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Abstract 
 
Using county-level TRI data from 2003 to 2016, I find evidence that lead emissions in water 
adversely affect birth weights within the emitting county, especially with respect to the 
percentage of births considered low birth weight within that county (less than 2,500 grams). I 
find that a one percent increase in lead emissions per square mile increases the proportion of low 
birth weights by 0.27 percentage points. For a county with an average number of births in a 
particular year, this one percent increase in lead per square mile translates to an additional 
$475,000 in hospitalization costs from complications with delivery and perinatal care alone. My 
results show that lead emissions create a substantial negative externality even at relatively small 
quantities and may have more significant effects for those living in poverty. 

 
I. Introduction 

 
Elemental lead (Pb) was a standard, even luxury, input in paint and infrastructure until 

recent history. Its benefits with respect to painting were known to the Roman Empire, which 
explains the well-preserved paint on ruins. Lead is known to prevent issues with mildew and 
exposure to sunlight, which may otherwise accelerate the deterioration of paint or piping. 
Because of these benefits, lead became a commonality in the typical household, especially on 
painted materials and in piping (Rabin, 1989; Lessler, 1988).  
 In the beginning of the twentieth century, some researchers began to postulate that 
household usage of lead was leading to widespread lead poisoning in children. The wider 
scientific and global community did not reach a full consensus until the 1920s and 1930s, when 
it was banned for use indoors in several countries (Rabin, 1989). Lead would be classified as a 
probable carcinogen in 1981 (NTP, 2016). Despite knowledge of lead’s toxicity, firms are still 
able to obtain authorization to release lead into bodies of water, such as streams, rivers, lakes, 
and oceans if a firm has a permit to do so. 
                                                
1 Thanks to my advisor, Professor Robert Baumann, for valuable feedback and support. Thanks also to 
Renée Leblanc for suggestions and critiques of early drafts. Thanks also to the Weiss Summer Research 
Fellowship in the Humanities and Social Sciences for funding to make this research possible. Any errors 
found herein are my own. 

mailto:PatrickKoval@gmail.com
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Due to the Emergency Planning and Community Right-to-Know Act (ECPRA), firms are 
required to report these emissions. Passed in 1986, it mandates annual reporting of numerous 
chemicals by firms in certain sectors, such as manufacturing. This reporting is released as public 
information in the form of the Toxics Release Inventory (TRI).  

Using county-level TRI data from 2003 to 2016, I find evidence that lead emissions in 
water adversely affect birth weights within the emitting county, especially with respect to the 
percentage of births considered low birth weight within that county (less than 2,500 grams). 
These findings are robust to demographic controls, county fixed effects, and year fixed effects. 
In addition, these findings are consistent with the scientific literature that describes the negative 
health effects of lead, and this paper's main contribution is the estimation of this relationship. I 
find that a one percent increase in lead emissions per square mile decreases average birth weight 
by almost 7 grams while increasing the proportion of low birth weights by 0.27 percentage 
points. For a county with an average number of births in a particular year, this one percent 
increase in lead per square mile translates to an additional $475,000 in hospitalization costs from 
complications with delivery and perinatal care alone. My results show that lead emissions create 
a substantial negative externality even at relatively small quantities and may have more 
significant effects for those living in poverty.  
 
II. Background 
 
Lead 
 
Health effects 
 

Due to its wide range of toxic effects, both carcinogenic and not, lead is considered a 
priority chemical among metals as well as among all chemicals more generally (Nedellec and 
Rabl, 2016a; Lim et al., 2010; Lim et al., 2011).  Following prenatal lead exposure, newborns 
can experience both immediate pregnancy and birth complications as well as latent effects. These 
include low birth weight, anemia, hypertension, spontaneous abortion, stillbirth, and cognitive 
delay (Zhu et al., 2010; Papanikolaou et al., 2005; Goyer, 1996; Xie et al., 2013; Wani et al., 
2015). 

Despite the numerous effects exposure can have, lead is known primarily as a neurotoxin 
that affects the developing brain (Sanders et al., 2009; Zheng et al., 2003; Goyer, 1996). 
Exposure to lead in childhood is associated with delayed and impaired cognitive development 
(Lanphear et al., 2005; Mazumdar et al., 2011; Koller et al., 2004; Nedellec and Rabl, 2016b) as 
well as Autism Spectrum Disorder (Kalkbrenner et al., 2014; Windham et al., 2006).  

 
Behavioral effects 
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In addition to both immediate and latent health effects, exposure to lead has also been 
associated with behavioral outcomes with economic consequences. Grönqvist et al. (2017) 
exploit the phase-out of leaded gasoline in Sweden in order to measure the effect of elevated 
blood-lead levels on school performance and criminal conviction. They find that lead exposure in 
childhood and adolescence is associated with increases in property and violent crime above a 
threshold of 5.7 µg/dL2 and is associated with a decrease in the probability of high school 
completion above a threshold of 3.5 µg/dL. Wright et al. (2008) find a similar association with 
probability of arrest in early adulthood resulting from prenatal exposure.  

As is apparent in the findings of Grönqvist et al. (2017), blood-lead levels below 10 
µg/dL are associated with negative effects for those exposed. Until recent years, it was thought 
that 10 µg/dL was a safe threshold beyond which was considered a ‘level of concern.’ In 2012, 
following the growth of a literature describing adverse effects at subthreshold levels, the CDC 
declared that there is no evidence for a threshold of safety (CDC ACCLPP, 2012). 
 
Benefits of Removal  
 

Attempts have been made to quantify both medical costs and outcome-associated costs of 
exposure, such as falls in productivity. Using data from the National Health and Nutrition 
Examination Survey (NHANES), Trasande and Liu (2011) find that, in 2008, lead exposure 
produced cost $50.9 billion in lost productivity due to cognitive impairment. They estimate that 
exposure cost an additional $5.9 million in associated healthcare costs. Nedellec and Rabl 
(2016b) attempt to estimate the marginal social cost of lead emission resulting from healthcare 
cost using an impact pathway analysis model.  They find that each kilogram emitted has an 
associated 29,343 €2013 (≈$16740.11 per pound adjusted for inflation) in medical costs. 
 Others attempt to quantify savings of lead removal with data from prior removal 
initiatives or proposed future projects. Using the decrease in blood-lead concentrations recorded 
by NHANES, from 1976 to 1999, Grosse et al. (2002) estimates at least $110 billion in savings 
due to gains in worker productivity from lack of lead exposure. Gould (2009) estimates that lead 
hazard control for lead-based paint alone has the potential to produce net savings of at least $181 
billion. 

As will be discussed further, lead exposure is more common in low-income and Black 
children, who are already at higher risk of having a low birth weight. The prospect of residential 
sorting is described in Zivin and Neidell (2013) as a family’s decision between several locations 
based on the ‘bundled amenities’ of those areas. They cite a hypothetical example of an urban 
residence which provides good schools but poor air quality. As such, a choice must be made 
based on a family’s preferences. However, rather than residential sorting, Christensen and 
Timmins (2018) find evidence of discriminatory steering of minorities. Using data from HUD’s 
most recent housing study, they find realtors steer minorities toward neighborhoods with more 
crime, higher poverty rates, schools of lower quality, increased amounts of air toxics released, 

                                                
2 Micrograms per deciliter – the common measurement of blood lead concentrations.  
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and are in closer proximity to superfund sites when compared to white testers, while controlling 
for advertised house quality and observable preferences. 
 
Low Birth Weight 
 

While sometimes considered a proxy for infant malnutrition and poor infant health, low 
birth weight is also associated with poor health and economic outcomes. Recent studies use the 
method of twin- and sibling-matching to improve on the strength of evidence previously 
gathered through cross-sectional analysis. These studies find negative impacts on academic 
achievement, educational attainment, IQ, earnings, as well as increased welfare dependency 
resulting from low birth weight (Black et al., 2007; Oreopoulos et al., 2008; Almond and Currie, 
2011). In addition to outcomes of predominantly economic importance, longitudinal studies have 
been conducted that connect low birth weights and increased risk of insulin resistance syndrome 
(Valdez et al., 1994), impaired glucose tolerance (Hales et al., 1991), high blood pressure 
(Poulter et al., 1999), coronary heart disease (Eriksson et al., 1999), hypertension, and diabetes 
(Curhan et al., 1996).  

These effects of low birth weight could potentially affect subsequent generations. Using a 
dataset consisting of births in California, Currie and Moretti (2007) find evidence that, 
controlling for grandmother fixed effects, mothers born with low birth weights are more likely to 
have children with low birth weights as well. This risk is substantially greater for mothers living 
in high-poverty neighborhoods. This, in addition to the discriminatory steering found by 
Christensen and Timmins (2018), provide evidence for a theoretical mechanism through which 
environmental characteristics could add inertia to intergenerational immobility, especially among 
minorities, by reducing birth weight, which is then carried across generations (Bhattacharya and 
Mazunder, 2011). 
 
Studying the Effects of Environmental Toxins 
 

When attempting to study the effects of certain environmental toxins or variations in the 
environmental characteristics of a particular location (e.g. the construction of an oil well, the 
shutdown of a power plant), there are two common methodologies employed. Biomonitoring 
studies involve the collection of measurements, such as blood-lead concentration, from 
individuals in proximity to the emission source. These have the benefit of increased accuracy in 
measurement, but are costly due to the requirement of testing for each individual in the sample, 
which restricts sample sizes (for example, Kimbrough et al., 1995; Landrigan, 1996; Chaiklieng 
et al., 2015). 
 Epidemiological studies, while providing less individual-level precision, offer a better 
ability to generalize due to an increased sample size. These proximity studies are possible when 
data is collected in small areas, such as cities or counties. Outcome measures can then be studied 
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in relation to the variation in the relevant toxin over time within the relevant region (for example, 
Neidell, 2004; Yang and Chou, 2015; Dickerson et al. 2015). 
 One of the richest datasets of toxin emissions available is the Toxics Release Inventory 
(TRI), which currently contains firm-level emissions data for 595 chemicals. Using EPA’s 
TRACI (Tool for the Reduction and Assessment of Chemical and other environmental Impacts) 
to measure the potential toxicity of TRI-listed chemicals, Lim et al. (2010) finds that the 
distribution of toxicity potential is highly skewed. Lead and lead compounds account for more 
than 30 percent of non-cancer toxicity potential in both air and water emissions. In a follow-up 
study, they compare TRACI to the RSEI (Risk-Screening Environmental Indicator), a model 
with significantly different assessment methodology. Both label lead and lead compounds as a 
priority chemical type with respect to non-cancer toxicity (Lim et al., 2011). 

The literature using TRI data to study variation in health outcomes has a diverse range of 
methodologies. In the environmental and public health literatures, it is common to collect TRI 
emissions data for several years and a measure of either total mortality or a disease-specific 
mortality from several years later, which is averaged across years as well. Despite the potential 
benefits of the instituted lag, using mortality may prove to be an outcome variable with poor 
specificity. As Agarwal et al. (2010) explains, the usage of mortality rate as an outcome cannot 
control for lifetime exposure, nor can it control for individuals moving in and out of the 
measured region. These issues led Agarwal et al. (2010) to use infant mortality. Infants are a 
particularly vulnerable subsection of the population, which allows for an increased ability to 
study immediate effects of exposure without the requirement of accounting for lifetime exposure. 
Further, pregnant women are highly unlikely to change counties during pregnancy, so any 
potential confounding issues due to moving across counties would be small and unlikely to alter 
results (Agarwal et al., 2010).   

Although infant mortality provides a better means of studying the immediate effects of 
exposure to toxins when compared to general population mortality, it still lacks specificity. 
Infant health may be drastically affected by toxins within leading to an outcome of death. For 
example, as previously discussed, lead exposure prenatally and in infancy can have significant 
effects on development, but death due to environmental lead exposure appears to be a rarity in 
comparison to other outcomes (Currie and Schmieder, 2009). Because of this, using birth weight 
as a proxy for infant health allows for a more precise estimation of chemical.  
 
III. Data Description 
 

Data are collected from multiple sources to construct a dataset spanning years 2003 
through 2016. Each primary dataset is described below and the locations of each dataset are 
available in the appendix. 

Average birth weight, total births considered low birth weight, and total births were 
collected at the county level from the WONDER database provided by the CDC. The WONDER 
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database limits queries to counties with populations of 100,000 or over, so our sample is 
restricted to populous areas. 

Emissions data from water are from the TRI and aggregated at the county level.3 Since 
the last TRI regulation to affect lead directly was passed in 2001, reporting requirements for lead 
stay consistent throughout the dataset (U.S. EPA, 2001b). 

Since TRI reporting is only required for firms with at least 10 full-time employees and 
100 pounds of lead emitted in a given year, non-reported emissions present a potential issue. 
Proportions of private employees and firms employed in manufacturing are collected to control 
for this.  

I use PM2.5
4

 as a proxy to control for mobile source pollution. PM2.5 is highly correlated 
with traffic itself (Bauldauf, 2012; Ferm and Sjöberg, 2011) as well as other traffic pollutants 
(Beckerman et al., 2008; Cyrys et al., 2003). 

Socioeconomic and demographic control variables are gathered from various sources. 
Private employment, private firm, and unemployment data are collected from the BLS. Poverty 
rate and household income, as well as the measured area of each county, are collected from the 
US Census. Emissions data for particulate matter are collected from the CDC National 
Environmental Public Health Tracking Network. 

 
Years 2003 2004 2005 2006 2007 2008 2009 

        Populous Counties               
Total Births 7150.26 7188.90 7234.88 7457.26 7545.86 7426.04 7221.44 

 
(572) (572) (572) (572) (572) (572) (572) 

Total LBW Births 566.55 580.02 591.9 615.34 619.46 607.01 588.72 

 
(572) (572) (572) (572) (572) (572) (572) 

Avg. Birth Weight (g) 3300.55 3291.19 3281.71 3274.76 3273.21 3273.93 3274.22 

 
(572) (572) (572) (572) (572) (572) (572) 

Poverty Rate 11.49% 11.85% 12.49% 12.63% 12.17% 12.36% 13.54% 

 
(524) (524) (524) (524) (580) (580) (580) 

Income 45571.56 46802 48613.75 50572.6 53041.96 54982.89 52875.85 

 
(524) (524) (524) (524) (580) (580) (580) 

Unemployment 5.82% 5.43% 5.07% 4.64% 4.55%  5.69% 9.09% 

 
(524) (524) (521) (521) (580) (580) (580) 

% Black 11.66% 11.76% 11.86% 11.99% 11.8% 11.89% 11.97% 

 
(524) (524) (524) (524) (580) (580) (580) 

% Hispanic 10.33% 10.66% 11% 11.37% 11.37% 11.7% 11.7% 

 
(524) (524) (524) (524) (580) (580) (580) 

Avg. PM2.5 (mcg/m3) 12.42 12.07 13.1 11.78 12.01 10.96 9.78 

 
(377) (369) (359) (361) (375) (368) (358) 

        Populous Counties w/ Lead               
Total Births 9795.88 10101.15 10072.66 10134.12 10353.23 10312.62 9608.8 

 
(261) (256) (259) (257) (265) (265) (264) 

Total LBW Births 771.34  818.09 826.73 842.22 850.68 841.28 774.61 

 
(261) (256) (259) (257) (265) (265) (264) 

Avg. Birth Weight (g) 3292.54 3282.07 3276.6 3270.32 3268.25 3267.05 3273.58 

 
(156) (162) (168) (166) (168) (166) (124) 

Poverty Rate 11.75% 12.35% 13.01% 12.99% 12.6% 12.86% 13.85% 

                                                
3 Lead emissions from the TRI do not include lead emissions due to mass exposures due to human error, such as the 
Flint water crisis. TRI records planned emissions by firms. 
4 Particulate matter with a diameter under 2.5 micrometers. 
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(213) (208) (211) (209) (234) (237) (249) 

Income 4496.33 45706.86 47870.73 50225.45 52280.28 53964.49 52549.98 

 
(213) (208) (211) (209) (234) (237) (249) 

Unemployment 5.94% 5.57% 5.18% 4.72% 4.56% 5.75% 9.08% 

 
(213) (208) (211) (209) (234) (237) (249) 

% Black 12.13% 12.71% 12.86% 13.23% 12.65% 12.38% 11.42% 

 
(213) (208) (211) (209) (234) (237) (249) 

% Hispanic 10.38% 10.77% 10.72% 10.78% 11.2% 11.94% 12.95% 

 
(213) (208) (211) (209) (234) (237) (249) 

Avg. PM2.5 (mcg/m3) 12.79 12.54 13.68 12.21 12.14 11.08 9.85 

 
(155) (147) (148) (146) (156) (157) (140) 

Table 1(a): Summary Statistics – Years 2010-2016 
 
 
 
 
 
 
 
Years 2010 2011 2012 2013 2014 2015 2016 
        
Populous Counties               
Total Births 6991.93  6911.87 6910.56 6874.44 6370.73 6355.43 6303.32 

 
(572) (572) (572) (572) (626) (626) (626) 

Total LBW Births 569.17 558.94 551.94 550.87 509.34 512.57 514.12 

 
(572) (572) (572) (572) (626) (626) (626) 

Avg. Birth Weight (g) 3273.39 3277.67 3282.05 3283.14 3285.32 3283.47 3279.12 

 
(572) (572) (572) (572) (626) (626) (626) 

Poverty Rate 14.54%  15.05%  15.04%  15.01%  14.69%  14.02%  13.33%  

 
(580) (580) (580) (580) (580) (580) (580) 

Income 52333.31  52910.82  54044.32  55135.02  56484.07  58351.13  60470.61  

 
(580) (580) (580) (580) (580) (580) (580) 

Unemployment 9.43%  8.75%  7.93%  7.27%  6.1%  5.28%  4.88%  

 
(580) (580) (580) (580) (580) (580) (580) 

% Black 12.03%  12.09%  12.15%  12.22%  12.3%  12.38%  12.46%  

 
(580) (580) (580) (580) (580) (580) (580) 

% Hispanic 12.25%  12.44%  12.62%  12.8%  12.99%  13.19%  13.42%  

 
(580) (580) (580) (580) (580) (580) (580) 

Avg. PM2.5 (mcg/m3) 9.9  9.85  9.25  9.02  8.95  8.9  8.1  

 
(351) (335) (326) (326) (309) (369) (374) 

        Populous Counties w/ Lead               
Total Births 9359.38  9478.13 9565.58 10175.22 9006.96 8935.39 8674.02 

 
(265) (261) (247) (236) (254) (253) (268) 

Total LBW Births 757.01  760.4 753.07 813.04 711.56 714.6 700.06 

 
(265) (261) (247) (236) (254) (253) (268) 

Avg. Birth Weight (g) 3267.55  3274.61  3281.43  3277.07  3280.73  3277.28  3275.32  

 
(171) (172) (157) (152) (159) (160) (166) 

Poverty Rate 14.73%  15.38% 15.28% 14.97% 14.73% 14.03% 13.29% 

 
(242) (233) (217) (205) (208) (207) (222) 

Income 52251.25  52698.73 54085.78 56133.01 57085.69 58636.09 61111.14 

 
(242) (233) (217) (205) (208) (207) (222) 

Unemployment 9.25%  8.72% 7.89% 7.2% 5.99% 5.18% 4.85% 

 
(242) (233) (217) (205) (208) (207) (222) 

% Black 12.02%  12.06% 11.86% 12.29% 11.8% 11.8% 12.12% 

 
(242) (233) (217) (205) (208) (207) (222) 

% Hispanic 12.3%  12.6% 13.48% 13.66% 13.34% 13.63% 14.47% 

 
(242) (233) (217) (205) (208) (207) (222) 
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Avg. PM2.5 (mcg/m3) 10.09  10.1 9.5 9.31 9.28 9.24 8.29 

 
(152) (144) (132) (126) (116) (137) (148) 

Table 1(b): Summary Statistics – Years 2010-2016 
Simple means of demographic, socioeconomic, and environmental variables in years 
2003 to 2016. These are presented to facilitate comparison of lead-emitting counties to 
populous counties in general. 

 
Tables 1 and 2 display simple means of birth weight, socioeconomic, and demographic 

data in all populous counties and in lead-emitting counties within each year of the data. These 
figures suggest that lead-emitting counties do not significantly differ from populous counties in 
general. Because of this, I consider the allocation of firms emitting lead as quasi-random. 
 
 

 
Figure 1: Correlations of nonzero lead emissions and outcome variables 

Raw correlation between logged lead emissions via water adjusted for county area and 
the two response variables of percentage of low weight births (left) and average birth 
weight (right). 

 
Figure 1 displays raw correlations between nonzero logged lead emissions adjusted for 

county area and the two outcome variables being studied, proportion of low birth weight births 
(left) and average birth weight (right). It is apparent from these graphs that lead emissions are 
highly skewed, with most values near to zero. Additionally, there is a high amount of noise in 
both graphs, implying that the relationship between emissions and health outcomes is modulated 
by other factors.  
 
IV. Methodology 
 

In order to attribute health effects to specific chemicals, I use a methodology similar to 
that of Currie and Schmieder (2009) by focusing on lead emissions in water. This has the added 
benefit of augmenting the results of Currie and Schmieder (2009), who only study the emissions 
of particular chemicals released in the air. 
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I assume the relationship between lead emissions and birth weight outcomes is linear and 
can be represented as: 

 
𝑌𝑌𝑖𝑖𝑖𝑖 =  𝛽𝛽0 + 𝛽𝛽1𝐿𝐿𝑖𝑖𝑖𝑖 +  𝛽𝛽𝑗𝑗𝑿𝑿𝑗𝑗𝑖𝑖 +  𝜇𝜇𝑖𝑖𝑖𝑖 +  𝜀𝜀𝑖𝑖 

 
where Y represents the outcomes of low-weight birth percentage and average birth weight. L is 
the aggregated county-year emissions of lead reported in the TRI. I use this explanatory variable 
both in its original form and adjusted for county area. I use a vector of controls Xjt (where  j = 2, 
3, …, 9) to account for variation in economic characteristics, demography, and pollution, which 
may affect birth weights. I also use the percentages of private firms and employees employed in 
manufacturing in order to attempt to control for non-reported emissions. Additionally, I use 
county and year fixed effects to control any time trends and differences across counties. 
 As of yet, it is not settled in the literature whether to cluster by state or by county when 
performing this type of analysis. Citing the desire to account for serial correlation, Currie and 
Schmieder (2009) cluster by county. In contrast, Agarwal et al. (2010) cluster by state in an 
attempt to control for pollution spillover effects across counties.   
 I cluster by county to account for potential issues arising from my sample, which is 
restricted to counties with populations of at least 100,000. As is argued by Abadie et al. (2017), 
clustering can be used as a means to correct for problems in sampling and assignment. There are 
potentially significant differences between counties with large populations and those with small 
populations, as well as potential differences in lead’s effects due to compounding with 
intergenerational ‘transmission’ of low birth weight, as described above. Clustering by county is 
the best choice to account for such differences in sampling and treatment effects. In addition, as 
my results show, effects are sensitive to adjustment in county area. Since each individual 
county’s area is significant in studying the health effects, it is likely that lead emissions via water 
do not disperse significantly. Since this is the case, there is little evidence of cross-county 
spillover.5 
 
V.  Results 
 

 
Avg. BW 

  
% LBW 

  Variable (1a) (1b) (1c) (2a) (2b) (2c) 
ln(Lead) -.522943 -.3580827 -.0747652 .0003114** .000248* .0001705 
SE .4939031 .4687346 .5921632 .0001564 .00015 .0001789 
% Black 

 
-220.3941* -354.0805** 

 
.0783193** .0972043** 

  
126.4073 141.9106 

 
.0384096 .0429667 

% Hispanic 
 

-179.9556** -157.7001* 
 

.034059 .0386148* 

  
87.87881 94.30129 

 
.0260713 .0232801 

% Firms 
 

583.3438** 633.3314** 
 

-.1775276** -.1325388 

  
248.0216 310.1605 

 
.0745168 .0842017 

% Emp. 
 

14.8461 77.20634 
 

.0048867 -.0208436 

                                                
5 This argument cannot be generalized. Agarwal et al. (2010) are likely correct that some chemicals, especially those 
emitted via air, have the potential to have cross-county effects.  
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62.78763 75.24088 

 
.0233143 .0230499 

Poverty Rate 
 

2.978725 -41.25574 
 

-.0125031 .0003936 

  
48.96413 55.56281 

 
.0166231 .0181569 

ln(Income) 
 

9.605157 -4.413424 
 

-.0079137 -.0057114 

  
17.5513 19.9316 

 
.0048913 .0052806 

Unemployment 
 

29.14838 -13.6125 
 

-.0143745 .00433 

  
54.01573 58.04075 

 
.0186226 .0209735 

Avg. PM2.5 
  

-.5855736 
  

.0002303* 

   
.4149496 

  
.0001309 

Observations 2247 2231 1641 2247 2231 1641 
Groups 288 288 226 288 288 226 
Adj. R-Squared .0370279 .645863 .6804394 .0360826 .6906978 .7300361 

Table 3: Effects of Unadjusted Lead Emissions via Water 
Results for regressions using unadjusted logged lead emissions via water on average birth 
weight and percentage of low weight births. * - p < .10; ** - p < .05; *** - p < .01. 

Table 3 displays results for logged unadjusted lead emissions via water.  Columns 1 and 2 
contain estimations for the outcome variables of average birth weight and percentage of low 
weight births, respectively. In both columns, subcolumn (a) is a baseline estimation of the 
explanatory and response variables.  

Subcolumn (b) controls for socioeconomic and demographic variation by including 
variables for the percentages of Black and Hispanic individuals, unemployment rate, and poverty 
rate. Additionally, I use percentages of private employees and private firms in the manufacturing 
sector to control for emissions from non-reporting firms.  

Subcolumn (c) contains all controls from (b) in addition to daily average PM2.5 as a proxy 
for mobile source pollution. The addition of this control variable is included as its own column 
because there are significantly fewer counties with monitors of PM2.5. Significance is sparse in 
the outcome variables of interest, with only low weight birth percentage reaching slight 
significance, which disappears with the inclusion of particulate matter.  

 

 
Avg. BW 

  
% LBW 

  Variable (1a) (1b) (1c) (2a) (2b) (2c) 
ln(Lead/mi2) -10.11264*** -8.445781** -5.918679 .0033417** .0029198** .0026567** 

 
2.569914 2.553692 4.440227 .001069 .0011626 .0010867 

% Black 
 

-225.4304* -349.5724** 
 

.0830478** .0987463** 

  
125.2744 140.7029 

 
.0383755 .0428943 

% Hispanic 
 

-173.7718** -151.7729 
 

.0323884 .0369706 

  
87.46707 93.3561 

 
.0259417 .0231308 

% Firms 
 

569.231** 612.2723** 
 

-.1722321** -.1216864 

  
246.9395 310.221 

 
.0740926 .0839623 

% Emp. 
 

17.30896 80.80159 
 

.0045299 -.0223604 

  
62.579 74.91889 

 
.0233061 .0230744 

Poverty Rate 
 

3.756545 -40.88204 
 

-.0129124 .0000479 

  
48.95923 55.39435 

 
.0166214 .0181457 

ln(Income) 
 

8.889133 -4.455019 
 

-.0076259 -.0055869 

  
17.50743 19.7975 

 
.0048823 .0052451 

Unemployment 
 

27.67073 -12.18595 
 

-.0144197 .0031101 

  
53.77927 57.98893 

 
.0185278 .0209731 

Avg. PM2.5 
  

-.555354 
  

.0002181* 

   
.4144903 

  
.0001288 
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Observations 2247 2231 1641 2247 2231 1641 
Groups 288 288 226 288 288 226 
Adj. R-Squared .0360136 .6431272 .6818157 .0389582 .6887619 .7326382 

Table 4: Effects of Lead Emissions via Water Adjusted for County Area 
Results for regressions using logged lead emissions via water adjusted for county area on 
average birth weight and percentage of low weight births.  * - p < .10; ** - p < .05; *** - 
p < .01. 

 
Table 4 displays results for logged emissions via water when adjusted for county area. 

The columns and subcolumns have a similar structure to those in table 3. Significance and 
coefficients are markedly different from those in table 3. When adjusted for county area, lead 
emissions display markedly increased significance, especially in the percentage of low weight 
births. This suggests that the dispersal of lead is sensitive to the area over which it is dispersed, 
meaning that those closer to lead-emitting facilities may experience increased effects. This is lent 
further strength by the difference in significance between percentage of low weight births and 
average birth weight. While average birth weight may provide a more precise variable to track 
overall trends in birth weight, percentage of low weight births has a better ability to detect 
significant variation that occurs in a small number of births.6 Since low weight birth percentage 
is a more consistently significant outcome variable, it implies that the changes in birth weight are 
not necessarily occurring in all births, but only in small subsection of them, providing further 
evidence for potentially small dispersal ranges and increased effects near lead-emitting facilities. 

Column (1c)’s coefficients suggest that an increase of 1% in lead emissions per square 
mile results in a decrease of 5.9 grams in average birth weight, though this result is insignificant. 
More importantly, column (2c) suggests that a 1% increase results in an increase of 0.27% in low 
weight births. This means that, for an average lead-emitting county with 9681.59 births, a 1% 
increase in lead emissions per square mile would result in 26 additional low weight births. While 
this appears to be low, one must consider the costs involved. For instance, Russell et al. (2007) 
estimate that hospitalization costs associated with low weight birth are approximately $15,100 
per birth (≈$18,267 per birth adjusted for inflation). This means that these 24 low weight births 
lead to approximately $475,000 in hospitalization costs for that county. If this increase in lead 
emissions occurred in all lead-emitting counties appearing within column (2c), resultant costs 
would be $107 million. This is in addition to productivity loss associated with complications due 
to low birth weight and lead exposure, such as decreased IQ and decreased educational 
attainment.7 
                                                
6 To give a simple example, there are two birth weights of 2000 grams and 3444.44 grams designated low and 
normal weights, respectively. The low weight birth percentage is 10%, so the average birth weight is 3300 grams. A 
1% increase in low birth weights from 10% to 11% would lead to a new average of 3285.5 grams. Although the 
percentage of low weight births increased significantly, it did so only for a small number of births. Average birth 
weight may not function as an outcome variable that can accurately capture these large changes in a small 
percentage of births. 
7 An additional note concerning results: In both tables, the percentage of firms employed in manufacturing leads to 
significant positive outcomes for birth weights. This variable may be capturing how economic security leads to 
increased birth weights. It also calls into question whether or not effects of non-reporting firms are significant 
enough to warrant attempts to control for them, as neither proxy for them detects negative outcomes.  
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VI. Conclusions 
 

Even though the emission of lead into water is regulated under the Clean Water Act and 
Safe Drinking Water Act (U.S. EPA, 2001a), health effects appear to exist. My analysis suggests 
that such emissions may cause harm equivalent to or greater than that of mobile source pollution. 
Although my results suggest that the number of individuals affected by an incremental increase 
is small, the potential costs associated with the effects remain large. These effects appear to be 
larger near lead-emitting facilities. Spatial analysis with further specificity and biomonitoring 
subjects near such facilities would allow for confirmation. 

Furthermore, as discussed in the literature review, parents who were born with low birth 
weight are more likely to have children with low birth weight, a risk which is increased for 
parents living in high-poverty areas (Currie and Moretti, 2007). The effect I have found has the 
potential to augment this, leading to a larger risk of negative behavioral, economic, and health 
outcomes for children born with a low birth weight living in poverty. These effects, when 
considered together, further build the case for the theory of cyclical poverty due to 
environmental characteristics.  

The effects I have found of lead on birth weights, as well as the risk of outcomes 
associated with both low birth weight and lead exposure, should be considered in the appraisal of 
regulation affecting lead emissions and the construction of lead-emitting facilities.  

This chemical-specific analysis is necessary in order to determine which chemicals are of 
greatest importance when considering further regulation. I suggest that further research should be 
conducted with regard to the chemicals determined by Lim et al. (2010, 2011) to be high-
priority. These include chemicals that are toxic to humans as well as to the environment. This 
presents potential research for the literatures of both environmental/ecological and public health 
research. These chemicals will be listed in the appendix. 
 
References 
 
Abadie, A., Athey, S., Imbens, G.W., Woolridge, J., 2017. When Should You Adjust Standard  

Errors for Clustering?. NBER Working Paper Series no. 24003. 
Agarwal, N., Banternghansa, C., Bui, L.T.M., 2010. Toxic exposure in America: Estimating fetal 

and infant health outcomes from 14 years of TRI reporting. Journal of Health Economics 
29, 557-574. 

Almond, D., Currie, J., 2011. Killing Me Softly: The Fetal Origins Hypothesis. Journal of 
Economic Perspectives 25 (3), 153-172. 

Bauldauf, R., 2012. Contribution of Urban Road Traffic to PM2.5 Pollution. 2012 International 
Workshop on Mobile Source PM2.5 Emission Controls, Beijing, China. 



 
 
 
 
 

13 
 

Beckerman, B., Jerrett, M., Brook, J.R., Verma, D.K., Arain, M.A., Finkelstein, M.M., 2008. 
Correlation of nitrogen dioxide with other traffic pollutants near a major expressway. 
Atmospheric Environment 42 (2), 275-290. 

Bhattacharya, D., Mazumder, B., 2011. A nonparametric analysis of black-white differences in 
intergenerational income mobility in the United States. Quantitative Economics 2 (3), 
335-379. 

Black, S.E., Devereux, P.J., Salvanes, K.G., 2007. From the Cradle to the Labor Market? The 
Effect of Birth Weight on Adult Outcomes. The Quarterly Journal of Economics 122 (1), 
409-439.  

Christensen, P., Timmons, C., 2018. Sorting or Steering: Experimental Evidence on the 
Economic Effects of Housing Discrimination. NBER Working Paper Series no. 24826. 

CDC Advisory Committee for Childhood Lead Poisoning Prevention (ACCLPP), 2012. CDC 
Response to Advisory Committee on Childhood Lead Poisoning Prevention 
Recommendations in Low Level Lead Exposure Harms Children: A Renewed Call of 
Primary Prevention.  

Chaiklieng, S., Pimpasaeng, C., Thapphasaraphong, S., 2015. Benzene Exposure at Gasoline 
Stations: Health Risk Assessment. Human and Ecological Risk Assessment: An 
International Journal 21 (8), 2213-2222. 

Curhan, G.C., Willett, W.C., Rimm, E.B., Spiegelman, D., Ascherio, A.L., Stampfer, M.J., 1996. 
Birth Weight and Adult Hypertension, Diabetes Mellitus, and Obesity in US Men. 
Circulation 94, 3246-3250.  

Currie, J., Moretti, E., 2007. Biology as Destiny? Short- and Long-Run Determinants of 
Intergenerational Transmission of Birth Weight. Journal of Labor Economics 25 (2), 231-
263.  

Currie, J., Schmieder, J.F., 2009. Fetal Exposures to Toxic Releases and Infant Health. American 
Economic Review: Papers & Proceedings 99 (2), 177-183. 

Cyrys, J., Heinrich, J., Hoek, G., Meliefste, K., Lewné, M., Gehring, U., Bellander, T., Fischer, 
P., Vliet, P.V., Brauer, M., Wichmann, H.-E., Brunekreef, B., 2003. Comparison between 
different traffic-related particle indicators: Elemental carbon (EC), PM2.5 mass, and 
absorbance. Journal of Exposure Analysis and Environmental Epidemiology 13, 134-143. 

Dickerson, A.S., Rahbar, M.H., Han, I., Bakian, A.V., Bilder, D.A., Harrington, R.A., 
Pettygrove, S., Durkin, M., Kirby, R.S., Wingate, M.S., Tian, L.H., Zahorodny, W.M., 
Pearson, D.A., Moyé III, L.A., Baio, J., 2015. Autism spectrum disorder prevalence and 
proximity to industrial facilities releasing arsenic, lead or mercury. Science of the Total 
Environment 536, 245-251. 

Eriksson, J.G., Forsén, T., Tuomilehto, J., Winter, P.D., Osmond, C., Barker, D.J.P., 1999. 
Catch-up growth in childhood and death from coronary heart disease: longitudinal study. 
BMJ 318, 427-431. 

Ferm, M., Sjöberg, K., 2015. Concentrations and emission factors for PM2.5 and PM10 from road 
traffic in Sweden. Atmospheric Environment 2015, 211-219. 



 
 
 
 
 

14 
 

Gould, E., 2009. Childhood Lead Poisoning: Conservative Estimates of the Social and Economic 
benefits of Lead Hazard Control. Environmental Health Perspectives 117 (7), 1162-1167. 

Goyer, R.A., 1996. Results of Lead Research: Prenatal Exposure and Neurological 
Consequences. Environmental Health Perspectives 104 (10), 1050-1054.  

Grönqvist, H., Nilsson, J.P., Robling, P.-O., 2017. Early lead exposure and outcomes in 
adulthood. IFAU Working Papers Series 2017 (4).  

Grosse, S.D., Matte, T.D., Schwartz, J., Jackson, R.J., 2002. Economic Gains Resulting from the 
Reduction in Children’s Exposure to Lead in the United States. Environmental Health 
Perspectives 110 (6), 563-569.  

Hales, C.N., Barker, D.J.P., Clark, P.M.S., Cox, L.J., Fall, C., Osmond, C., Winter, P.D., 1991. 
Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 303, 1019-1022. 

Kalkbrenner, A.E., Windham, G.C., Serre, M.L., Akita, Y., Wang, X., Hoffman, K., Thayer, 
B.P., Daniels, J.L., 2014. Particulate matter exposure, prenatal and postnatal windows of 
susceptibility, and autism spectrum disorders. Epidemiology 26 (1), 30-42.  

Kimbrough, R., LeVois, M., Webb, D., 1995. Survey of Lead Exposure Around a Closed Lead 
Smelter. Pediatrics 95 (4), 550-554. 

Koller, K., Brown, T., Spurgeon, A., Levy, L., 2004. Recent Developments in Low-Level Lead 
Exposure and Intellectual Impairment in Children. Environmental Health Perspectives 
112 (9), 987-994.  

Landrigan, P.J., 1996. Lead levels, home dust, and proximity to lead smelters. Pediatrics 97 (4), 
603-604. 

Lanphear, B.P., Dietrich, K., Auinger, P., Cox, C., 2000. Cognitive Deficits Associated with 
Blood Lead Concentrations <10 µg/dL in US Children and Adolescents. Public Health 
Reports 115, 521-529. 

Lessler, M.A., 1988. Lead and Lead Poisoning from Antiquity to Modern Times. Ohio Journal of 
Science 88 (3), 78-84. 

Lim, S.-R., Lam, C.W., Schoenung, J.M., 2010. Quantity-based and toxicity-based evaluation of 
the U.S. Toxics Release Inventory. Journal of Hazardous Materials 178 (2010), 49-56. 

Lim, S.-R., Lam, C.W., Schoenung, J.M., 2011. Priority screening of toxic chemicals and 
industry sectors in the U.S. toxics release inventory: A comparison of the life cycle 
impact-based and risk-based assessment tools developed by U.S. EPA. Journal of 
Environmental Management 92, 2235-2240.  

National Toxicology Program (NTP), 2016. Lead and Lead Compounds. 14th Report on 
Carcinogens.  

Neidell, 2004. Air pollution, health, and socio-economic status: the effect of outdoor air quality 
on childhood asthma. Journal of Health Economics 23 (6), 1209-1236. 

Mazumdar, M., Bellinger, D.C., Gregas, M., Abanilla, K., Bacic, J., Needleman, H.L., 2011. 
Low-level environmental lead exposure in childhood and adulthood intellectual function: 
a follow-up study. Environmental Health 10 (24). 



 
 
 
 
 

15 
 

Nedellec, V., Rabl, A., 2016a. Costs of Health Damage from Atmosphere Emissions of Toxic 
Metals: Part 1-Methods and Results. Risk Analysis 36 (11), 2081-2095. 

Nedellec, V., Rabl, A., 2016b. Costs of Health Damage from Atmospheric Emissions of Toxic 
Metals: Part 2-Analysis for Mercury and Lead. Risk Analysis 36 (11), 2096-2104.  

Oreopoulos, P., Stabile, M., Walld, R., Roos, L.L., 2008. Short-, Medium-, and Long-Term 
Consequences of Poor Infant Health: An Analysis Using Siblings and Twins. Journal of 
Human Resources 43 (1), 88-138. 

Papanikolaou, N.C., Hatzidakl, E.G., Bellvanis, S., Tzanakakis, N., Tsatsakis, A.M., 2005. Lead 
toxicity update. A brief review. Medical Science Monitor 11 (10), RA329-336.  

Poulter, N.R., Chang, C.L., MacGregor, A.J., Snieder, H., Spector, T.D., 1999. Association 
between birth weight and adult blood pressure in twins: historical cohort study. BMJ 319, 
1330-1333. 

Sanders, T., Liu, Y., Buchner, V., Tchounwou, P.B., 2009. Neurotoxic effects and biomarkers of 
lead exposure: a review. Review of Environmental Health 24, 15-45.  

Rabin, R., 1989. Warnings Unheeded: A History of Child Lead Poisoning. American Journal of 
Public Health 79 (12), 1668-1674. 

U.S. EPA, 2001a. Guidance for Reporting Releases and Other Waste Management Quantities of 
Toxic Chemicals: Lead and Lead Compounds. Emergency Planning and Community 
Right-to-Know Act – Section 313.  

U.S. EPA, 2001b. Lead and Lead Compounds: Lowering of Reporting Thresholds; Community 
Right-to-Know Toxic Chemical Release Reporting: Final Rule. Federal Register 66 (11), 
4501-4547. 

Valdez, R., Athens, M.A., Thompson, G.H., Bradshaw, B.S., Stern, M.P., 1994. Birthweight and 
adult health outcomes in a biethnic population in the USA. Diabetologia 37 (6), 624-631. 

Wani, A.L., Ara, A., Usmani, J.A., 2015. Lead toxicity: a review. Interdisciplinary Toxicology 8 
(2), 55-64.  

Windham, G.C., Zhang, L., Gunier, R., Croen, L.A., Grether, J.K., 2006. Autism spectrum 
disorder in relation to distribution of hazardous air pollutants in the San Francisco bay 
area. Environmental Health Perspectives 114, 1438-1444. 

Xie, X. Ding, G., Cui, C., Chen, L., Gao, Y., Zhou, Y., Shi, R., Tian, Y., 2013. The effects of 
low-level prenatal lead exposure on birth outcomes. Environmental Pollution 175, 30-34.  

Yang M., Chou S.-Y., 2015. Impacts of Being Downwind of a Coal-Fired Power Plant on Infant 
Health at Birth: Evidence from the Precedent-Setting Portland Rule. NBER Working 
Paper Series no. 21723. 

Zheng, W., Aschner, M., Ghersi-Egea, J.-F., 2003. Brain barrier systems: a new frontier in 
neurotoxicological research. Toxicology and Applied Pharmacology 192, 1-11. 

Zhu, M., Fitzgerald, E.F., Gelberg, K.H., Lin, S., Druschel, C.M., 2010. Maternal Low-Level 
Lead Exposure and Fetal Growth. Environmental Health Perspectives 118 (10), 1471-
1475. 



 
 
 
 
 

16 
 

Zivin, J.G., Neidell, M., 2013. Environment, Health, and Human Capital. Journal of Economic 
Literature 51 (3), 689-730. 

 
Appendix 
 
Priority Chemicals 
 

Lim et al. (2010) label priority chemicals by weighting total TRI emissions from the 2007 
reporting year by toxicity potentials as calculated by TRACI. These weighted emissions are then 
used to calculate percentages of total toxicity-weighted emissions by chemical. The top six 
chemicals in each category are displayed in Table 5.  

Lim et al. (2011) use TRI data from the 2006 reporting year to compare toxicity 
potentials as estimated by TRACI and RSEI, which use substantially different methodologies. 
Four chemical categories are labeled priorities using both tools. Table 6 displays these 
chemicals, their cancer toxicities, non-cancer toxicities, and ecotoxicities as determined by 
TRACI, as well as their risk scores as determined by RSEI. TRACI measures are converted to 
chemical-equivalents in order to easily compare toxicities between chemicals. RSEI risk scores 
are comparable between chemicals as well. 
 
Cancer Potential 

   Air Adj-% Water Adj-% 
Carbon Tetrachloride 62 Arsenic 59 
Chromium 12 Hexachloro-benzene 21 
Ethylene Oxide 4 Carbon Tetrachloride 8 
Lead 4 Ethylene Oxide 2 
Chloromethane 3 1,2,3-Trichloropropane 2 
Benzene 3 Lead 1 

    Non-cancer Potential 
   Air Adj-% Water Adj-% 

Lead 51 Mercury 51 
Mercury 30 Lead 33 
Aluminum 7 Copper 10 
Hydrogen Cyanide 3 Arsenic 2 
Copper 2 Vanadium 1 
Phosgene 2 Cadmium 1 

    Ecotoxicity Potential 
   Air Adj-% Water Adj-% 

Mercury 85 Formaldehyde 37 
Benzo(g,h,i)Perylene 6 Benzo(g,h,i)Perylene 34 
Copper 3 Vanadium 14 
Thiram 1 Naphthalene 9 
Nickel 1 Copper 5 
Zinc 1 Carbon Disulfide .3 

Table 5: TRACI-Derived Priority Chemicals and Toxicity-adjusted Shares of Emissions 
Priority chemicals as found by Lim et al. (2010) their shares of total emissions adjusted 
for the chemical’s toxicity as estimated by TRACI. 

 
 



 
 
 
 
 

17 
 

 

 
TRACI Potentials 

   Substance Cancer Non-Cancer Ecotoxicity RSEI Risk Score 
Chromium and Chromium Compounds 6.16E+07 2.34E+09 1.66E+07 4.66E+05 
Lead and Lead Compounds 1.64E+07 6.96E+11 1.11E+07 2.78E+05 
Manganese and Manganese Compounds 0 8.25E+09 0 3.16E+06 
Nickel and Nickel Compounds 1.57E+06 3.59E+09 5.66E+07 7.52E+05 

Table 6: TRACI- and RSEI-identified Priority Chemicals and Estimated Toxicities 
Chemicals labeled by both TRACI and RSEI models as priorities and their respective 
estimated toxicities. TRACI potentials are measured as compared to the benchmark 
toxicities of benzene, toulene, and 2,4-Dichlorophenoxyacetic acid for cancer toxicity, 
non-cancer toxicity, and ecotoxicity, respectively. RSEI risk scores are ordinal in nature 
and are meant for comparison between each other. 

 
 
 
Data Sources 
 
For increased ease of replicability, data sources are listed in Table 7 with accompanying URLs. 
A do file and accompanying dataset will be available upon request. 
 
 
 
Data Source 
Lead Emissions Toxics Release Inventory Basic Data Files 

Birth Weight Data CDC WONDER Database 

% Black, Hispanic Census 2000-2010; Census 2010-2017 
Poverty Rate, Median Income Census Small Area Income and Poverty Estimates 

% of Firms, Employees in Manufacturing BLS QCEW 

Unemployment BLS Local Area Unemployment 

Particulate Matter Levels CDC National Environmental Public Health Tracking Network 

Replication Files (zip) Google Drive Link 
Table 7: Data Sources 

Links to primary data sources for easier reference. Note that percentage of Black and 
Hispanic data are found at two distinct URLs depending on which year span is of interest. 

https://www.epa.gov/toxics-release-inventory-tri-program/tri-basic-data-files-calendar-years-1987-2017
https://wonder.cdc.gov/natality.html
https://www.census.gov/data/datasets/time-series/demo/popest/intercensal-2000-2010-counties.html
https://www.census.gov/data/datasets/2017/demo/popest/counties-detail.html
https://www.census.gov/data-tools/demo/saipe/saipe.html?s_appName=saipe&map_yearSelector=2016&map_geoSelector=aa_c
https://www.bls.gov/cew/datatoc.htm
https://www.bls.gov/lau/#tables
https://ephtracking.cdc.gov/DataExplorer/index.html?query=e0a1cb6f-2fa6-4e5c-8b7a-a110cff41ab7
https://drive.google.com/file/d/1byrNhFw25XA4HnW5CB5DvBWRiaW0BSGh/view?usp=sharing

	College of the Holy Cross
	CrossWorks
	8-1-2018

	Toxic Effects of Lead Disposal in Water: An Analysis of TRI Facility Releases
	Patrick Koval
	Recommended Citation


	tmp.1567772287.pdf.IOW1C

