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1. Introduction 

History is replete with cases of intentional, systematic, and substantial destruction of 

noncombant civilians by powerful elites including dictatorial and nondictatorial governments and 

nonstate groups (e.g., rebel, militia, and terrorist organizations). In just the last 120 years, some 

200 mass atrocities have occurred in which at least 100 million civilians have been intentionally 

killed (and likely at least half of a billion people killed, injured, or traumatized) by political 

leaders and their fellow perpetrators (Anderton and Brauer, 2018). A substantial literature is now 

emerging on economic aspects of mass atrocities to complement the already well-developed 

literatures offered in other social sciences and in the humanities (Anderton and Brauer, 2016, 

2018). Furthermore, theories and models of social and economic networks in particular have 

burst on the scene in the last quarter century and they are updating economists’ understanding of 

a wide range of economic activities including peer effects in education, hub and spoke 

transportation systems, job search and employment outcomes, the diffusion of information, 

innovations, and ideas, the roles of interpersonal relationships in market outcomes, and the 

behaviors of criminal groups including illicit drug trading and human trafficking organizations 

(Jackson, 2008; Easley and Kleinberg, 2010; Bramoullé, Galeotti, and Rogers, 2016). Moreover, 

formal networking models are now being developed to analyze conflict on networks including 

wars and terrorism (Cunningham, 1985; Baccara and Bar-Isaac, 2008; Franke and Öztürk, 2009; 

Maoz, 2011; Enders and Sandler, 2012; Goyal and Vigier, 2014; Dziubinski, Goyal, and Vigier, 

2016; Acemoglu, Malekian, and Ozdaglar, 2016; Zech and Gabbay, 2016; König, Rohner, 

Thoenig, and Zilibotti, 2017; Scaife, 2017; Terrorism Network Project, 2018). Surprisingly, 

however, few formal networking models have been applied to mass atrocities. Such applications 

are warranted because mass atrocities are orchestrated by architects over networks of 
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perpetrators, play out in locales based upon networks of relationships among perpetrators and 

resisters, and involve networks between and within both victims and potential rescuers.  

Network theory has shown economists and other social scientists that one cannot simply 

add up the micro actions of individual agents to surmise a macro outcome. Keynes already taught 

us this with the Paradox of Thrift: When all agents in a macroeconomy attempt to save more, 

consumption and employment could fall, leading to less savings overall. Neither can one 

necessarily surmise the underlying micro preferences of individuals from any observed macro, 

system-wide outcome (Schelling, 1971, 1978; Granovetter, 1978). Much depends on what the 

network literature calls the aggregation function. 

Most importantly for our purposes, network theory can explain certain puzzles associated 

with mass atrocities. First, while social psychologists have long known that it can be frightfully 

easy to recruit relatively small numbers of people to commit atrocious acts (e.g., Roth, 2010), 

how can one explain the more puzzling mass participation in mass atrocity? Network theory can 

explain this scaling up. Second, when a mass atrocity such as a genocide breaks out, why can it 

spread like wildfire in location A yet stay contained in location B even though the individuals in 

the two locations are essentially the same (even identical) in their initial perspectives on what 

should happen to the outgroup? Network theory can provide insights on the very uneven spread 

of mass atrocities at the grassroots level. A third puzzle is this: Why do some individuals in mass 

atrocities “flip”, i.e., change from perpetrator to rescuer (as did Oskar Schindler) or from rescuer 

to perpetrator? Fourth, seemingly even more puzzling is the observation in mass atrocity contexts 

that some individuals rescue and perpetrate at the same time (Campbell, 2010; Donà, 2018). 

Fifth, why do some people who are strongly opposed to acts of mass atrocity nonetheless help 

commit them (Browning, 2004) and thereby help perpetuate an atrocity norm (Michaeli and 
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Spiro, 2017)? Sixth, why do some perpetrators, after the fact, display what is almost certainly 

genuine remorse and, sometimes, sincere candidness that they are shocked at what they did 

(Gobodo-Madikizela, 2002; Staub, 2005; Wilson, 2010)? Seventh, what explains the “silence of 

the majority” in many mass atrocity cases? Social network theory provides compelling insights 

into all these aspects, perspectives, and behaviors without appealing to wildly changing or 

bizarre preferences or circumstances (e.g., Schelling, 1971; Granovetter, 1978; Gintis, 2009). 

At the core of many mass atrocities lies a struggle that plays out within the in-group 

(Kleinschmidt, 1972; Straus, 2006; Adalian, 2009; Lemarchand, 2009; Ray, 2017) over whether 

the in-group will seek to eliminate some or all of the out-group. If in-group extremists “win” this 

struggle, mass atrocity commences. This struggle that transpires on the threshold of mass atrocity 

is a diffusion process. Either atrocity acceptance diffuses to a relatively high level within the in-

group beyond which a threshold is crossed or else atrocity acceptance is nullified. To model this 

preliminary stage of mass atrocity, we begin with the Bass (1969) model of diffusion and then 

add network aspects of diffusion to this starting point. Assuming that mass atrocity commences, 

we then offer network modeling of such commencement. Specifically, we offer a stylized linear 

quadratic model (LQM) of mass atrocity propagation over geographic space along networked 

“tentacles” of destruction. Among the model’s key results is the dramatic increase in destruction 

of the out-group that is “afforded” by a “network production function” (which is a comparable 

concept to a classic production function in standard economic theory). Finally, we add to the 

network model the contending actions of networked resisters. In so doing, we evaluate certain 

policies that can degrade the atrocity-perpetrating network, but we also show how a network 

context can cause certain prevention efforts to backfire and do more harm than good to afflicted 

civilians. 
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2. Models of Diffusion among a Population 

2.1 The Bass Model of Product Diffusion 

2.1.1 Difference Equation and Diffusion Curves 

The notion of contagion or diffusion is the spreading of “something” among a population. The 

“something” might be a disease (e.g., AIDS), an idea (e.g., love your enemy) or opinion (e.g., 

candidate so-and-so is corrupt), information (e.g., there is a great movie playing at the theater), 

or, in our context, the “disease” of atrocity acceptance among people within the in-group. The 

Bass (1969) model is a starting point for analyzing diffusion of products and fashions in the 

marketing literature. Let F(t) be the fraction of some population that has accepted the product at 

time t. Either a person has accepted the product (1) or not (0), so the states of the model are 

binary. Let ρ be the constant rate of spontaneous adoption of a product, sometimes referred to in 

the marketing literature as “early adopters.” In our context, this may refer to instigators (or true 

believers), i.e., people who make an adoption decision independent of social, or peer, effects on 

adoption. Jackson (2008, p. 187) notes that spontaneous adoption can be interpreted as a 

response to outside stimuli such as advertising. Further, let β be the constant rate of imitation. 

This captures peer effects in adopting the product based on social relations. In peer contexts, 

adoption of the product can spread by word-of-mouth in personal encounters, over social media, 

via cell phones, and the like. The basic Bass model then is a purely mechanical, tripartite 

difference equation that describes the acceptance of a product over time among a population as 

follows: 

 𝐹(𝑡) = 𝐹(𝑡 − 1) + 𝜌[1 − 𝐹(𝑡 − 1)] + 𝛽[1 − 𝐹(𝑡 − 1)]𝐹(𝑡 − 1).   (1) 

As mentioned, F(t) on the left-hand side is the fraction of a population that has adopted an item 

or idea at time t. The first element on the right-hand side of the equals sign is the fraction of 
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adopters from the last period, F(t-1), i.e., prior adopters, who are assumed to be adopters 

throughout and thus will continue to be adopters in the current period (t). The next element on 

the right-hand side of the equals sign captures the rate of spontaneous adoption (ρ) among the 

fraction of the population that has not yet adopted the product, i.e., 1−F(t-1). The third element 

on the right side of the equals sign captures the peer aspects of adoption (β) from the social 

interactions between fractions of the population that are nonadopters, 1−F(t−1), and adopters, 

F(t−1), of the product. The parameter β measures the rate of “conversion,” as it were, of 

nonadopters to adopters. Numerous forms of diffusion behavior are possible in the Bass model 

depending on the initial condition for F, i.e., F(0), the rate of spontaneous adoption (ρ), and the 

rate of imitation (β). Figure 1 shows five such diffusion curves. Four of the curves assume 

F(0)=0 (no true believers to begin with) while one assumes F(0)=0.2 (20% of the population, to 

begin with). 

[Figure 1 about here]  

2.1.2 Diffusion of Atrocity Acceptance in the Bass Model 

Several intuitive applications of the Bass model to mass atrocities present themselves in Figure 

1. First, atrocity architects can manipulate the contagion of atrocity acceptance within the in-

group though advertising, i.e., propaganda. Such actions serve to increase the spontaneous rate of 

adoption (ρ) which pertains to people adopting an idea independent of peer or social influences. 

(For a review of this aspect see, e.g., Petrova and Yanagizawa-Drott 2016.) For the Rwandan 

genocide of 1994, Yanagizawa-Drott (2014), for instance, studies the role of hate radio (Radio 

Télévision Libre des Mille Collines, RTLM, as opposed to Radio Rwanda which did not 

broadcast inflammatory material) as a coordination device to incite violence. To arrive at 

statistically credible results, he exploits the quasi-random geographic distribution of hills, 
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flatlands, and valleys that affects the relative quality of signal reception. Holding other factors 

constant, communities in reach of a clear line-of-signal indeed showed a statistically significant 

(and quantitatively large) increase in genocide participation. Moreover, due to spatial spillovers 

on social interaction networks, so did neighboring communities, suggesting coordination and 

triggering effects facilitated by hate radio. He estimates that about 10 percent of the participation 

in the violence is attributable to RTML. This translates to an additional 51,000 perpetrators. (The 

International Criminal Tribunal for Rwanda later convicted the radio station’s founders of 

instigating genocide.) 

Note in Figure 1 the significant increase in the diffusion curve from the one labeled 

ρ=0.01, β=0 to the one labeled ρ=0.04, β=0. At time t=50, the former curve has “only” a 39.5 

percent adoption rate of the atrocity norm within the in-group, but the latter curve has a rate of 

87.0 percent. Clearly, the model suggests that propaganda will be an important tool in the hands 

of atrocity architects for diffusing the acceptance of atrocity within the in-group. 

 Second, independent of spontaneous adoption, peer or social effects on adoption of 

atrocity also greatly matter. Notice the change in adoption curves when moving from ρ=0.01, 

β=0 to ρ=0.01, β=0.04 to ρ=0.01, β=0.1. At time t=50 across these three curves, the rate of 

adoption rises from 39.5 percent to 69.0 percent to 95.9 percent. Furthermore, the emergence of 

an S-shape adoption curve requires that sufficiently strong peer effects be present. The S-shape 

of a diffusion curve is important in the marketing literature because it reflects that part of a 

diffusion process in which acceptance is increasing at an increasing rate before it eventually 

increases at a diminishing rate. Numerous cases studies of mass atrocities reflect a dramatic 

uptick in mass atrocity acceptance within the in-group generally and in specific locales in which 
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mass atrocity perpetration takes off suddenly (Browning, 1992, ch. 8; Des Forges, 1999; Fujii, 

2009).  

 Thirdly, the initial fraction of adopters, F(0), determines the height of the launching pad 

for diffusion. In Figure 1, the difference between the ρ=0.01, β=0.1, F(0)=0 and ρ=0.01, β=0.1, 

F(0)=0.2 curves is quite dramatic. At time t=20, the former curve’s fraction of adoption is 40.5 

percent, while the latter’s is 75.0 percent. Assuming that F(0) is the fraction of the population 

predisposed to atrocity acceptance (potential true believers), even before there is one, then once 

atrocity begins they help feed the peer aspects of the Bass model right from the get-go, leading to 

rapid diffusion in a relatively short time. If time is measured in days, then the top diffusion curve 

in Figure 1 reaches 50 percent acceptance by day 11. Meanwhile, the lower diffusion curve in the 

figure reaches 50 percent adoption by day 69. These are dramatically different diffusion 

scenarios with drastically different third party intervention prospects. If policy efforts are 

reactive, perhaps even timely by the standards of international policymaking, then the diffusion 

along the top curve will likely be well on its way before policy intervenes and attempts to make a 

difference. Such a scenario will tend to be a policy that is too little, too late.  

 Although we have applied ideas from the Bass model to an overall intra-group struggle 

over atrocity policy, diffusion processes matter greatly at the grass roots level, too. Hence, we 

will return to processes of diffusion at local levels once we have developed the model of atrocity 

tentacles reaching into locales later on in this article. 

2.1.3 The Bass Model and Atrocity Prevention 

Assume initially that we have nonnegative values for the rate of spontaneous adoption (ρ), the 

rate of imitation (β), and the initial fraction of adopters (F(0)) in the Bass model. Prevention of 

diffusion of atrocity acceptance in the population requires that the rate of spontaneous adoption 
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(ρ) and the initial fraction of adopters (F(0)) be zero or that the rate of spontaneous adoption (ρ) 

and the rate of imitation (β) be zero. These are heroic assumptions to expect of a population of 

relatively large size (such as a village). There will almost always be some people with an 

exogenous animus toward people from the out-group, implying ρ>0 and F(0)>0. Hence, the 

model suggests a latent potential for atrocity acceptance if the diffusion process is set into 

motion by atrocity architects. As Valentino (2004, p. 2) notes, “the minimum level of social 

support necessary to carry out mass killing has been uncomfortably easy [for leaders] to 

achieve.”  Thus, the model helps explain the first puzzle: how an animosity within a small group 

toward an out-group can mushroom into mass participation across large segements of the 

population. 

 Naturally, if other parties (say third parties) are able to cultivate negative values for ρ and 

for β (or a sufficiently large negative value on one of the parameters), a process of atrocity 

rejection can be fostered as shown in Figure 2. This is true, as the figure shows, even for high 

initial fractions of atrocity adopters, F(0)>>0. Policies that might make ρ and/or β negative 

include counter-propaganda campaigns to offset and turn around hate radio, threats of litigation 

against those who adopt atrocity actions against the out-group, insertion of third party 

peacekeepers to reduce F(0) and turn ρ and/or β toward negative values. It is also important to 

note how the ultimate outcomes in the Bass model can vary dramatically based upon a seemingly 

trivial change in a parameter. For example, the ρ=0.01, β=−0.03 diffusion curve in Figure 2 will 

eventually reach an outcome in which the whole population is atrocity acceptant (F=1) (not 

shown) as the negative peer effect parameter is not strong enough to overcome the initial true 

believer parameter. Yet, if a slightly more negative imitation parameter of β=−0.04 was in place 

(all else equal), then the ρ=0.01, β=−0.04 diffusion curve in Figure 2 would reach an outcome in 
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which the whole population rejected atrocity (F=0) (not shown). Hence, the ultimate fate of an 

intra-group struggle in a locale, whether it tips to atrocity acceptance or rejection, can be 

extremely sensitive to initial conditions and small parameter changes. This helps explain the 

second puzzle, why mass participation in an atrocity can spread rapidly in one location yet fail to 

diffuse to or in another. 

[Figure 2 about here] 

2.1.4 Epidemiological Models of the Spread of Disease and the Bass Model 

The literature on the spread of diseases over networks of people, animals, and plants is vast 

(Jackson, 2008, 185–221; Newman, 2010, 627–73; Lamberson, 2016). Models of epidemics 

often involve one of four epidemiological models known by their acronyms—SI, SIR, SIS, and 

SIRS—where “S” stands for “susceptible,” “I” for “infected,” and R for “recovered.” We leave 

applications of such models to mass atrocity to future research, but we do so with three caveats. 

First, the SI model from the epidemiology literature is a special case of the Bass model in which 

the spontaneous adoption parameter (ρ) is set to zero. Second, while there are important 

examples in mass atrocity contexts of individuals who were susceptible, became infected with 

mass atrocity perpetration, and then recovered (i.e., the SIR model, e.g., Oskar Schindler, and 

thus addressing the third puzzle), far more common are cases of people becoming habituated and 

“locked in” (unrecoverable) to atrocity through various social psychological processes such as 

the “foot in the door phenomenon,” “motivated rationalizations of atrocity actions,” and peer 

group effects (Waller, 2007). If we assume, then, that most or all of those who become infected 

stay infected (which puts us in the Bass world), then the fraction of those infected (assuming, for 

instance, non-negative ρ and β in the Bass model in which at least one of the two parameters is 

positive) always goes to one. This stark outcome is not a realistic description of mass atrocity 
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contexts in which there are always some who remain immune (i.e., resisters) regardless of how 

many others in the population become infected (i.e., perpetrators). In short, the third caveat is 

that the diffusion process in the Bass model needs to be generalized to account for polymorphic 

outcomes. To do so, we turn to analysis of a generalized S-shaped model of diffusion. 

2.2 Generalized S-Shaped Model of Atrocity Diffusion and Prevention 

In this subsection, we adopt the Easley and Kleinberg (2010, ch. 17) model of diffusion of a new 

product in the marketplace and adapt it to the context of diffusion of atrocity acceptance among a 

population encompassing an in-group. In so doing, we develop a general S-shaped model of 

diffusion in which the diffusion curves generated by the Bass model are special cases. The S-

shaped model also generates insights into atrocity rejection among the in-group population. 

2.2.1 Intrinsic Valuation of Atrocity Perpetration 

Following Easley and Kleinberg (2010, p. 450), assume each individual from the in-group 

population has a “name” given as a real number between 0 and 1, that the number of such 

individuals is finite, and that the total mass of such individuals is 1. The set of individuals with 

names between 0 and x (where x≤1) represents the fraction x of the in-group population. Assume 

each individual x has a spontaneous or intrinsic interest in participating in acts of harm against 

the out-group as represented by a reservation value, r(x), for participation. The higher the 

reservation value for any given cost of participation, the more likely the individual would prefer 

to be an atrocity perpetrator rather than an abstainer. Overriding cost considerations, some 

individuals may have very high reservation values for participation owing to latent hatred of the 

out-group. Others might have zero reservation values and, all else equal, would not participate no 

matter how low the cost. Still others might find some intrinsic value in participating in harm 

against the out-group owing to looting opportunities. Since reservation values can vary across 



11 
 

individuals in the population, heterogeneous preferences are implied. Each individual x’s 

intrinsic reservation valuation, r(x), is independent of any peer or network effects that might 

cause the individual to value participation differently (this network element will be introduced 

shortly).  

 Assume that an atrocity architect would like to recruit individuals into atrocity 

perpetration. The potential availability of personnel would be based on an aggregate reservation 

value function such as shown in Figure 3. This curve (which, for convenience, is drawn as a 

straight line) can be thought of as the “market demand” curve for participating in atrocity by 

potential recruits. The demand for atrocity perpetration is given by the reservation valuation 

function, r(x), for the range of individuals between 0 and 1. The cost of participating in atrocity, 

c, involves the cost of effort and, for at least some actors, unpleasant side effects from harming 

people from the out-group. In most (civil) societies, atrocity actions are crimes subject to the 

costs of prosecution and the possibility of incarceration. In such societies, c would be high and 

few individuals would participate in hate crimes. In societies in which political leaders seek to 

foster atrocity, however, the cost of participation might be lowered owing to decriminalization of 

hate crimes against out-groups. In addition, propaganda might be used to increase the reservation 

values (demand) associated with atrocity participation. In Figure 3, the combination of the 

aggregate demand, or society-wide reservation valuation, curve and the cost of atrocity 

perpetration gives rise to the fraction x of the in-group participating and the fraction (1−x) not 

participating. If the cost of atrocity perpetration is c1=0.25 as shown in the figure, individuals 

with names between 0 and x1=0.75 will become perpetrators and individuals with names greater 

than x1=0.75 will not. (If we draw the reservation valuation curve in the figure such that it turns 

down and intersects the horizontal axis before reaching individual 1, it would imply that some 
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individuals would not participate in atrocity even if the cost of doing so is c=0.) Note that the 

implied reservation value function in Figure 3 is r(x)=1−x. This, of course, is a special case of a 

more general down-sloping reservation value function. 

[Figure 3 about here] 

2.2.2 Network Effects in the Model 

The analysis in Figure 3 ignores network effects in which the atrocity participation of one or 

more members of the population can alter the valuation of atrocity perpetration of others in the 

population. We now add network benefits from atrocity perpetration to the intrinsic benefits 

shown in Figure 3. Assume now that individual x’s valuation of atrocity perpetration involves its 

spontaneous or intrinsic valuation, r(x), and its benefit from having a fraction z of the in-group 

population on board, with the atrocity architect’s aims represented by the value function f(z) in 

which f(0)=0 and f ʹ(z)>0. This peer-effect function, f, captures the network benefits available to 

individuals from in-group participation (for example, benefits from peer support, information 

flows, ability to rationalize participation when others are participating, and so on). Here z 

represents individuals’ shared expectation of the fraction of the population that will adopt 

atrocity perpetration. The modified reservation value for adoption of any individual x from the 

in-group will now be r(x)f(z), i.e., own-benefits times peer-mediated benefits flowing to the 

individual, where the multiplicative form implies that individuals with high intrinsic value from 

atrocity perpetration benefit the most from increases in the fraction of the population that 

participates (Easley and Kleinberg, 2010, p. 455). A self-fulfilling expectations equilibrium is 

one in which the people in the population expect the fraction z to adopt perpetration and the 

fraction that actually adopts also is z (Easely and Kleinberg, 2010, p. 454). For any given cost of 

atrocity perpetration, say c=2, what value (or values) of z will be an equilibrium in this self-
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fulfilling sense? We can immediately establish that z=0 will be a self-fulfilling expectations 

equilibrium. If everybody expects a proportion z=0 of the population to perpetrate, then the 

reservation value for each individual x is r(x)f(z)=r(x)f(0)=r(x)0=0. In this case, each individual’s 

valuation for participation is zero and thus less than the cost, r(x)f(z)=0<c=2, so that nobody in 

the population has an incentive to participate and the shared expectation of z=0 indeed is fulfilled 

(Easley and Kleinberg, 2010, p. 454). 

 Might there be a positive value (or values) of z that would be a self-fulfilling expectations 

equilibrium? The answer will depend on the nature of the r and f functions and the cost of 

atrocity adoption. To answer the question, consider the following special cases for the two 

functional forms. Suppose as above in Figure 3 that the r function takes the form r(x)=1−x. 

Recall that z is the society-wide expectation of the fraction of the population that will participate. 

Since everybody (including person z) expects that person with number name z will adopt 

atrocity, it follows that all individuals with number names x<z will be expected to adopt atrocity. 

Hence, all individuals from 0 to z will have an intrinsic reservation value of at least r(z)=1−z. Let 

the f function of network benefits be f(z)=12.5z. Figure 4 plots the aggregate reservation value 

function r(z)f(z)=(1−z)(12.5z) across various levels of expectations z, assuming that the cost of 

participation is c=2. Given the specific functional form for reservation value, if nobody in the 

population is expected to participate then, to repeat, there are no network benefits, f(0)=0, and 

thus the reservation value for each person is r(z)f(z)=r(z)(0)=0. In this case, each individual’s 

valuation for participation is less than the cost, r(z)f(z)=0<c=2, so nobody in the population has 

an incentive to participate. Hence, when no one is expected to participate, no one will value 

participation, and a shared expectation of z=0 is a self-fulfilling expectations equilibrium as 

already established above.  
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 What other self-fulling expectations equilibriums exist in Figure 4? Suppose the atrocity 

architects are able to jump over the “hurdle” of z=0 expectations of the population and foster an 

expectation fraction of participation of zʹ=0.2 in Figure 4. The reservation valuation for the 

person with number name zʹ=0.2 will adopt perpetration because his reservation valuation just 

meets the cost, r(z)f(z)=(1−z)(12.5z)=(1−0.2)(12.5)(0.2)=2=c. Further, all individuals with 

number names less than 0.2 will also adopt because their reservation valuations will be greater 

than 2. For example, person 0.1’s reservation value will be (1−0.1)(12.5)(0.2)=2.25>c=2. 

Individuals with number names greater than 0.2 will not adopt perpetration as their reservation 

valuations will be less than 2. For example, person 0.3’s reservation value will be 

(1−0.3)(12.5)(0.2)=1.75<c=2. Hence, if all individuals in the population expect a zʹ=0.2 fraction 

of the population to adopt perpetration, then that fraction will indeed adopt and individuals with 

number names above zʹ=0.2 will not. Hence, the shared expectation zʹ=0.2 will be fulfilled. But 

note that there is another self-fulling z equilibrium in Figure 4, namely at zʹʹ=0.8. If all 

individuals in the population expect that fraction of adoption, then all individuals with number 

names between 0 and 0.8 will adopt. The last adopter in the segment will be person 0.8, whose 

reservation valuation just meets the cost r(z)f(z)=(1−z)(12.5z)=(1−0.8)(12.5)(0.8)=2=c. Persons 

with names above 0.8 will not adopt perpetration because their reservation valuations will be less 

than 2. For example, person 0.9’s reservation value will be (1−0.9)(12.5)(0.9)=1.125<c=2. 

Hence, Figure 4 shows three possible self-fulfilling expectations equilibria, namely at z=0, at 

zʹ=0.2, and at zʹʹ=0.8.  

[Figure 4 about here] 

 Continuing with Figure 4, explore now the stability and tipping point properties of the 

three equilibria. Consider the equilibrium given by the origin point in Figure 4. This is a stable 
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equilibrium. Suppose the population temporarily adopts a small positive expectations fraction 

z=ε>0. In this case, the highest value of atrocity perpetration on the curve would be less than the 

cost, so the highest valuing individual, and thus all others, would not participate. In this case, the 

outcome would move back to the origin. Consider next the zʹ=0.2 equilibrium. Suppose the 

population temporarily adopts a slightly smaller expected fraction of atrocity perpetration z= 

zʹ−ε<0.2.  Since the curve in Figure 4 lies below the cost line at zʹ−ε<0.2, the highest valuing 

individual would not adopt atrocity perpetration and, thus, nobody else would either. As such, 

the outcome would gravitate to the origin. Thus, zʹ=0.2 is an unstable equilibrium. But suppose 

the population temporarily adopted a slightly larger expectations fraction z= zʹ+ε>0.2.Since the 

curve in Figure 4 lies above the cost line at zʹ+ε>0.2, individual zʹ+ε prefers adoption over 

abstention and thus becomes an adopter. Since that individual has come on board, network 

benefits from adoption have been notched up (f ʹ>0), so that the next individual above zʹ+ε will 

adopt and so on until the last adopter is reached in chain reaction fashion, namely person zʹʹ. Yet 

individuals with names above zʹʹ would have reservation valuations from adoption that are less 

than the cost of adoption as shown by the portion of the curve on the right side of Figure 4 lying 

below the cost line. In sum, these results establish that zʹ is an unstable equilibrium and z=0 and 

zʹʹ are stable equilibria.  

 Four important points follow in regard to atrocity propagation and prevention in Figure 4. 

First, equilibrium zʹ (being unstable) is a critical point or a tipping point for the “success” of 

atrocity propagation. If the number of atrocity adopters somehow reaches zʹ+ε, then upward 

pressure (or demand) for additional agents to become perpetrators will be set into motion as the 

society moves from the zʹ+ε fraction of adoption to a much higher rate of participation at zʹʹ. 

Second, atrocity architects will attempt to get their societies “over the hump” of resistance to 
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atrocity such that the much higher equilibrium of participation occurs. Third, by manipulating 

the elements of the model, atrocity architects can attempt to achieve the high participation they 

seek. For example, by lowering the cost of atrocity participation (reduce c), the zʹ equilibrium 

will decline (move left in the figure), thus making it easier to get over the hump. Moreover, the 

zʹʹ equilibrium will increase (move right), thus implying a greater rate of participation once the 

hump is gotten over. If cost is unchanging or given, atrocity architects nonetheless could attempt 

to shift the curve in Figure 4 upward by increasing actors’ intrinsic valuations for atrocity, r, and 

by promoting greater network benefits from atrocity, f. Just as if costs had been reduced, such 

actions also would serve to reduce zʹ and increase zʹʹ. Finally, fourth, atrocity preventers want to 

do the opposite of the architects; specifically, they would like the cost, c, to be high enough, and 

the r and f valuation functions to be low enough, so that the cost line in Figure 4 lies everywhere 

above the curve. 

2.3 Derivation of S-Shaped Diffusion Curve 

Following the groundwork that has been laid, we can now derive an S-shaped diffusion curve 

based upon the foregoing modeling. Recall that z symbolizes the expected fraction of the 

population that will adopt atrocity perpetration and that this expectation is shared by all 

individuals from the in-group. Just because z is what everybody expects does not imply that z 

will be the actual rate of adoption at a point in time. Let �̂� be the fraction of the population that 

solves the equation 𝑟(�̂�)𝑓(𝑧) = 𝑐 where all other terms are as described above. Note that since 

person �̂� just adopts atrocity (because �̂�’s reservation valuation is just equal to the cost), all 

individuals from 0 up to �̂� will adopt also. Assuming the functional forms for r and f from above, 

the equality condition then is: 

 (1 − �̂�)(12.5𝑧) = 𝑐.         (2) 
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Solving (2) for �̂� gives: 

 �̂� = 1 −
𝑐

12.5𝑧
 .         (3) 

Note in (3) that if the term to the right of the minus sign is greater than 1, then �̂� is negative and 

falls outside the bounds of the model. Hence, equation (3) governs the relationship between the 

shared expectation of the population, z, and the actual rate of adoption, �̂�, assuming c/12.5z≤1. If 

this condition does not hold, then �̂�=0. More generally, let the right-hand side of the equality in 

(3) be represented by the g(z) function. The general relationship between �̂� and z will then be: 

 �̂� = 𝑔(𝑧)  , when the restraint condition holds 

            (4) 

 �̂�=0  , otherwise. 

 

 We demonstrate how the model now leads to an S-shaped curve in Figure 5 based upon 

equation (3) and the restraint condition c/12.5z≤1 under the assumption that c=2. First, note that 

the restraint condition will not be met for values of z<0.16. Hence, for population-wide 

expectations of 0 ≤ z < 0.16, the actual rate of adoption will be �̂�=0. We are then led to the 

diffusion curve shown in Figure 5 (the 45
0
 line will be explained shortly). On the X axis, we 

measure at a point in time the population’s shared expectation of atrocity adoption, z. The 

diffusion curve then shows, given z, what the actual outcome of atrocity adoption, �̂�, will be as 

measured on the Y axis. For example, if z=0.1 as shown on the graph, then the actual atrocity 

adoption, �̂�, in that period will be �̂� = 0. Suppose z=0.3 as shown on the graph. The diffusion 

curve then shows that the actual atrocity adoption rate will be �̂� > 0.3 because the diffusion 

curve lies above the 45
0
 line when z=0.3. Assuming myopic adjustment in expectations among 

the population (not an unreasonable assumption for a large population), the new expectation of 

atrocity adoption in the next period will be z=�̂� as traced over to the 45
0
 line (call that z-value z2). 

As the graph shows, when z=z2, the actual atrocity adoption rate will be �̂� > 𝑧2 because the 
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diffusion curve lies above the 45
0
 line when z=z2. This process of expectations and valuation 

adjustment will continue until the expected and actual rates of adoption are equal at �̂� = 𝑧ʹʹ =

0.8. Figure 5 implies stable equilibria at z values of 0 and 0.8 and a critical point (unstable 

equilibrium) at a z value of 0.2. 

[Figure 5 about here] 

2.5 Comparative Statics  

As before, the comparative static properties of the diffusion curve in Figure 5 boil down to 

elements that would change the cost of atrocity adoption, c, shift or rotate the intrinsic valuation 

curve, r, or shift the network valuation curve, f. For example, suppose the cost of atrocity 

adoption increases from c=2.0 to c=4.0, all else equal. This will cause the diffusion curve to lie 

everywhere below the 45
0
 line as shown in Figure 6. The result will be no acceptance of atrocity 

in the population at all, i.e., there will be a unique and stable equilibrium at �̂� = 𝑧 = 0. The exact 

same diffusion curve and result would obtain if c remained at 2 but the intrinsic valuation for 

adoption function was cut in half, from r=1−x to r=0.5(1−x). If instead, the c value and the r 

function were unchanged but the value for adoption from network effects was cut in half, from 

f=12.5z to f=6.25z, again the exact same diffusion curve and result would obtain as in the figure. 

Of course, if c was to fall enough and, simultaneously, the valuation functions increase enough, 

then a result could emerge in which the diffusion curve lies mostly or even everywhere above the 

45
0
 line, thus leading to a high or complete diffusion of atrocity adoption. For example, in Figure 

7 the cost of atrocity adoption is reduced from c=2 to c=1 and the networking function changed 

to f(z)=3+12.5z
2
. Reflecting perhaps a not unrealistic scenario, note that for this new networking 

function, networking benefits will exist even when z=0 (i.e., f(0)=3) and networking benefits 

increase at an increasing rather than constant rate as given by the z
2
 term. The g function 
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becomes g(z)=1−(1/12.5z
2
).  The result is an extremely high fraction of adoption at z*=0.93. This 

outcome is a unique and stable equilibrium.
1
 

[Figure 6 about here] 

[Figure 7 about here] 

2.6 Statement of the General Model 

We can now state a general formulation of the S-shaped model. The diffusion curve can come in 

many shapes, but such curves will be generated from the spontaneous or intrinsic valuation 

function of individuals in the population, i.e., the r(x) function in our case, and the networking 

benefits function, f(z) in our case. The aggregated benefits function could be multiplicative, i.e., 

r(x)f(z), but this need not be so. Many functional forms for the aggregate benefits function are 

possible depending on the functional forms for r and f. Assuming reasonable properties of the r 

and f functions (specifically rʹ<0 and fʹ>0),
2
 a diffusion curve will be implied that will generally 

be nonlinear, will have an S-shape (i.e., with segments that at first increase at an increasing rate 

and then increase at a diminishing rate), and will lie everywhere above, everywhere below, or 

intersect the 45
0
 line one or more times. When the diffusion curve intersects the 45

0
 line from 

below, the result will be an unstable equilibrium, which will be a tipping point on either side of 

which the population behavior moves to a stable equilibirum. When the diffusion curve intersects 

the 45
0
 line from above, the result will be a stable equilibrium as deviations from that point in 

either direction move the dynamics of the behavior back to the equilibrium. The dynamic 

behavior of atrocity adoption in the population can be analyzed graphically as we have done 

                                                           
1
 Unlike an earlier example, given the specific functional forms that we have been working with, 100 percent 

adoption will not occur unless the cost of adoption is zero. Other functional forms, however, could give rise to the 

diffusion curve lying everywhere above the 45
0
 line even at positive cost, thus giving a unique and stable 

equilibrium at z*=1. 
2
 The expression rʹ<0 refers to a negative (falling) slope and means that the lower the cost, c, the higher the rate of 

adoption. The expression f ʹ>0 refers to a positive (rising) slope and means a rising acceptance of atrocity, given that 

peers have accepted. 
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here. Although pictorial, such analysis is “nevertheless completely rigorous” (Easley and 

Kleinberg, 2010, p. 461). Many pictorial examples of S-shaped diffusion curves in the literature, 

for example those of Schelling (1971, 1978) and Granovetter (1978), can be conceived of as 

examples that fit the framework laid out here. 

3. Models of Diffusion across Networks 

Both the Bass and the generalized S-curve models analyze diffusion with a population, and thus 

ignore detailed structural aspects of social relations among networked individuals. Here we 

explicitly introduce network structure into models of diffusion. Our purpose is to apply network 

models of diffusion to mass atrocity acceptance and mass atrocity rejection across networks (or 

neighborhoods) of individuals.  

3.1Basic Cascade Model of Atrocity Acceptance and Rejection across a Network 

Consider the coordination game between two players (1 and 2) in Figure 8. The two actions 

available to each player in the game in our context are aggression (A) and peace (P) directed 

against an out-group. If agents 1 and 2 each direct aggressive actions against an out-group, they 

each receive a positive payoff a>0. Likewise, if each directs peaceful actions against an out-

group, each receives a positive payoff b>0. However, if the two agents choose opposite actions 

(and thus are uncoordinated), each receives a payoff of 0.  

[Figure 8 about here] 

Again following Easley and Kleinberg (2010, p. 500), assume in Figure 9 that player 1 

would like to maximize its payoff from the pairwise interactions with its five neighbors (players 

2–6). Two of player 1’s neighbors (2 and 3) have chosen to be aggressive toward the out-group 

(they have chosen “A” in Figure 8). Player 1’s other three neighbors (4, 5, and 6) have chosen to 

be peaceful toward the out-group (they have chosen “P” in Figure 8). Assuming that player 1 
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must choose A or P and cannot choose any kind of mixture of the two, what choice would player 

1 make to maximize its payoff? Easley and Kleinberg (2010, p. 501) demonstrate that if at least 

the fraction f=b/(a+b) of player 1’s neighbors choose A, then player 1 will maximize its payoff 

by choosing A also. On the flip side, if less than the fraction f of 1’s neighbors choose A, then 1 

maximizes its payoff by choosing P. As a numerical example, suppose that a=4, b=2. In this 

case, the actual fraction of 1’s neighbors choosing A in Figure 9 is 2/5=0.4 and thus greater than 

f=2/6=0.33. Hence, player 1 will maximize its payoff by choosing A. If, instead, a=2, b=2, the 

actual fraction of 1’s neighbors choosing A (0.4) would be less than f=2/4=0.5, so A would 

maximize its payoff by choosing P. Crucially, Figures 8 and 9 demonstrate that payoffs from 

social interactions and network structure affect what player 1 will do to maximize its payoff. 

These principles can now be generalized to model the contagion of mass atrocity acceptance 

across varying network structures. 

[Figure 9 about here] 

Figure 10 shows friendship ties in a neighborhood of 12 individuals. Assume a crisis hits 

the country in which this neighborhood resides and an authority group attempts to initiate 

atrocity against an out-group. (Neighbor and neighborhood are general terms that need not imply 

a spatial or location neighborhood but can refer to a social network of family, friends, coworkers, 

and so on.) All of the individuals in Figure 10 are from the in-group. In panel (a) we assume 

initially that each individual adopts a posture of peace (P) toward the out-group (ignore the dark 

circles in panel (a) for the moment). Based on Figure 8, this implies that each peaceful neighbor 

achieves a payoff of b from each of its tied neighbors (e.g., player 1 chooses P and has two 

linked neighbors who choose P, so player 1 would receive a payoff of 2b). Suppose now that the 

a and b parameters in Figure 8 are such that the key fraction determining when an individual’s 
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choice of aggression (A) is optimal is f=0.5. This is a relatively malignant threshold in the sense 

that an individual will find it optimal to choose A when only half (or more) of its neighbors 

choose A. Perhaps government authorities have instituted rewards and punishments in this 

society such that a is relatively high and b relatively low in Figure 8, thus giving rise to f=0.5.  

 Assume now in panel (a) of Figure 10 that, for exgenous reasons, individuals 5 and 10 

spontaneously switch to aggression (A). This is indicated by the darkened circles for these agents 

in the figure. Perhaps individuals 5 and 10 were swayed by government propaganda or they were 

given an exogenous side payment to switch to A. Whatever the case, a contagion of atrocity 

acceptance will now unfold. Since 5 is darkened, now half of the neighbors of individuals 3, 4, 6, 

and 7 have chosen A, and so they, too, will choose A (given f=0.5). In panel (b) we thus darken 

the circles for agents 3, 4, 6, and 7 to indicate their conversions to atrocity acceptance. It now 

follows that individuals 1, 2 and 8 have at least half of their neighbors choosing A, so in panel 

(c) they choose A also. In the next round, individual 9 will have at least half of its neighbors as 

atrocity accepters, so 9 will choose A. Finally, the last set of individuals (11 and 12) will convert 

to A for like reason. Hence, we arrive at panel (d) in which all circles are darkened and the whole 

network has become infected with atrocity acceptance.  

[Figure 10 about here] 

 The model described in Figure 10 is a complete model in that it specifies initial 

conditions (agents 5 and 10 adopt A, all others adopt P), a threshold rule rooted in a stage game 

(f=b/(a+b), which was set equal to 0.5), and the dynamic unfolding of contagion until the process 

ends (Easley and Kleinberg, 2010, pp. 501–2). Of course, the specific network structure in 

Figure 10, the stage game in Figure 8, and the threshold rule could be quite different and even 

individualized (i.e., each agent could have its own threshold rule), but the process of working 
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through the contagion in the model would follow the same procedure used here. Given that we 

have a complete model in this sense, we can move on to comparative statics on the model. 

3.2 Comparative Statics of the Basic Cascade Model 

In what follows we consider three comparative statics: (1) change in initial conditions, (2) 

change in payoffs in the stage game and thus change in the threshold rule, and (3) change in 

network links among existing agents. Later we work in additional comparative statics; in 

particular, we will consider immunized agents and key player policy when we use the model in 

Figure 10 to analyze atrocity prevention. Other types of comparative statics—e.g., one-way or 

directed links, incomplete information on links, multiplex links (i.e., some agents choosing A 

vis-à-vis some neighbors and P vis-à-vis other neighbors)—are left for future research. 

 Return to Figure 10(a), but with the proviso that we change one of the initial (exogenous) 

adopters of aggression. Suppose now that agent 4 (along with agent 10) is an initial adopter of A 

rather than agent 5, all else equal. This scenario is shown in Figure 11. Now run the contagion 

process forward through time. Note that none of the agents in the upper cluster of players 

surrounding agent 4 have at least half of their networked neighbors as adopters of A. This is also 

the case for the middle and lower clusters of agents in the figure. In short, there is no contagion 

in Figure 11! This simple result is remarkable. In moving from panel (a) in Figure 10 to Figure 

11, we have not changed the number of the initial adopters of A at time zero, the total number of 

individuals in the network, the structure of neighbor links in the network, or the threshold rule 

for the adoption of A. We merely changed the location on the network of one of the initial 

adopters. Despite this truly trivial change, the effect on the aggregate outcome is dramatic. 

Specifically, this small change in an initial condition caused the aggregate outcome to switch 

from complete contagion to no contagion at all. This captures puzzles 1 to 7 but now in a more 
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complexly specified network and diffusion model. Recall that puzzle 1 asked about how small-

scale atrocity adoption can scale up to mass participation. The details for the diffusion process 

address this. Puzzle 2 asked why one location experiences mass participation while another does 

not. Differences in initial network conditions across different locations can explain this. Puzzle 3 

asked why individual participation may “flip” from adoption to nonadoption. A change in 

conditions, such as when an initially adoping agent moves from location 5 to location 4, can 

explain this. Puzzle 4 asked why individuals can be both persecutors and rescuers. What can 

explain this is that agents are multiplex, that is, they are involved in a variety of networks, each 

with its own conditions, threshold rules, and specific network structures. Puzzle 5 asked why 

some people, who are strongly opposed to acts of mass atrocity, nonetheless help commit them. 

Network theory suggests that peer effects, f(z) or pairwise interaction payoffs, in the network 

may be strong enough to overcome an individual’s reservation value, r(x). Puzzle 6 asked why, 

post-atrocity, some individuals appear to exhibit genuine shock and remorse at their own 

participation. Again, a change in network structure, such as when key agents are removed from 

the network structure, say in the wake of Germany’s defeat in the Second World War, can 

explain this. Puzzle 7 asked what explains the “silence of the majority” in many mass atrocity 

cases, and network theory suggests that particular combinations of initial conditions, threshold 

rules, and network structure can generate such outcomes. The “reductionist” point of models 

such as those described here is to learn whether, beyond case-specific studies of mass atrocities, 

there are general factors common to all (or most) mass atrocities on which general policy 

approaches may focus, at least as a first cut at a specific mass atrocity situation. 

[Figure 11 about here] 
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 Next, in Figure 12 we take as our initial starting point at time zero the situation depicted 

in Figure 11 in which agents 4 and 10 exogenously adopt behavior A, but we change the 

threshold rule from f=½ to f=⅓. Panel (a) of Figure 12 is a reproduction of Figure 11. With the 

even more malignant threshold rule now operative (only ⅓ instead of ½ of neighbors need to 

adopt before the agent in question adopts, perhaps owing to changes in payoffs in the stage game 

in Figure 8 by the atrocity architects), note in panel (b) that agents 1 and 12 now have at least 

one-third of their neighbors as atrocity adopters, so they choose A also. Hence, we darken the 

circles for agents 1 and 12 in panel (b). It then follows in panel (c) that agents 2, 5, 9, and 11 

have at least one-third of their neighbors as adopters, so they adopt too and their circles become 

darkened. Now in panel (d), all of the remaining agents (3, 6, 7, and 8) have at least one-third of 

their neighbors adopting, so we darken their circles in panel (d). The result is one of complete 

adoption of atrocity acceptance on the network owing to a change in the threshold rule, all else 

constant. 

[Figure 12 about here] 

 In Figure 13 we return to our initial setup in which agents 5 and 10 are initial 

(exogenous) adopters and the threshold rule is f=½. Recall from Figure 10 that these conditions 

led to the complete contagion of atrocity acceptance on the network. Now we add to that 

scenario what again seems like a trivial adjustment. Specifically, we add a new neighborhood tie 

between agents 3 and 4 in Figure 13 as shown by the dashed line between them. Now trace the 

contagion on the network for this new scenario. In panel (b), agents 6 and 7 have at least half of 

their neighbors as adopters, so we darken their circles as they convert to adoption. Now agent 8 

has at least half of its neighbors adopting, so it adopts too leading to a darkened circle for 8 in 

panel (c). Finally, in panel (d) agent 9 converts which then facilitates the conversions of 11 and 
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12 to adoption. But note that none of the individuals in the top cluster of panel (d) convert. This 

is a surprising result, namely, that just one additional neighborhood tie among peace types in the 

top cluster allowed the whole cluster to be buffered against atrocity acceptance. In this example, 

a slightly denser network among peaceful types enables the cluster to resist being infected by the 

atrocity acceptance contagion.
3
 We will now see how this result can be generalized to any 

network structure with undirected ties and a threshold rule. 

[Figure 13 about here] 

3.3 Clusters as Obstacles to Cascades: A General Statement 

The previous subsection shows how the degree of contagion across a specifically contrived 

network can vary dramatically depending on seemingly small, even trivial, changes (“trembles”) 

in initial conditions, threshold rules, network structure, or number of links. Whether extensive or 

limited contagion of atrocity acceptance or rejection occurred on the network seemed almost 

idiosyncratic in the sense that a slight twist in a condition here or there could drastically alter the 

diffusion process. A question naturally arises: Can a more general statement be made about the 

diffusion (or lack thereof) of a substance across any network? More generally, we will show that 

groups within networks characterized by homophily (a relatively close or tightly-knit 

community) serve as “barriers to entry” to new behavior. Already we have seen an example of 

this idea in Figure 13. Specifically, when we added one neighborhood (or friendship) link, 

namely between agents 3 and 4, to the top cluster of individuals in the figure, we made that 

                                                           
3
 The contagion of atrocity acceptance across locales during mass atrocities is often dramatically uneven. Some 

locales seem immune to atrocity acceptance while others give way to a high level of atrocity actions quite rapidly. 

For the 1994 Rwandan genocide, McDoom (2014) presents empirical evidence that “cohesive communities 

resist[ed] elite attempts to divide them” (p. 34). Similarly, McDoom’s (2013) empirical evidence implies that as the 

number of peaceful to violent people in an individual’s neighborhood or household increases, the likelihood of this 

individual’s participation decreases. Network theory provides plausible explanations for such observations. 
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group within the network a slightly more tightly-knit community. In the example, the slight 

increase in the group’s tightness caused it to become a barrier to atrocity acceptance. 

 Following Easley and Kleinberg (2010, p. 502), we conceptualize a group of tied 

individuals within a network as a cluster of individuals with a certain degree of tightness or 

interconnection among them. Specifically, a cluster with density d is a set of actors such that 

each actor in the set has at least the ratio r of its tied friends in the set. Consider, for example, 

Figure 14 which is a reproduction of panel (a) of Figure 13 but with the tie between agents 3 and 

4 now a solid rather than a dashed line. Recall that the idea of atrocity acceptance was not able to 

break into the top cluster of agents (1–4) (see panel (d) of Figure 13). The density of that top 

cluster in Figure 13 is d=⅔, that is, each agent 1–4 has at least two-thirds of its friendship ties 

within the cluster of agents 1–4. Let agents 5–8 be a cluster as well. The density of that cluster is 

d=½. Finally, let individuals 9–12 be a cluster, with density of d=⅓. Hence, the cluster that was 

most dense in Figure 13 was the one cluster in which the contagion of atrocity acceptance did not 

spread given the initial conditions and the threshold fraction f. Meanwhile, the other two clusters 

in Figure 13 were not sufficiently dense to prevent the contagion given the initial conditions and 

the threshold fraction f.  

[Figure 14 about here] 

 In contexts such as the models depicted in this section, Easley and Kleinberg (2010, p. 

507) make the following claim: 

Claim: Consider a network in which there is a set of initial adopters of behavior A 

(atrocity acceptance in our context) with a threshold of fraction f for adopting A 

for remaining agents in the network.  
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(i) If the remaining network contains a cluster of density greater than 1−f, then the 

set of initial adopters will not cause a complete cascade. 

And 

(ii) For threshold f, if the initial set of adopters does not cause a complete cascade, 

the remaining network contains a cluster of density greater than 1−f. 

(For a proof, see Easley and Kleinberg, 2010, pp. 507–9.) 

Note how the Easley/Kleinberg (E/K) statement is fulfilled in Figure 14. With f=½, the network 

does contain a cluster with density greater than 1−f=½, namely, the top cluster with density d=⅔. 

It then follows that both (i) and (ii) in the E/K claim are satisfied. Note also how the E/K claim is 

supported in Figures 10 and 12 above. In both figures, the density of the top cluster is d=½ rather 

than d=⅔. Part (i) of the E/K claim does not hold for those figures, and a complete cascade 

occurs for each. 

The more general principle associated with the E/K model is that tightly-knit 

communities serve as barriers to entry to contagion. This can be good news or bad news for 

atrocity contagion. Just as a tight-knit community might be more likely to resist atrocity 

acceptance, a tight-knit community could also be more resistant to peacefulness toward an out-

group. As Amartya Sen (2006, p. 1) writes: “identity can also kill—and kill with abandon.” 

4. Network Tentacles of Atrocity Perpetration 

The models covered up to this point focus on the diffusion of atrocity acceptance or the 

resistance to atrocity across a population or within a neighborhood (locale) of individuals. The 

people over which such diffusion processes play out are assumed to be from the in-group. Even 

within a population and even within neighborhoods in which atrocity becomes acceptable, there 

is still the matter (from the architect’s point of view) of bringing force to bear to destroy the out-
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group. The bringing of such force involves networks of individuals and organizations including 

troops to carry out the killing and prevent the victims from fleeing, bureaus and logisticians to 

manage equipment and other supplies for the troops, commanders to organize operations, and 

businesses to provide the implements of people-group destruction. Much like the “tooth-to-tail 

ratio” is used in the military planning literature to summarize the many facets of networks 

involved in preparing for and conducting war, we conceive of “networked tentacles of atrocity 

perpetration” along similar lines. In this section, we offer a stylized linear quadratic model of 

network tentacles of atrocity perpetration.  

4.1 Basic Setup of the Linear Quadratic Model of Atrocity Tentacles 

Figure 15 is a highly stylized depiction of a social network designed to bring tentacles of out-

group destruction to three villages, A, B, and C. At the center of the network is player 1 who is 

the atrocity architect. Moving out from the center are three people, players 2, 3, and 4, who are 

the regional managers or bureau heads associated with villages A, B, and C, respectively. 

Finally, agents 5–10 represent commanders of troops carrying out atrocities in their assigned 

locales. For the moment, ignore the w numbers in the figure. 

 Assume that each individual player, i, in the network in Figure 15 chooses a level or 

intensity of an action, xi ≥ 0, assumed to be action or harm against the out-group. Following the 

linear quadratic model (LQM) from the social networking literature (e.g., Jackson, 2008), each 

player’s utility or payoff is given by: 

 𝑈𝑖 = 𝑎𝑖𝑥𝑖 −
𝑏𝑖

2
𝑥𝑖

2 + ∑ 𝑤𝑖𝑗𝑥𝑖𝑥𝑗   ,𝑗≠𝑖        (5) 

where ai ≥ 0 and bi > 0 are benefit and cost scalars, respectively, and wij≥ 0 is the weight or 

importance that player i places on player j’s action (Jackson, 2008, p. 290). Equation (5) implies 

that each unit of xi brings to player i marginal benefits of 𝑎𝑖 + ∑ 𝑤𝑖𝑗𝑥𝑗𝑗≠𝑖  (i.e., additional benefits 
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per additional unit of action) and marginal costs of bixi. The wij parameter captures strategic 

complementarities (when wij>0) among linked agents. This aspect of equation (5) captures the 

increase in i’s self-perceived well-being when j’s positive action interacts with i’s positive action 

(xixj). The reasons for i’s increased well-being from j’s action could be multiple, including 

feelings of comradery from having a person that one is directly connected to operating for the 

“cause” as well—that is, a peer effect in which my linked counterpart’s higher action causes me 

to want to engage in a higher action too (e.g., to show myself well within the in-group)—or 

information flows among networked agents that enhance the “ideological necessity” of 

destroying the out-group. 

 Assume now that each agent i maximizes Ui in (5) by choosing xi, with all other elements 

in (5) treated parametrically. This leads to the following reaction function for i (Jackson, 2008, p. 

291): 

 𝑥𝑖 =
𝑎𝑖

𝑏𝑖
+ ∑

𝑤𝑖𝑗

𝑏𝑖
𝑥𝑗𝑗≠𝑖     or     𝑥𝑖 − ∑

𝑤𝑖𝑗

𝑏𝑖
𝑥𝑗𝑗≠𝑖 =

𝑎𝑖

𝑏𝑖
.     (6) 

The system of reaction functions then can be written in matrix algebra format as:  

 Ax=B           (7) 

where A is the 10x10 matrix of coefficients that multiply the x variables, x is the 10x1 vector of 

xi variables, and B is the 10x1 vector of ai/bi terms. The solution to (7) is  

 𝑥∗ = 𝐴−1𝐵    ,          (8) 

where A
-1

 is invertible and the inverse of A and x is nonnegative. 

4.2 Numerical Example of LQM Model 

To illustrate the workings of the model in the previous subsection, we begin with the assumption 

that the odd-numbered commanders (5, 7, and 9) favor atrocities against the out-group but the 

even-numbered commanders (6, 8, and 10) are uncomfortable bystanders:  They would rather not 
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carry out atrocities but also do not want to disobey orders and try to rescue victims. To give 

specific numbers to Figure 15 and to the equations of the model, assume that ai=2, bi=1, wij=0.2, 

and wii=0 for i=1–5, 7, and 9 and ai=0, bi=1, wij=0, and wii=0 for i=6, 8, and 10. The numerical 

values for the w terms are labeled in Figure 15. Equation (7) would then be: 
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Following equation (8), the solution to (9) is: 

 x1*  5.81  

 x2*  6.36 

 x3*  6.36 

 x4*  6.36 

 x5* = 3.28  .       (10) 

 x6*  0     

 x7*  3.28     

 x8*  0     

 x9*  3.28     

 x10*  0     

 

 The aggregate amount of actions in (10) is X*=36.7. (We note that the interpretation of 

the amount of harm caused is unclear. A simple assumption, given symmetry in Figure 10, is to 

divide 36.7 by 3 (=12.2) and assume that this is the amount of harm brought to each village. 
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Another interpretation is to assume that the actions of the architect, player 1, is purely public 

such that x1*=5.81 applies to each of the three tentacles. This then would give [(36.7−5.81)/3] + 

5.81 = 16.1] units of harm directed to each village. Although obviously relevant in the real 

world, the interpretation does not matter for our modeling purposes here.) 

 The atrocity network in Figure 15 and the solution in equation (10) assume that the even-

numbered commanders are not supportive of atrocity (their ai values were zero and their link 

weight terms with others were zero). Assume now that such commanders are replaced with 

“willing executioners” (Goldhagen, 1996). For simplicity, we assume all commanders now have 

the parameter values of the odd-numbered commanders in equation (9). The aggregate output of 

the tentacle model rises from X*=36.7 units of harm to X*=62.6 (a 71 percent increase), a rather 

large numeric increase on network output from a relatively small policy change of replacing 

three unwilling commanders in the field.  

4.3 Comparative Statics Analysis of LQM Model 

We now summarize various comparative static results for the solution of the general LQM model 

in equation (8) and also with numerical examples. Following Jackson (2008, pp. 292–3) and 

Ballester, Calvó-Armengol, and Zenou (2006), assume ai=a and bi=b for all agents i, but 

continue to assume that the weight parameters wij≥0 can be heterogeneous. Under these 

conditions, it can be shown that the he equilibrium levels of harmful actions in (8) can also be 

represented by (see Jackson, 2008, p. 292): 

 𝑥∗ =
𝑎

𝑏
(I −

1

𝑏
𝑤)

−1 𝑎

𝑏
𝟏  ,      (11) 

where I is the identity matrix, w is the weight parameters matrix, and 1 is an nx1 vector of ones. 

From (11), an increase in the benefit parameter a or a decrease in the cost parameter b will 

increase each agent’s x value in the vector x
*
. It also follows that an increase in any one of the wij 
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terms in matrix w will increase the equilibrium level of harm for each agent in the network who 

has a directed (one-way) path to agent i (see Jackson, 2008, p. 292 for a proof).  

 Condition (11) is also amenable to the analysis of Key Player Policy (KPP) (Ballester, 

Calvó-Armengol, and Zenou, 2006). The key player is the one whose removal causes the 

production on the network to decrease the most assuming that the remaining players re-optimize 

their actions. Ballester, Calvó-Armengol, and Zenou (2006) identify the key player in a condition 

like (11) based upon a Bonacich (1987) network centrality measure, C
B
. The Bonacich centrality 

measure for an actor counts the number of all of the paths that emanate from that actor’s node, 

weighted by a decay factor so that an agent’s reach decreases with the lengths of the paths 

(Ballester, Calvó-Armengol, and Zenou, 2006, p. 1404). Following Ballester, Calvó-Armengol, 

and Zenou (2006) and Jackson (2008, p. 292), assume that the a and b terms in the LQM are the 

same for each actor and that any heterogeneity on the network comes only through the link 

weights, wij. Further assume that 1/b is small enough so that C
B
 is well-defined and nonnegative 

(Jackson, 2008, p. 292). It follows that the equilibrium levels of harm on the network are 

(Jackson, 2008, p. 292): 

 𝑥∗ =
𝑎

𝑏
(𝟏 + 𝐶𝐵),         (12) 

where 1 is an nx1 vector of ones, n is the number of actors on the network, and 𝐶𝐵is a vector of 

Bonacich centrality measures, which in turn are functions of the b cost parameter and the matrix 

of weight links, w. Ballester, Calvó-Armengol, and Zenou (2006) show that the largest reduction 

in the network’s output occurs from the removal of the actor with the highest value of a variant 

of the Bonacich centrality measure (see Jackson, 2008, pp. 292-293). While we do not pursue 

these technical matters here (as indeed the literature knows of multiple centrality measures, each 

with its own good uses), the point is that network theory can help identity key players whose 
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removal from the network will damage its productity. For a high-level empirical application of 

Key Player Policy to fighting among armed groups in the Democratic Republic of the Congo 

(DRC), and its attendant atrocities, see König, et al. (2017). 

5. Contesting Networks of Atrocity Perpetration and Prevention 

There are four general types of interventions that third parties could attempt to impose on a 

network to prevent atrocity: (1) Deployment of various “carrots and sticks” to change the 

benefits and costs of individuals on the network such that less hostility is generated (i.e., atrocity 

preventing comparative statics), (2) nullification of one or more key players on the network, 

and/or other centrally important actors, and/or some or all of the links among atrocity supporting 

actors, (3) insertion of resistance actors (saboteurs) at key places in the network, and (4) insertion 

of a third party’s “tentacles of atrocity prevention” to directly contest the atrocity-producing 

organization’s work.  In this section, we model the latter of these alternatives as well as 

providing brief discussion of (1) and (2). 

 Assume an atrocity perpetrating network has i=1, ..., n atrocity tentacles in which xi0 

units of harm are being directed per tentacle against an out-group. Think of the i’s as locations in 

geographic space and/or in time. Similarly, assume a network of third party helpers directs yi0 

units of atrocity resistance to each of the perpetrator’s tentacles to directly contest the efforts of 

the perpetrators. Assume the result of any contestation between the atrocity perpetrators and the 

atrocity preventers is governed by the following Tullock-like contest success function (CSF): 

 𝑟𝑖
𝑠 =

𝑦𝑖

𝑥𝑖+𝜏𝑖𝑦𝑖
  ,              (13) 

where 𝑟𝑖
𝑠 is the ratio of the vulnerable population at location i that is saved from victimhood and 

τi0 is a technology of contestation parameter appropriate to location i, which depends on 
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geography and other elements that aid or hinder the protection of vulnerable people. Consistent 

with CSFs deployed in the literature, 𝑟𝑖
𝑠(𝑥𝑖, 𝑦𝑖) = 𝑟𝑖

𝑠(0,0) = 1.  

 As a numerical example of the contestation model, return to the atrocity perpetrator’s 

network in Figure 15 under the assumption that all ten actors are perpetrators. Recall that the 

network’s aggregate number of units of harm directed to the out-group was X*=62.6. Assume 

each of the three tentacles of atrocity receive one-third of those units, or about 20.9 units of harm 

for each tentacle, which we will round to 21 units for simplicity. Suppose a network of third 

party actors generates a total of Y*=42 units of action to directly contest the 63 units of harm of 

the atrocity network. If the third party deploys 14 units of contestation to each atrocity tentacle 

and if τi=1 for each i, then 40 percent of the vulnerable population at each tentacle location will 

be protected and 60 percent will be lost.
4
  

  A second approach to modelling contesting networks is to assume that each network 

produces an aggregate output. Such outputs can be thought of as efforts or “weapons” in the 

contest between the networks in which the outcome of the struggle would be modeled by a 

contest success function (CSF). For example, the aggregate output of the atrocity perpetrating 

network is X*=62.6 when all commanders are on board. Suppose a third party brought Y=50 

units to contest the actions of the atrocity-perpetrating network. A simple ratio-form CSF would 

be p=Y/(X+Y)=50/(62.6+50)=0.44 where p is the proportion of the vulnerable civilian population 

that survives the atrocity network’s assault or the probability that any given vulnerable civilian 

survives. In this example, 44 percent of the vulnerable civilian population would survive, but 0 

percent would survive if there was no third party help (Y=0). Once more, we do not pursue these 

                                                           
4
 An alternative interpretation is that there will be a 0.4 probability of survival for each vulnerable person at each 

location and the expected values will be that 40 percent of each vulnerable population survives at each location.  
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matters here and only point to the potential value of bringing explicit network theory-induced 

reasoning to bear on real world cases of mass atrocities such as genocides. 

6. Conclusions 

We began the article with seven puzzles and, in the text that followed, showed that concepts 

from network theory help address all seven puzzles. Even though each real-world case of mass 

atrocity is somehow “special” (hence the very many case histories), all of them would seem to 

emerge from a unified underlying structure, thus linking highly detailed “micro” level studies to 

a “macro” level general theory of mass atrocity. The theory identifies key elements regarding 

initial conditions, diffusion processes, adoption and imitation rates, threshold and neighborhood 

effects, network structure, mutiplex networks, cost and benefit considerations (including 

psychological costs and benefits such as feelings of animosity or amity toward others), and so 

on. Depending on the particular constellation of these and other parameters in one or more 

networks, the promise of network theory is that real-world cases of mass atrocity can be 

“recreated” theoretically. To the degree that this effort succeeds, it is then possible to also link 

what is known from case studies and other efforts about mass atrocity intervention and 

prevention to network theory, as we have indicated in several instances above (e.g., the Key 

Player Policy or location-specific interventions on a network). 

 This article has only begun to apply network concepts and models to mass atrocity onset, 

spread, and prevention. Numerous extensions are possible. For diffusion over a population (and 

prevention of diffusion), much research terrain is still to be explored on adapting SI, SIR, SIS, 

and SIRS models from the epidemiology literature to mass atrocities. For diffusion over smaller 

groups (for example, neighborhoods) in which network characteristics are critical for 

understanding the spread or prevention of mass atrocities, much more is to be learned about  how 
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small (even trivial) “trembles” on the network can set off a contagion of mass atrocity 

acceptance or to stop the contagion before it takes off. For models of tentacles of atrocity 

perpetration, other “market structures” can be modeled including Stackelberg-like behavior in 

which the atrocity perpetrators’ harming actions are given and a third party optimally allocates 

efforts on the network to maximize the saving of lives. Similarly, the set of reaction functions for 

both the atrocity actors and the third party intervenors can be modeled to find the Cournot-Nash 

equilibrium. The CSF on networks approach can be further refined by assuming that the 

competing networks allocate their efforts to particular locales of contestation in which each 

locale has its own CSF and the leaders of each network are strategic in their decision-making.  

Furthermore, the contesting networks approach to modeling atrocity onset, spread, and 

prevention is amenable to analysis of resistance actors (saboteurs) at key places in the network.   
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Figure 6 

0

0.2

0.4

0.6

0.8

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

�̂�

z

�̂� = 𝑔(𝑧)

450

 



47 
 

 

Figure 7 

 

 

Figure 8 

         Player 2 

    A  P 

   A a,a  0 0 

 Player 1 

   P 0, 0  b, b 

 

 

Figure 9          Choose A       Choose P 

    2    4 

      1  5 

    3    6 

 

0

0.2

0.4

0.6

0.8

1

0.0 0.2 0.4 0.6 0.8 1.0
z 

�̂� 

�̂� = 𝑔 𝑧 = 1 −
1

12.5𝑧2
 



48 
 

Figure 10 
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Figure 11 
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Figure 12 
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Figure 13 
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Figure 14 
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Figure 15 
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