or enzymes crucial in 
the process of glucose absorption. 
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The prevalence of diabetes mellitus has been increasing worldwide 
over recent years. Long-term diabetes results in vascular changes and 
dysfunction; diabetic complications are the major causes of morbidity 
and mortality in diabetic patients [1]. It affects 243 million worldwide 
people of which 30 million suffer from some form of diabetic neuro-
pathy (DN) [2, 3]. Experimental models involving diets and peripheral 
nerves are indispensable to assist in current research, since peripheral 
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neuropathies, particularly diabetic neuropathy is a 
devastating common comorbidity in diabetic pa-
tients. [4, 5, 6]

Nowadays, Diabetic Neuropathy (DN) is consi-
dered the most common cause of peripheral neu-
ropathy in clinical practice. It can affect sensitive, 
motor or autonomic nerve fibers, with symmetric, 
asymmetric, acute or chronic presentations. DN is 
not just a functional disease, but a complication 
of diabetes with molecular and pathological subs-
trates caused by hyperglycemia [2]. A buildup of 
myoinositol is observed on diabetic’s urine and its 
reduction on injured tissue. This is the most widely 
known metabolic mechanism involved on DN [4]. 
Therefore, normalization of blood glucose is a fun-
damental step towards the successful prevention 
and treatment of DN [2]. 

The structural biomarker of DN can be considered 
as the atrophy and loss of myelinated and non-mye-
linated fibers, followed by Wallerian Degeneration, 
paranodal and segmental demyelination, associated 
to a weak regenerative response [7, 8]. In chroni-
cally diabetic rats treated with intensive insulin re-
placement, only part of the nerve conduction can 
be restored (first detectable neuronal alteration in 
experimental models). [7, 9, 10].

Long term experimental diabetes caused important 
morphological and morphometric alterations in the 
aortic depressor nerve of Wistar rats for both mye-
linated and unmyelinated fibers. These alterations 
were more severe on the distal segments, exhibiting 
a ‘‘dying back’’ type neuropathy. These alterations 
were not dependent on the endoneural blood ves-
sels lesions and treatment with insulin delayed, but 
did not stop or correct the observed lesions. Also, 
these alterations were more evident in the distal seg-
ments of the nerves and were moderated by insulin 
treatment. These results indicate that the baroreflex 
impairment described in the literature for chronic dia-
betic patients or experimental animals is due not only 
to efferent neuropathy as widely accepted, but also 
to an afferent diabetic neuropathy [11].

Also, thiamine, whose deficit is more often than 
thought, is involved in the genesis of the peripheral 
nerve system damage in diabetes mellitus [2]. There 
is a high deficit frequency (17-79%) of thiamine in 
diabetics, due to low intestinal absorption caused 
by insulin action deficit. This same thiamine deficit 
reduces insulin production in pancreatic beta cell. Fi-
nally, the proximal tubular reabsorption of thiamine 
in diabetic people does not increase, compensato-
rily, with deficit [2].

CR (calorie restriction) promotes longevity and 
slows aging. However, further restriction of food 
intake, leading to malnutrition, reduces the lifespan 
[1, 12]. One possible mechanism by which CR exerts 
such beneficial effects involves the actions of sir-
tuins (SIRT) [1, 14], which are conserved mediators 
of longevity [13]. In mammals, SIRT1, SIRT6, and 
SIRT7 are nuclear; SIRT3, SIRT4, and SIRT5 are mi-
tochondrial; and SIRT2 is cytoplasmic [13]. SIRT1 is 
associated with the regulation of a wide variety of 
cellular processes, such as apoptosis, metabolism, 
mitochondrial biogenesis, autophagy [1, 15], and 
stress tolerance [9]. SIRT1 also interacts with the 
Notch signaling pathway in the nervous system, and 
has a role in neural development and age-related 
diseases such as Alzheimer disease [15].

SIRT3 enhances lipid catabolism by deacetylating 
and activating long-chain-specific acyl-coenzyme A 
dehydrogenase (LCAD), a key enzyme in the fatty 
acid oxidation pathway [16]. SIRT3 might also re-
gulate the TCA cycle itself, as it interacts with the 
TCA enzymes succinate dehydrogenase and isoci-
trate dehydrogenase 2 [17-19]. Mechanisms that re-
duce levels of reactive oxygen species (ROS), such 
as activation of SIRT3, might be beneficial against 
age-related diseases [15].

Sirtuins are the class III histone deacetylase fa-
mily, and use NAD+ as a cofactor [20]. SIRT1 dea-
cetylates not only histones, but also many trans-
criptional regulators, thereby modulating diverse 
biological processes. SIRT1 exerts renoprotective 
effects by conferring resistance to cellular stress 
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such as hypoxia, reducing fibrosis, inhibiting 
apoptosis and inflammation, inducing autophagy, 
and regulating blood pressure [1]. CR is also renal-
protective in a diabetes model in rats, and this is 
associated with activation of SIRT1 and deacetyla-
tion of NF-kB [21]. SIRT2 mitigates oxidative stress 
in HK-2 cells [22].

SSIRT1, which expression has strong links to insu-
lin sensitivity [23], deacetylates circadian clock pro-
teins BMAL1 (transcription factors CLOCK and AR-
NTL [15]) and PER2 [24] to influence their function, 
by amplifying expression of BMAL1 [25]. SIRT1 dea-
cetylates PGC-1α in neurons to increase activation 
of BMAL transcription [25]. SIRT1 in the hypothala-
mus is key to the observed extension of life span 
in transgenic mice by virtue of its activation of the 
orexin type 2 receptor in the Lateral Hypothalamus 
(LH) and Dorsomedial Hypothalamus (DMH) [26]. 
Additionally, calorie restriction results in upregula-
tion of SIRT1 in some regions of the brain (such as 
the hypothalamus) and downregulation in others 
[27, 28, 29]. In mice undergoing calorie restriction, 
there is an attenuation of beta-amyloid content in 
the aging brain, suggesting that SIRT1 upregulation 
might be protective under some types of nutritional 
stress [27].

In conclusion, sirtuins have a crucial impact on 
glucose and age-related metabolism and the ari-
sing of neuropathies. SIRT1 is the most responsible 
for regulating all those processes. Other sirtuins, in-
cluding the mitochondrial sirtuins SIRT3, SIRT4 and 
SIRT5 and the nuclear sirtuins SIRT6 and SIRT7, may 
have important roles in cytoprotective functions, 
their molecular targets and biological functions, 
and possible roles in renoprotection, are largely 
unknown [1]. So it is important to check the mole-
cular and microscopic level the role of these proteins 
in the peripheral nerves in models of experimental 
diabetes and malnutrition, in order to corroborate 
more with the proposed study. [30]

This manuscript is dedicated to visionary and 
humanist medical researcher Naíde Regueira 
Teodósio (1915-2005) by his birth centenary and 
pioneering.
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