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Abstract　Earthquakes are phenomena associated with rupture of a part of the earth crust and 
the subsequent propagation of breakup front or energy front over wider regions of the crust or a 
plate.　Primitive Cellular Automaton Model treats this phenomenon by dividing the crust into 
many small square cells and introducing interactions among (nearest) neighbours.　The state of 
each cell is specified by the energy (or, equivalently, the number of particles just like sand pile 
model) stored in it.　When the stored energy exceeds a critical value, the cell gives the energy to 
the neighbouring cells.　This model belongs to a conventional cellular automaton model in that 
the same rule for redistributing energy is adopted.　The major differences of our model from the 
preceding ones lay on the choice of the initial condition and the cells to be revised : All cells are 
arranged initially to be below but near critical state in order to simulate large earthquakes.  In 
addition, all the cells are subjected to the revision of state at every time step.　We employ the 
renormalization method in statistically analyzing the outcomes of the simulations to show that 
this model is capable to describe the causal correlations of main and aftershocks of a single 
strong earthquake.　In particular, the data obey relations analogous to the Omori law for after-
shocks and the Gutenberg-Richter-Ishimoto-Iida law for seismic magnitudes.

Key Words : earthquake, Omori law, Gutenberg-Richter-Ishimoto-Iida law, cellular automaton, 
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1.　Introduction

Earthquakes are seismic phenomena associated with a partial rupture of the terrestrial crust.  The 

driving forces are the friction between two plates in relative motion (～a few cm/year) and the restitu-

tion energy accumulated in the deformed crust either at or beneath the palate interface.  For the latter 

case, see Hasegawa et al. (1978). (The terminology ‘stress’ is more common in literature since the 

rupture is believed to be of crucial process in earthquake.  We instead use the term ‘energy’ through-

out the paper since it is scalar and will be conceptually easier to handle.)　Either a breakup or restitu-

tion will take place at the plate interface when the accumulated energy in a part of the plates over-

whelms the interplate frictional energy.  In some case, the rupture takes place at deep beneath of the 
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plate interface.  Thus the long-term occurrences of earthquakes are expected to be governed by the 

dynamics of the plates in relative motions.

The prevailing block model simulates earthquakes of interpolate origin by sudden and intermittent 

motions of blocks on a plate that were at rest owing to the frictional forces between the blocks and the 

plate.  The sudden motion of a block is caused by the elastic energy stored and accumulated between 

neighbouring blocks.  The frictional energy is assumed to be a function of relative velocity and the 

state of the block, which is described usually by a single phenomenological parameter (Ruina 

1983).  Nature of the frictional force as well as the elastic energy of rock is extracted from experi-

ments in laboratory (Dietrich 1979).  Once the nature of the frictional and elastic forces are specified, 

the block model can dynamically determine the motion of the blocks by way of the Newtonian 

dynamics and consequently the seismic size by the number of blocks that move simultane-

ously.  Supplemented by the data of past earthquakes, the block model has been used even to foresee 

coming earthquake at given districts.  For the precise structure of the model and its application for 

prediction of earthquakes, see, e.g., Kato and Hirasawa (1999) and references cited therein. 

Earthquake is a super-macroscopic phenomenon consisting of a huge number of individual motions 

of ‘elements’ in the crust.  The block model aims to understand this super-macroscopic phenomenon 

in terms of macroscopic and microscopic mechanisms.  On the other hand, there exists a possibility 

to view earthquake as a critical phenomenon in which a small change of the state indefinitely grows 

under some appropriate conditions.  In terminology of statistical physics, the correlation length 

becomes large or infinite when critical phenomenon occurs.  The phase transitions of the second kind 

observed in various matter as temperature, pressure, magnetic field and so on are varied are under-

stood in this way.

Critical phenomena are characterized by divergence of fluctuations and scaling laws.  Concerning 

earthquakes, the former corresponds to the growths of breakup and deformation in a crust which were 

initiated at a local region.  The latter is corroborated by the following rules of thumb :

1.  The Gutenberg-Richter formula for the seismic magnitudes : Frequency n(M) of earthquakes 

with magnitude M is proportional to 10－bM, where b is positive. 

2.  The Gutenberg-Richter formula for the energies of seismic waves : Energy of the seismic wave 

is related to the seismic magnitude by log Ein unit of J=4.8+1.5M.

The rules 1 and 2 imply the scaling law n M E / .b 1 5\ -^ h  (Gutenberg and Richter 1956).

3.  Ishimoto-Iida law : Frequency of seismic records with an amplitude A recorded at fixed place is 

proportional to A－m, where m is positive (Ishimoto and Iida 1939).
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4.  The Omori law for aftershocks : Frequency of aftershocks at time t after the main shock is pro-

portional to (t+c)－ν, where v=1 (Omori 1894) or v 1v,  for modified Omori formula (Utsu 1970, 

Yamashita and Knopoff 1987).

Assuming that E and A are related by E A\ a and noting that the number of seismic events are invari-

ant under any transformation of variables, i.e., 10－bM dM=A－mdA, the laws 1, 2 and 3 implies b and m 

are related by b=(1.5/α)(m－1).  Hereafter, we consolidate 1, 2 and 3 above to the Gutenberg-Richter-

Ishimoto-Iida (GRII) law.

In Fig. 1(a), the seismic intensity-frequency relation during March 11-May 6, 2011 of Tohoku 

Pacific-Ocean Earthquake is shown.  For the aftershocks with smaller intensities, the GRII law 

seems to fit the observation.  The power-law relation between energy and frequency is very likely to 

hold in this earthquake.  Shown in Fig. 1(b) is the number N(d) of aftershocks of the same earthquake 

as a function of day after the main shock.  The Omori law fits the observed data quite well.

If earthquakes are really critical phenomena, it will be possible to understand them in terms of a 

simple rule of propagation of fluctuations in an ensemble of small domains without referring the 

details of microdynamics.  Then, viewing earthquakes as critical phenomena means we ask under 

what condition and how the geophysical fluctuations develop and then cease.  We may also ask what 

universality class does earthquake belong.

The purpose of this paper is to answer the first question addressed above by analyzing a primitive 

cellular automaton model (PCAM) of earthquake (cf. Bak and Tang 1989, Gould and Tobochnik 

1996), although our model differs from the prevalent ones in two respects.  First, the initial state is 

Fig. 1　Observation for Tohoku-Pacific Ocean Earthquake in 3.11.2011 (Japan Meteorological Agency 2011).
(a)  Seismic intensity and frequency during 3.11-5.6, 2011.　(b)  Temporal dependence of the number 
of aftershocks with magnitude $ 5 per day.　The main shock was recorded at 14 : 46, 3.11, so that the 
original data, N0(d), released by Japan Meteorological Agency have been modified in accordance with 
the prescription : N(1)=N0(1)+N0(2)/2, N(d)=[N0(d)+N0(d+1)]/2 for d $2. 　This means that ‘day’ in 
Fig. 1(b) is approximately equal to 24 hours.
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prepared randomly.  Second, all the cells are subjected to revision in the same time step.

One may wonder whether this model, so simple that it is quite suitable for beginners’ study of deter-

ministic system in discrete space and time, is applicable to real physics.  On the contrary, we will see 

that the PCAM reproduces the very characteristic aspects of earthquakes, including theGRII law and 

the Omori law.

There are several variants in the cellular automaton model of earthquake.  Barriere and Turcotte 

(1993) took fractal distributions of cell sizes into account as a reflection of complex distribution of 

actual faults.  The GRII law was reproduced but the Omori law was not.  Steacy and McCloskey 

(1998) studied a heterogeneous system in which the cells’ strengths are not constant.  In addition, the 

energy of the critical cell is redistributed only to unbroken neighbouring cells.  They found, in their 

model, that there is no special correlation between large and small earthquakes, which renders predic-

tion of large earthquakes from small ones impossible.  Nakanishi (1991) studied a cellular automaton 

version of the block model and derived the GRII law with some variation of the exponent b. 

This paper is organized as follows.  The structure of the model is given in sect. 2.  The direct out-

comes of the model are presented in sect. 3.  In sect. 4, we explain the renormalization method 

employed in our model.  In sect. 5, we present the result of applying the method elaborated in 

sect. 4.  Section 5 is devoted to conclusion and outlook.

2.  Model

We consider a square lattice sectioned into n×n cells.  Each cell is specified by two integers i and j, 

both run from 1 to n.  Each cell has its own internal state at every discrete time.  The state of a 

cell (i, j) is specified by a number Ei,j that represents the ‘stress energy’ stored in the cell.  Their ini-

tial values are given randomly.  At every time, Ei,j is accumulated by a small positive quantity ΔE for 

all i and j.  When the value of some Ei,j exceeds the critical value, Ec, the internal state is changed to 

Ei,j－Ec.  At the same time, the energies of the neighbouring four cells are respectively increased by 

Ec/4.  This last process is the smallest earthquake in the PCAM, which we call the unit event.  The 

unit event around one cell may trigger other unit events through the interaction among nearest cells in 

case these cells were near to the critical state.  In other words, the rate of unit events may remain a 

constant level or proliferate under some appropriate conditions.  The time scale of unit events and 

their proliferations is very short in reality as compared to the time scale of energy accumulation.  In 

the simulation, however, we do not discriminate these two lengths for matter of convenience.  When-
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ever the critical cells completely disappear, the state of every cell is increased by ΔE.  We regard a 

collection of the unit events at a certain time interval as the seismic phenomenon we usually call 

earthquake.  The Decimal BASIC program of the model is given in Appendix.

3.  Results of simulation

We performed simulations for the lattice size 32×32.  The parameters are Ec=4, ΔE=0.0002.  The 

initial state of each cell is chosen randomly as Ei,j=3.96+0.005ri,j, where ri,j is a uniform random num-

ber in (0, 1) for the site (i, j).  One unit event is caused by a cell with the energy greater than Ec, 

which we shall call a critical cell.  The critical cell is a cell that is releasing the energy Ec.  We first 

observed how the number of the critical cells, N, varies with time.  The result of simulation is shown 

in Fig. 2.

The earthquake characterized by a sequence of peaks in N starts at t=175 and ceases at t=1925.  In 

between, many small peaks are observed and the heights gradually decrease on average.  The initial 

large peak is the main shock and subsequent small peaks are aftershocks.  The average temporal 

variation of N seems to be approximated by N0/(t+c).

The active period, i.e., the temporal length Ta of the sequence of peaks, in Fig. 2(a) is 1750.  Out-

side of this time interval, the system goes into a resting period.  As shown in Fig. 2(b), the active 

period and the resting period appear almost periodically.  We note that the length Tr of the resting 

Fig. 2　Temporal behaviour of the number of critical cells.　(a)  The bold curve is an Omori function drawn up 
to 2500 time step as a guide.　The inset is a collection of snap shots of the state of the lattice.　From 
top to bottom : first unit events, intermediate state and final state.　Cells are colored by the rule : black 
for 0#E<1, dark gray for 1#E<2, intermediate gray for 2#E<3, light gray for 3#E<4, white for 4<E.　
(b)  Long term variation of the number of critical cells.
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period is only about 50% longer than Ta in the present simulation.  Note that, for convenience of cal-

culations, Δtr, the unit time for the accumulation of energy in the rest period was taken equal to Δta, the 

unit time for the energy release in the active period.  (In the actual simulation, Δtr=Δta=1)　In order 

for our model to be applicable to a real long-term seismic history of a certain district, therefore, the 

unit time-steps in the active and resting periods should be appropriately reinterpreted.  For instance, 

if the simulation history Fig. 2(b) were to be compare with Tohoku Pacific-Ocean Earthquake, which 

is guessed to occur with the resting period of ～1000 yr, then we would have Ta/Tr～0.1 yr/1000 yr～

1750Δta/(1.5・1750Δtr) or Δtr/Δta～7000.

Taking the GRII law and the Omori law as established laws, the result mentioned above may be a 

preferable one if one unit event of the model is interpreted as one earthquake with the seismic inten-

sity greater than a chosen value.  On the other hand, some unit events occur simultaneously with 

direct correlation.  One example is shown in Fig. 3.  There, the four unit events in (b) occurred at 

the same time by a common cause.  If the four critical cells in (b) are in contact with other cells that 

are just below criticality, then those four cells in (b) will cause the next unit events.  It is appropriate 

to regard these sets of unit events as single earthquakes with greater magnitudes.  Therefore, it will 

be interesting if one can identify a single earthquake consisting of many unit events together with its 

magnitude and reanalyze the statistical distribution of seismic magnitudes.  We turn to this problem 

in the next section.

4.  Coarse graining

One critical cell describes one unit event.  Therefore, in order to extract individual earthquakes 

from a given pattern of the distribution of cells, we have to identify a certain type of cluster of critical 

cells as a single earthquake.  This is particularly necessary if one critical cell implies a release of 

Fig. 3　Example of correlated unit events.　(a)  One critical cell is surrounded by four cells whose states are 
just below the critical one.　(b)  The central cell changes the state to the lowest one by releasing energy.　
The surrounding four cells receive the part of the energy and become critical simultaneously.
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energy of the same order of magnitude.  In this case, the difference in seismic magnitude must be 

attributed to the difference in the number of critical cells in single clusters. 

Unfortunately, this is a problem of a little troublesome in two points.  First, what is a cluster ?  If 

by a cluster we mean a set of connected critical cells, then we confront the same problem as in perco-

lation.  Identifying a connected set is generally not a simple process.  Second, in our problem, a 

connected set do not always imply a single earthquake.  See Fig. 4, where a fictitious snapshot of a 

lattice is given.  There are three clusters of critical cells.  Upper two clusters are disconnected and 

may represent two distinct earthquakes.  The third cluster at the bottom is also connected.  Is it a 

single earthquake ?  The answer will generally depend on the history of cluster evolution.  It may be 

a single earthquake.  However, it is also possible that, at previous times, the cluster was disconnected 

and later two clusters became connected as a result of the propagations of shock fronts generated else-

where.  Discriminating these situations in a given snap shot is a matter of probability.

Recalling that the earthquake may be a critical phenomenon, we shall employ the method of coarse 

graining, or renormalization group method, for our end.  The renormalization group method is quite 

useful in the field of critical phenomena observed in the systems of atoms, molecules, spins etc.  The 

idea was developed by Kadanoff (1966) and was formulated and successfully applied by Fisher and 

Willson (1972) and others to quantum field theory to study infrared or ultraviolet properties of Green’s 

functions.  For related references, see, e.g., Wilson and Kogut (1974).

Kadanoff et al. (1989) applied the method to the model of avalanches and explored the dependence 

of the universality class on the rule of automaton.  Bak and Tang (1989) suggested that the method 

would be applicable to earthquakes.  Turcotte (1999) performed renormalization in the forest-fire 

model with an asymmetric coarse graining rule.

Fig. 4　Examples of connected clusters of critical cells.
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Coarse graining is to repeat fusing nearby cells into one larger cell with a state determined by a cer-

tain rule.  There is some arbitrariness in the choice of the rule except that it should keep the global 

tendency of the whole lattice unaltered.  The rule we adopt for the present problem of earthquake is 

shown in Fig. 5.  As is described below, by one coarse graining, the energy transferred to neighbour-

ing cells gets about four times greater, which brings about the renormalization of the interaction 

strength.

At the first step of coarse graining, the lattice size reduces from 32×32 to 16×16.  We count nc, the 

number of the critical (or white) cells that disappeared at this stage.  Not that each of them were one 

unit event releasing the energy Ec so that we regard it as an earthquakes with ‘magnitude’ 1 or 

M=1.  At the second step, the lattice size reduces from 16×16 to 8×8.  The critical cells that disap-

peared at this stage released on average the energy of the order of 4Ec per renormalized cell, so that 

they correspond to the earthquakes with M=2.  We repeat this procedure until the lattice size becomes 

1×1.  In this way, at each time, we count and sum-up all the number nM(t) of earthquakes up to M=5 

in our simulation.

Fig. 5　The rule for coarse graining.　Critical cells are designated by white, others by gray.　Four cells that 
are simultaneously in contact via lines or points are fused into one cell.　The resultant colour is deter-
mined by the majority of the state of the four cells.　In case the number of the white cells is two, the 
final colour is either white or gray with equal probability.
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5.  GRII law and Omori law

We performed simulations for five times by changing initial condition and took an average.  The 

dependence of the number of aftershocks on magnitude n(M) are obtained by summing nM(t) over the 

period the aftershocks continue.  The result is shown in Fig. 6.

n(M) is well approximated by

This is the GRII law of our model.

The raw plot of n(t) obtained by summing nM(t) from M=1 to 5 is shown in Fig. 7(a).  Since loga-

rithm of n(t) changes very slowly for small t, we summed n(t) for every fifty t’s.  Namely, we defined 

a function n(d) by

and plotted n(d) against d in Fig. 7(b).  The simulation data as a whole are on the curve implied by 

the Omori law, although the number of aftershocks at d=4～8 are less than the ones expected from the 
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Fig. 6　Behaviour of n(M).

Fig. 7　(a)  Solid curve : n(t).　Dotted curve : 1500/(t+64).　(b)  Solid curve : n(d).　Dotted curve : 18000/
(d+0.5).　For the definition of n(d), see the text.
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formula.

Taking a close look at Figs. 6 and 7, we notice some deviations of our results from the idealized 

GRII law and Omori law.  Concerning the former, the number for M=4 is larger, and, as a reflection 

of this increase, concerning the latter, the frequency of mid-term earthquakes is reduced as compared 

with the expected ones.  This implies that over-clustering to higher magnitudes might have taken 

place in our renormalization procedure.  By altering the clustering rule slightly, these two discrepan-

cies will be improved simultaneously.

We modified the coarse graining rule by setting the coarse graining probability in such a way that, 

when nc=2 in 2×2 cells, we form the coarse grained critical cell with the probability pcoarse.  The result 

is shown in Fig. 8.  Frequency for M=4 is reduced and the time dependence of aftershocks seems to 

modified toward a linear relation.  However, the number of the events with M=5 is deviated from a 

ideal the GRII law.

One may wonder whether our counting of n(M) gives correct the GRII relation since all of nM(t) at 

every time t are summed thereby resulting in overestimations due to double or triple countings of 

events.  Instead, n(M) may be defined as the sum of nonzero nM(t) with maximum M.  The result of 

counting due to this definition, which corresponds to Fig. 8(a), is given in Fig. 9.  We again see that 

the scaling law holds on average, with the parameter 1.b.  

We finally present an example of the pattern of energy distribution on the lattice with size 64×64 in 

Fig. 10.  It reveals an example of pattern in a relatively quiet term corresponding to the right tail of 

the sawlike curve in Fig. 2(a) after the main shock.  The high-energy domains, 3<Ei,j#4, with vari-

ous sizes bounded by low-energy cells distribute over the lattice.  The cells with energy less than 2 

tend to align diagonally, while the cells with 2<Ei,j#3 tend to form either vertical or horizontal bound-

aries.  The former is attributed to the fact that the shock front tends to align diagonally owing to our 

Fig. 8　Results of simulation for the coarse graining probability pcoarse=0.39.　(a)  Frequency vs. magnitude 
(M).　(b)  Frequency vs. time (d).
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automaton rule.  These boundaries, which we may regard as the faults, form a connected network 

with the fractal dimension 1.7D. .  Note that this fractality, which was expected when we obtained 

the GRII law and the Omori law in our simulation, is not a condition but an outcome of our model.

6.  Conclusion and outlooks

We examined the two-dimensional PCAM of earthquakes.  This model, ignoring all the details of 

the crustal and interplate interactions, takes the following four rules as essential ingredients into 

Fig. 10　Example of the pattern of the distribution of energies over the 64×64 lattice.　The domains colloured 
by lightest gray are ensemble of cells　with the energy 3<E<4.　They are separated by boundaries 
that consist of low energy cells.　The fractal dimension of boundaries is about 1.7.

Fig. 9　Number of aftershocks with magnitude M obtained by the counting that avoids double or triple count-
ings.
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account :

1.  energy conservation in unit event

2.  nearest neighbour interaction

3.  constant rate of energy accumulation

4.  common critical energy above which cell’s energy is released

We started the simulations with the initial condition that all the cells are near the critical one.  This 

condition suites with exploring the time evolution of large earthquakes.  Amazingly enough, in spite 

of all the above simplification, the model can reproduce the most prominent feature of the earthquakes 

in reality, i.e., the GRII law and the Omori law, semi-quantitatively.  Furthermore, we saw that the 

exponent of the GRII law does not depend on the details of the method of renormalization and that the 

fractal pattern of the energy distribution results in after the main shock.  These facts strongly indicate 

that the system of the crust and the mantle is in a critical state and that earthquakes are self-organized 

and self-similar critical phenomena. 

The most significant conclusion derived from that the earthquake is a critical phenomenon is the 

‘unpredictability’ of the occurrence of earthquake (Bak and Tang 1989, Steacy and McCloskey 

1998).  Since events of small scales have no essential distinction from large-scale events, so that 

small precursors will not help predict to the coming ‘main’ shock.  This view confronts with the opti-

mism that prediction will be possible by proper accumulations of data that is achieved by putting 

selected target area under close surveillance (Mogi 1982).  There can be various types of prephenom-

ena, if any, of large earthquake, depending on the crustal properties.  Mikumo and Miyataka (1983) 

discussed the classification of the prephenomea. 

That earthquake is very likely to be a critical phenomenon means that the distinction between pre-

cursors and the main shock is a matter of naming and is possible only ex post facto.  However, this 

does not imply the unpredictability of the phenomena in any sense.  We should notice that, in real 

earthquakes, such precursors (or, more appropriately, pre-events) as small shocks, subsidence or 

upheaval of land in fact frequently accompanied with seismic events with large scales (Mogi 1982, 

Kikuchi et al. 2002).  We should also notice that earthquakes at a given local area occurred so far 

with a gross periodicity (Terada 1917, Shimazaki 2002).  The prediction of earthquake in geophysi-

cal time scale is arguably possible with geophysical uncertainties.  The important point we should 

remember is that the time scale in human life is extremely shorter than the characteristic geophysical 
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time scale.

There are several things remained to be done to refine our PCAM.  Introducing nonuniformity and 

anisotropy of initial condition and interaction are particularly interesting for comparison with real 

seismic phenomena.  In order for these improvements of the model to be meaningful, enlarging the 

lattice size will also be necessary.

What determine the correlation length ?  This is the most important question on our model of criti-

cal phenomena.  The answer must be the distribution of energies in the cells.  If the parameter that 

characterizes this distribution below criticality is identified, then we will be able to scrutinize further 

the property of phase transition in our model.

Appendix

Here, the main part of Decimal BASIC program (Shiraishi 2010) used for simulation in the text is 

presented (cf. Gould and Tobochnik 1996).  The critical energy and the rate of energy accumulation 

are set to be 4 and 0.0002, respectively.

PROGRAM earthquake

! 2-dimensional cellular automaton model of earthquake

DIM energy (0 TO 41, 0 TO 41)

DIM ir (1681), jr (1681)

DIM nrel (0 TO 20000)

LET  l=32　　　! linear lattice size

LET　ncell=l*l

CALL initial (energy, l)

LET nquake=0

LET　ec=4　　　! critical energy

LET　de=0.0002　! energy given to cell in unit time

LET　tmax=ec/de

LET　t=0

LET　ts=0

DO WHILE t <= tmax
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　　LET  nrelease=0   ! number of critical cells

　　FOR i=1 TO l

　　　　FOR j=1 TO l

　　　　　　LET  energy (i, j)=energy (i, j)+de

　　　　　　IF energy (i, j)>ec THEN

　　　　　　　　LET  nrelease=nrelease+1

　　　　　　　　LET  ir (nrelease)=i

　　　　　　　　LET  jr (nrelease)=j

　　　　　　END IF

　　　　NEXT j

　　NEXT i

　　LET  nrel (t)=nrelease    ! store the number of critical cells

　　IF nrelease>0 THEN

　　　　CALL release (t, energy, ir, jr, nrelease, l, ec)   

　　END IF

　　LET  t=t+1

　　WAIT DELAY 0.01

LOOP

END

EXTERNAL　SUB initial (energy (,), l)

! initial distribution of energies

DIM ifor (0 TO 41, 0 TO 41)

FOR i=0 TO l+1

　　FOR j=0 TO l+1

　　　　LET  energy (i, j)=0.01*rnd

　　NEXT j

NEXT i

SET WINDOW 0, l+1, 0, l+1

FOR i=1 TO l

　　FOR j=1 TO l
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　　　　LET　ifor (i, j)=int (energy (i, j))

　　NEXT j

NEXT i

MAT PLOT CELLS,IN 6, 6 ; l+7, l+7 : ifor

END SUB

EXTERNAL  SUB release (t, energy (,), ir (), jr (), nre, l, ec)

DIM jfor (0 TO 41, 0 TO 41)

LET　p=ec/4

DO WHILE nre>0

　　FOR k=1 TO nre

　　　　LET　i=ir (k)

　　　　LET　j=jr (k)

　　　　LET　energy (i, j)=energy (i, j)−ec

　　　　LET　energy (i, j−1)=energy (i, j−1)+p

　　　　LET　energy (i, j+1)=energy (i, j+1)+p

　　　　LET　energy (i−1, j)=energy (i−1, j)+p

　　　　LET　energy (i+1, j)=energy (i+1, j)+p

　　NEXT k

　　LET　nre = 0

　　FOR i=1 TO l

　　　　FOR j=1 TO l

　　　　　　IF energy (i, j)>ec THEN

　　　　　　　　LET　nre=nre+1

　　　　　　　　LET　ir (nre)=i

　　　　　　　　LET　jr (nre)=j

　　　　　　END IF

　　　　NEXT j

　　NEXT i

    

　　FOR i=1 TO l

　　　　FOR j=1 TO l
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　　　　　　LET  jfor (i, j)=int (energy (i, j))

　　　　NEXT j

　　NEXT i

　　MAT PLOT CELLS,IN 6, 6 ; l+7, l+7 : jfor

LOOP

END SUB
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