College of the Holy Cross CrossWorks

Mathematics Department Faculty Scholarship

Mathematics

1974

A Characterization of Metric Spheres in Hyperbolic Space by Morse Theory

Thomas E. Cecil College of the Holy Cross, tcecil@holycross.edu

Follow this and additional works at: https://crossworks.holycross.edu/math_fac_scholarship Part of the <u>Applied Mathematics Commons</u>

Recommended Citation

Cecil, Thomas E. A characterization of metric spheres in hyperbolic space by Morse theory. Tohoku Math. J. 26 (1974), no. 3, 341-351.

This Annual Report is brought to you for free and open access by the Mathematics at CrossWorks. It has been accepted for inclusion in Mathematics Department Faculty Scholarship by an authorized administrator of CrossWorks.

A CHARACTERIZATION OF METRIC SPHERES IN HYPERBOLIC SPACE BY MORSE THEORY

THOMAS E. CECIL

(Received July 16, 1973)

0. Introduction. Let M^n be a differentiable manifold of class C^{∞} . By a Morse function f on M^n , we mean a differentiable function f on M^n having only non-degenerate critical points. A well-known topological result of Reeb states that if M^n is compact and there is a Morse function f on M^n having exactly 2 critical points, then M^n is homeomorphic to an n-sphere, S^n (see, for example, [3], p. 25).

In a recent paper, [4], Nomizu and Rodriguez found a geometric characterization of a Euclidean *n*-sphere $S^n \subset R^{n+p}$ in terms of the critical point behavior of a certain class of functions L_p , $p \in R^{n+p}$, on M^n . In that case, if $p \in R^{n+p}$, $x \in M^n$, then $L_p(x) = (d(x, p))^2$, where d is the Euclidean distance function.

Nomizu and Rodriguez proved that if M^n $(n \ge 2)$ is a connected, complete Riemannian manifold isometrically immersed in R^{n+p} such that every Morse function of the form L_p , $p \in R^{n+p}$, has index 0 or *n* at any of its critical points, then M^n is embedded as a Euclidean subspace, R^n , or a Euclidean *n*-sphere, S^n . This result includes the following: if M^n is compact such that every Morse function of the form L_p has exactly 2 critical points, then $M^n = S^n$.

In this paper, we prove results analogous to those of Nomizu and Rodriguez for a submanifold M^n of hyperbolic space, H^{n+p} , the space-form of constant sectional curvature -1.

For $p \in H^{n+p}$, $x \in M^n$, we define the function $L_p(x)$ to be the distance in H^{n+p} from p to x. We then define the concept of a focal point of (M^n, x) and prove an Index Theorem for L_p which states that the index of L_p at a non-degenerate critical point x is equal to the number of focal points of (M^n, x) on the geodesic in H^{n+p} from x to p.

In section 2, we prove that a metric sphere $S^n \subset H^{n+p}$ can be characterized by the condition that every Morse function of the form L_p , $p \in H^{n+p}$, has exactly 2 critical points.

In section 3, we give an example which shows that a result analo-

This research was partially supported by NSF grant GP 28419 A1.

gous to that of Nomizu and Rodriguez for the non-compact case cannot be proven. More explicitly, we exhibit a complete surface $M^2 \subset H^3$ which is not umbilic on which every Morse function of the type L_p has index 0 at any of its critical points.

The author would like to express his sincere gratitude to his adviser, Katsumi Nomizu, for his assistance in this work.

1. The functions L_p and the index theorem. We will use the following representation of hyperbolic space H^m (for more detail, see [2], vol. II, p. 268). Consider R^{m+1} with a natural basis e_0, e_1, \dots, e_m and a non-degenerate quadratic form H defined by

$$H(x, y) = -x^{0}y^{0} + \sum_{k=1}^{m} x^{k}y^{k}$$
 for $x = \sum_{k=0}^{m} x^{k}e_{k}$ and $y = \sum_{k=0}^{m} y^{k}e_{k}$.

Then H^m is the hypersurface

$$\{x \in R^{m+1} \mid H(x, x) = -1, x^0 \geq 1\}$$
 ,

on which g, the restriction of H, is a positive definite metric of constant sectional curvature -1.

Let M^n be a connected, Riemannian manifold, and let f be an isometric immersion of M^n into H^{n+p} . We first define the following class of functions on H^{n+p} ; for p, q in H^{n+p}

$$L_p(q)\equiv d(p,q)$$
,

the distance in H^{n+p} from p to q. If we use the above representation of H^{n+p} , then we have

$$L_{p}(q) = \cosh^{-1}(-H(p, q))$$
.

For $p \in H^{n+p}$, $x \in M^n$, we define $L_p(x) = L_p(f(x))$. If $p \notin f(M^n)$, then the restriction of L_p to M^n is a differentiable function on M^n . From this point on, we will only consider L_p such that $p \notin f(M^n)$.

We now proceed to develop the concept of focal point and prove an Index Theorem for L_p . Let $N(M^n)$ denote the normal bundle of M^n . Any point of $N(M^n)$ can be represented as $(u, r\xi)$ where $u \in M^n$, $r \in R$, and ξ is a unit length vector in $T_u^{\perp}(M^n)$, the normal space to M^n at u.

We define $\gamma(u, \xi, r), -\infty < r < \infty$, to be the geodesic in H^{n+p} parametrized by arc-length parameter r such that

$$\gamma(u, \xi, 0) = u$$
 and $\vec{\gamma}(u, \xi, 0) = \xi$.

Let U be a local co-ordinate neighborhood of M^n with co-ordinates u^1, \dots, u^n . Then, in terms of the co-ordinates x^0, \dots, x^{n+p} in \mathbb{R}^{n+p+1} , the immersion f(U) can be represented by the vector-valued function

342

METRIC SPHERES IN HYPERBOLIC SPACE

 $x(u^{1}, \dots, u^{n}) = (x^{0}(u^{1}, \dots, u^{n}), \dots, x^{n+p}(u^{1}, \dots, u^{n}))$

In terms of this representation, the geodesic $\gamma(u, \xi, r)$ is given by

 $\gamma(u,\,\xi,\,r)=(\cosh\,r)x(u)+(\sinh\,r)\xi\;.$

We define a map F from $N(M^n)$ to H^{n+p} by

$$F(u, r\xi) = \gamma(u, \xi, r) .$$

As in the Euclidean case, the concept of focal point is defined in terms of the degeneracy of F_* , the Jacobian of F.

DEFINITION. A point $p \in H^{n+p}$ is called a *focal point* of (M^n, u) of *multiplicity* ν if $p = F(u, r\xi)$ and F_* has nullity $\nu > 0$ at $(u, r\xi) \in N(M^n)$. (We say p is a focal point of M^n if p is a focal point of (M^n, u) for some $u \in M^n$.)

For $\xi \in T_u^{\perp}(M^n)$, A_{ξ} denotes the symmetric endomorphism of $T_u(M^n)$ corresponding to the second fundamental form of M^n at u in the direction of ξ . The following proposition identifies the focal points of M^n .

PROPOSITION 1. A point $p \in H^{n+p}$ is a focal point of (M^n, y) of multiplicity $\nu > 0$ if and only if

$$p = F(y, r\xi)$$
 and $\operatorname{coth} r = k$

where k is an eigenvalue of A_{ε} of multiplicity ν .

PROOF. Fix $(y, r\xi) \in N(M^n)$, and let U be a co-ordinate chart of M^n with co-ordinates u^1, \dots, u^n such that $y \in U$. Then N(U) can be considered as $U \times R^p$. We now examine the nullity of F_* at $(y, r\xi)$.

We first assume $r \neq 0$. Choose ξ_1, \dots, ξ_p orthonormal normal vector fields on U such that $\xi_1(y) = \xi$. Let $\beta \in T_u^{\perp}(U)$ for some $u \in U$. Then we can write

$$eta=\mu\Bigl(\sqrt{1-\sum\limits_{j=2}^p(t^j)^2}\hat{\xi}_1+t^2\hat{\xi}_2+\cdots+t^p\hat{\xi}_p\Bigr) \hspace{0.2cm} ext{where} \ 0\leq \mu<\infty \hspace{0.2cm} ext{and}\hspace{0.2cm} \sum\limits_{j=2}^p(t^j)^2\leq 1 \;.$$

The t^j are the direction cosines of β , and $\mu = ||\beta||$. The coordinates $(u^1, \dots, u^n, \mu, t^2, \dots, t^p)$ are local co-ordinates on N(U). For any j, we compute from the definition of F that,

$$F_*\left(\frac{\partial}{\partial t^j}\right)\Big|_{(y,r\xi)} = \vec{\eta}(t^j)\Big|_{t^{j=0}}$$

where the curve $\eta(t^{j})$ is defined by

T. E. CECIL

$$\eta(t^j) = (\cosh r) x(y) + (\sinh r) (\sqrt{1-(t^j)^2} \xi_i(y) + t^j \xi_j(y)) \; .$$

Then,

$$ec{\eta}(t^j)\Big|_{t^{j}=0}=(\sinh r)\xi_j(y)
eq 0 \,\, {
m and} \,\, {
m thus,} \,\,\, F_*\!\left(rac{\partial}{\partial t^j}
ight)\Big|_{(y,\,r\xi)}
eq 0\,\,.$$

Similarly,

$$F_* \Big(rac{\partial}{\partial \mu} \Big) \Big|_{(y,\,r\xi)} = ec \eta(\mu) \Big|_{\mu=r} \quad ext{where} \ \ \eta(\mu) = (\cosh \mu) x(y) + (\sinh \mu) \xi_1(y) \; .$$

Then

 $ec\eta(\mu)=(\sinh\mu)x(y)+(\cosh\mu)\xi_1(y) \ \ ext{and} \ \ ||ec\eta(\mu)||=1 \ \ ext{for all} \ \ \mu$. In particular,

$$\left.ec{\eta}(\mu)
ight|_{\mu=r}=F_*\!\left(rac{\partial}{\partial\mu}
ight)
ight|_{(y,\,r\xi)}
eq 0\;.$$

In fact, the above calculations show that if

$$V = a_{\scriptscriptstyle 1}\!\!\left(rac{\partial}{\partial\mu}
ight) + \sum\limits_{j=2}^p a_{j}\!\left(rac{\partial}{\partial t^{j}}
ight) \!\in T_{\scriptscriptstyle (y,r\xi)}(N(U))$$
 ,

then $F_*(V) = 0$ only if V = 0. If we let

$$X = \sum\limits_{j=1}^n b_j \! \left(rac{\partial}{\partial u^j}
ight) \! \in T_{(y,r\xi)} \! (N(U))$$
 ,

we shall soon compute $F_*(X)$. That computation and the above will show that

$$F_*(X + V) = 0$$
 only if $V = 0$.

(We remark that if r = 0, we must choose a slightly different co-ordinate system to obtain the same result.)

Thus to find a vector $X \in T_{(y,r\varepsilon)}(N(U))$ such that $F_*(X)$ vanishes, we must concern ourselves with vectors of the form

$$X = \sum\limits_{j=1}^n b_j \! \left(rac{\partial}{\partial u^j}
ight)$$
 .

It is convenient to let $Y \in T_y(U)$ such that

$$X = (Y, 0)$$

when we consider $T_{(y,r\xi)}(N(U))$ as $T_y(M^n) \bigoplus R^p$. To facilitate the calculation of $F_*(X)$, we assume that the vector field ξ_1 defined above has been chosen so that $\nabla_Y^{\perp}\xi_1 = 0$, where ∇^{\perp} is the connection in the normal bundle induced by $\widetilde{\nabla}$, the covariant derivative in H^{n+p} . From

344

the definition of F we compute using the vector representation,

(1)
$$F_*(X) = F_*(Y, 0) = \tilde{\mathcal{P}}_Y(\cosh r)x + (\sinh r)\xi_1$$

$$= (\cosh r) arphi_{_Y} x + (\sinh r) arphi_{_Y} \xi_{_1} = (\cosh r) Y + (\sinh r) arphi_{_Y} \xi_{_1} \;.$$

However,

$$ilde{
abla}_{_Y} arkappa_{_1} = -A_{arepsilon_1} Y + {
abla}_{_Y}{}^ot arkappa_{_1} \, .$$

Since we have chosen ξ_1 so that

$$abla_{Y}^{\perp}\hat{\xi}_{1}=0 \quad ext{and} \quad \hat{\xi}_{1}(y)=\hat{\xi} \quad ext{we have} \quad ilde{
u}_{Y}\hat{\xi}_{1}=-A_{\varepsilon}Y.$$

Thus (1) becomes

Ì

$$F_{*}(X) = F_{*}(Y, 0) = (\cosh r)Y - (\sinh r)A_{\varepsilon}Y,$$

and we see that $F_*(Y, 0)$ vanishes if and only if

$$\coth r = k$$
 ,

where k is an eigenvalue of A_{ε} and Y is an eigenvector of k. This shows that if coth r has multiplicity $\nu > 0$ as an eigenvalue of A_{ε} , then there is a ν -dimensional subspace of $T_{(\nu,r\varepsilon)}(N(U))$ on which F_* vanishes. Thus in that case, $p = F(y, r\xi)$ is a focal point of multiplicity ν . q.e.d.

Next for $p \in H^{n+p}$, we want to examine the critical points on M^n of the function L_p . We will find an expression for the index of L_p at a non-degenerate critical point y of L_p . This and Proposition 1 yield an Index Theorem for L_p which states that the index of L_p at y equals the number of focal points on the geodesic in H^{n+p} from f(y) to p. The following proposition characterizes the critical points of L_p on M^n .

PROPOSITION 2. Let $p \in H^{n+p}$ and $x_0 \in M^n$ such that $f(x_0) \neq p$.

(i) x_0 is a critical point of L_p if and only if $p = F(x_0, r\xi)$ for ξ a unit vector in $T_{x_0}^{\perp}(M^n)$.

(ii) x_0 is a degenerate critical point of L_p if and only if $\coth r = k$ for k an eigenvalue of A_{ε} .

(iii) If x_0 is a non-degenerate critical point of L_p , then the index of L_p at x_0 is equal to the number of eigenvalues k_i of A_{ξ} such that

 $k_i > \coth r$.

Here each k_i is counted with its multiplicity.

PROOF. For $x \in M^n$ and U a sufficiently small neighborhood of x, we may identify U with its image $f(U) \subset H^{n+p}$. Then using the vector representation of L_p , we compute the derivative of L_p . Fix $x_0 \in M^n$, and let X be a differentiable vector field on U. Then T. E. CECIL

(2)
$$XL_{p}(x) = X \cosh^{-1}(-H(x, p))$$
$$= \frac{-1}{(H(x, p)^{2} - 1)^{1/2}}H(D_{x}x, p) = \frac{-1}{(H(x, p)^{2} - 1)^{1/2}}H(X, p),$$

where D is the Euclidean covariant derivative in \mathbb{R}^{n+p+1} .

For the fixed point $x_0 \in U$, there is a unique unit-length vector $\beta \in T_{x_0}(H^{n+p})$ such that

(3)
$$p = (\cosh r)x_0 + (\sinh r)\beta$$
 where $r = L_p(x_0)$.

From (2) and (3) we have

(4)
$$XL_p(x_0) = \frac{-1}{(H(x_0, p)^2 - 1)^{1/2}} (\sinh r) H(X, \beta)$$
,

since $H(X, x_0) = 0$ because $X \in T_{x_0}(H^{n+p})$.

From (4) we see that x_0 is a critical point of L_p if and only if $H(X, \beta) = 0$ for all $X \in T_{x_0}(M^n)$; that is, if and only if $\beta \in T_{x_0}^{\perp}(M^n)$, and thus $p = F(x_0, r\beta)$. This proves (i).

Now let $p = F(x_0, r\xi)$; we calculate the Hessian of L_p at x_0 . Let X, Y be differentiable vector fields on U. Then for $x \in U$, we have

(2)
$$XL_{p}(x) = \frac{-1}{(H(x, p)^{2} - 1)^{1/2}}H(X, p)$$

Then since $H(X_{x_0}, p) = 0$, we have

(5)
$$\begin{aligned} YXL_p(x_0) &= \frac{-1}{(H(x, p)^2 - 1)^{1/2}} Y(H(X, p)) \Big|_{x_0} \\ &= \frac{-1}{(H(x, p)^2 - 1)^{1/2}} H(D_YX, p) \Big|_{x_0}. \end{aligned}$$

From knowledge of the embedding of H^{n+p} in R^{n+p+1} , we know that for $x \in U$,

$$(6) D_Y X|_x = \tilde{\rho}_Y X|_x + H(X, Y)x$$

and

(7)
$$\tilde{\nu}_{Y}X = \nu_{Y}X + \alpha(X, Y)$$

for $\alpha(X, Y)$ the second fundamental form of M^n in H^{n+p} , and for V the covariant derivative in M^n . Now (3), (6), (7) yield

$$\begin{array}{l} H(D_rX,\ p)\mid_{z_0} = \sinh r H(\alpha(X,\ Y),\ \xi) - \cosh r H(X,\ Y) \\ = \sinh r H(A_{\xi}X,\ Y) - \cosh r H(X,\ Y) \\ = H((\sinh r A_{\xi} - \cosh r I)X,\ Y) \end{array}$$

where I is the identity endomorphism on $T_{x_0}(M^n)$.

 $\mathbf{346}$

We note that

 $H(x_0, p)^2 = \cosh^2 r$ and thus $(H(x_0, p)^2 - 1)^{1/2} = \sinh r$.

The above equation and (8) imply that we can re-write (5) as

$$(9) YXL_p(x_0) = H((-A_{\varepsilon} + \operatorname{coth} rI)X, Y)|_{x_0}$$

From this expression for the terms of the Hessian of L_p at x_0 , we conclude that x_0 is a degenerate critical point of L_p if and only if

$$\operatorname{coth} r = k$$

for k an eigenvalue of A_{ε} , proving (ii).

The index of L_p at x_0 is defined as the number of negative eigenvalues of the Hessian of L_p at x_0 . We see from (9) that if $\coth r$ is not an eigenvalue of A_{ε} , then the index of L_p at x_0 equals the number of eigenvalues k_i of A_{ε} , counted with their multiplicities, such that

$$k_i > \operatorname{coth} r$$
 .

This proves (iii) and completes the proof of Proposition 2. q.e.d.

Propositions 1 and 2 yield immediately the Index Theorem for L_p .

THEOREM 1. (Index Theorem for L_p) For $p \in H^{n+p}$, the index of L_p at a non-degenerate critical point $x \in M^n$ is equal to the number of focal points of (M^n, x) which lie on the geodesic in H^{n+p} from f(x) to p. Each focal point is counted with its multiplicity.

2. A characterization of metric spheres in terms of the functions L_p . We now proceed to prove the main result of this paper which we state as follows.

THEOREM 2. Let M^n be a connected, compact, differentiable manifold immersed in H^{n+p} . If every Morse function of the form L_p , $p \in H^{n+p}$, has exactly 2 critical points, then M^n is embedded as a metric sphere, S^n .

In the above statement, the notation "metric sphere" means the following. There exists a totally geodesic (n + 1)-dimensional submanifold $H^{n+1} \subset H^{n+p}$, a point $q \in H^{n+1}$, and $c \in R$, such that

$$S^n = \{y \in H^{n+1} \mid d(q, y) = c\}$$
.

In the remainder of this section, we assume M^n satisfies the hypotheses of Theorem 2. We first consider the set T,

$$T = \{p \in H^{n+p} \mid p \text{ is not a focal point of } M^n\}$$
.

By Sard's Theorem, T is dense in H^{n+p} (see [3], p. 36). Propositions 1 and 2 show that L_p is a Morse function if and only if $p \in T$. Using these facts, we can prove the following proposition. With minor changes, the proof is identical to the proof of the corresponding proposition for submanifolds of \mathbb{R}^m proven by Nomizu and Rodriguez ([4], p. 199). Hence, we omit the proof here.

PROPOSITION 3. Let $p \in H^{n+p}$, and assume that L_p has a non-degenerate critical point at $x \in M^n$ of index j. Then, there is a point $q \in H^{n+p}$ such that L_q is a Morse function which has a critical point $z \in M^n$ of index j (q and z may be chosen as close to p and x, respectively, as desired).

To prove Theorem 2 we will proceed in the following way. Let f be the immersion of M^n into H^{n+p} . We will show that f is umbilic. Then it is known that a compact umbilical submanifold of H^{n+p} must be a metric sphere S^n . The proof of this fact is very similar to Cartan's argument for submanifolds of R^m (see [1], p. 231).

We first prove the following result.

PROPOSITION 4. Let $x \in M^n$ and suppose there is a unit length vector $\xi \in T_x^{\perp}(M^n)$ such that A_{ξ} has an eigenvalue whose absolute value is greater than 1. Then, $A_{\xi} = \lambda I$ for $\lambda \in R$.

PROOF. Let λ be the eigenvalue of A_{ε} with largest absolute value. We know from the hypothesis that

 $|\lambda| > 1$.

We may assume $\lambda > 1$; for if $\lambda < -1$, then we simply prove the proposition is true for $A_{-\epsilon}$ which has an eigenvalue $-\lambda > 1$. This will, of course, also prove the result for A_{ϵ} .

Take r > 0 such that

$$\mu < \coth r < \lambda$$

where μ is the second largest positive eigenvalue of A_{ε} . If no such μ exists, we simply insist that

$$1 < \coth r < \lambda$$
 .

By Proposition 2, we know that for $p = F(x, r\xi)$, L_p has a nondegenerate critical point at x. Also by Proposition 2, the index of L_p at x is equal to the multiplicity, say j, of the eigenvalue λ . If L_p is a Morse function, then the hypothesis of Theorem 2 imply that j = n, since we know j > 0. If L_p is not a Morse function, we know by Proposition 3 that there is a point $q \in H^{n+p}$, such that L_q is a Morse function having a critical point of index j. Again we conclude j = n. Thus λ is an eigenvalue of multiplicity n, and so $A_{\xi} = \lambda I$. q.e.d.

We remark that unlike the case for submanifolds of R^m , we cannot conclude immediately that f is an umbilical immersion because of the needed requirement in Proposition 4 that A_{ε} must have an eigenvalue whose absolute value is greater than 1. Thus, further reasoning is necessary; the following proposition extends Proposition 4 to a local neighborhood U of x. This proposition is the key to overcoming the above-mentioned difficulties.

PROPOSITION 5. Let $x \in M^n$ and suppose there is a unit length vector $\sigma \in T_x^{\perp}(M^n)$, such that A_{σ} has an eigenvalue whose absolute value is greater than 1. Then there is a neighborhood U of x in M^n such that f is umbilical on U and such that the second fundamental form $\alpha(X, Y)$ does not vanish on U.

PROOF. Let V be a co-ordinate neighborhood of x and let ξ_1, \dots, ξ_p be orthonormal normal vector fields on V such that $\xi_1(x) = \pm \sigma$; the sign is chosen so that $A_{\xi_1(x)}$ has an eigenvalue $\beta > 1$.

Since the eigenvalues of A_{ε_1} are continuous, there is a neighborhood U of x, U is contained in V, such that for any $u \in U$, $A_{\varepsilon_1(u)}$ has an eigenvalue which is greater than 1. Thus $\alpha(X, Y)$ does not vanish on U.

We fix an arbitrary point $u \in U$. By Proposition 4 we know $A_{\varepsilon_1(u)} = cI$ for some c > 1. Hence if the codimension p = 1, the proof is complete.

Assume p > 1. For the fixed $u \in U$, we define a function λ on $T_u^{\perp}(M^n)$ as follows. For any $\xi \in T_u^{\perp}(M^n)$, $\lambda(\xi)$ is the largest eigenvalue of A_{ξ} . We know λ is a continuous function on $T_u^{\perp}(M^n)$. Thus there is a neighborhood N of $\xi_1(u)$ in $T_u^{\perp}(M^n)$ such that $\lambda(\xi) > 1$ if $\xi \in N$. By Proposition 4, $A_{\xi} = \lambda(\xi)I$ if $\xi \in N$. Since N is open, we know that for each j there is a unit length vector $\xi \in N$ such that

$$\xi = a\xi_1 + b\xi_j$$
 for some $a, b > 0$ such that $a^2 + b^2 = 1$.

We know

$$A_{arepsilon} = \lambda(arepsilon) I$$

but we have

(10)

(11)

$$A_{m{arepsilon}} = A_{am{arepsilon}_1+bm{arepsilon}_i} = aA_{m{arepsilon}_1} + bA$$

Now $A_{\xi_1} = \lambda(\xi_1)I$ and thus (10) and (11) give

$$A_{\varepsilon_j} = rac{[\lambda(\xi) - a\lambda(\xi_1)]}{b}I$$
.

Thus all the eigenvalues of A_{ε_j} are the same, and we are justified in writing

$$A_{\xi_j} = \lambda(\xi_j) I \qquad 1 \leq j \leq p \;.$$

Then if $c_j \in R$, $1 \leq j \leq p$, we have

$$A_{\Sigma^c_j \ell_j} = \sum_{j=1}^p c_j A_{\ell_j} = \sum_{j=1}^p c_j (\lambda(\xi_j)I) = \sum_{j=1}^p (c_j \lambda(\xi_j))I.$$

Hence,

T. E. CECIL

$$\lambda \Bigl(\sum\limits_{j=1}^p c_j \xi_j \Bigr) = \sum\limits_{j=1}^p c_j \lambda(\xi_j)$$
 ,

and λ is a linear function on $T_u^{\perp}(M^n)$.

We have shown that for each $u \in U$, there is a linear function $\lambda(\xi)$ on $T_u^{\perp}(M^n)$ such that $A_{\xi} = \lambda(\xi)I$ for any $\xi \in T_u^{\perp}(M^n)$. This means that fis umbilical on U, and the proof is complete. q.e.d.

The following remark can be proven by methods similar to those employed by Cartan ([1], p.231); the proof is essentially the proper use of Codazzi's equation and is omitted here.

REMARK 1. Let U be a neighborhood of M^n on which the second fundamental form $\alpha(X, Y)$ does not vanish, and such that f is umbilical on U. Then the mean curvature vector η has constant length on U.

The following proposition and Proposition 5 will show that f is an umbilical immersion on M^n .

PROPOSITION 6. The mean curvature vector η has constant length $||\eta|| > 1$ on M^n .

PROOF. Let $p \in H^{n+p}$ such that L_p is a Morse function. Since M^n is compact, there exists $x \in M^n$ such that L_p has a non-degenerate maximum at x. Hence the index of L_p at x is equal to n.

From Proposition 2, we know there exists r > 0 and a unit-length normal $\xi \in T_x^{\perp}(M^*)$ such that $p = F(x, r\xi)$, and we know $A_{\xi} = cI$ where c > 1. Proposition 5 implies that there is a linear function λ on $T_x^{\perp}(M^*)$ such that $A_{\sigma} = \lambda(\sigma)I$ for any $\sigma \in T_x^{\perp}(M^*)$.

Let ξ_1, \dots, ξ_p be an orthonormal basis for $T_x^1(M^n)$ such that $\xi_1 = \xi$. Then

$$\eta(x) = \sum_{j=1}^p \frac{(\operatorname{trace} A_{\xi_j})}{n} \xi_j = \sum_{j=1}^p \frac{n \lambda(\xi_j)}{n} \xi_j = \sum_{j=1}^p \lambda(\xi_j) \xi_j$$
,

and so $A_{\eta(x)} = (\sum_{j=1}^{p} \lambda^2(\xi_j))I$.

Since $A_{\eta(x)} = g(\eta(x), \eta(x))I$, we conclude that

$$||\eta(x)||^2 = \sum\limits_{j=1}^p \lambda^2(\xi_j) \geq \lambda^2(\xi_1) > 1$$
 .

Let $\beta = || \eta(x) ||$ and let

$$S = \{u \in M^n \mid || \eta(u) || = \beta\}.$$

Since $||\eta||$ is continuous on M^n , we know S is closed. However, Proposition 5 and Remark 1 imply that S is open. Since $x \in S, S \neq \emptyset$, and the connectedness of M^n implies $S = M^n$. Thus we have $||\eta|| = \beta > 1$ on M^n .

350

Now Propositions 5 and 6 imply that f is an umbilical immersion of M^n . As we remarked earlier, a compact umbilical M^n immersed H^{n+p} must be a metric sphere S^n , and the proof of Theorem 2 is complete.

3. A remark on the non-compact case. In this section, we note that a result corresponding to that of Nomizu and Rodriguez for the non-compact case does not hold. That is, let M^n be a connected, complete Riemannian manifold isometrically immersed in H^{n+p} . Assume that every Morse function of the form L_p , $p \in H^{n+p}$, has index 0 or *n* at any of its critical points. Then we cannot conclude that M^n is an umbilical submanifold of H^{n+p} .

The reason why the method of Nomizu and Rodriguez cannot be applied is that there may not be any focal points on the geodesic $\gamma(x, \xi, r)$ for some $x \in M^n$ and ξ a unit length vector in $T_x^{\perp}(M^n)$. In fact, this occurs if $|k_i| < 1$ for every eigenvalue k_i of A_{ξ} . Without the existence of a focal point on $\gamma(x, \xi, r)$, we cannot use the Index Theorem to prove $A_{\xi} = \lambda I$.

We supply here a simple example of a non-umbilic, complete surface M^2 embedded in H^3 such that every Morse function of the form L_p has index 0 at any of its critical points.

As before, we represent H^3 as a hypersurface of R^4 ; then the surface M^2 is defined by the global parametrization y(s, t) as follows. Consider λ, μ such that $0 < \lambda < 1$ and $\mu = (1 - \lambda^2)^{1/2}$, then

$$y(s, t) = rac{1}{\mu} (\cosh{(\mu t)} \cosh{s}, \lambda \cosh{s}, \sinh{(\mu t)} \cosh{s}, \mu \sinh{s})$$

Geometrically, M^2 is a cylinder in H^3 over the curve

$$\gamma(t) = rac{1}{\mu} (\cosh{(\mu t)}, \ \lambda, \ \sinh{(\mu t)}, \ 0)$$

which has constant curvature λ .

BIBLIOGRAPHY

- [1] E. CARTAN, Leçons sur la geometrie des espaces de Riemann, deuxieme edition, Gauthier-Villars, Paris, 1946.
- [2] S. KOBAYASHI AND K. NOMIZU, Foundations of Differential Geometry, Vol. I-II, John Wiley and Sons, Inc., New York, 1963, 1969.
- [3] J. MILNOR, Morse Theory, Ann. of Math. Studies, No. 51, Princeton University Press, 1963.
- [4] K. NOMIZU AND L. RODRIGUEZ, Umbilical submanifolds and Morse functions, Nagoya Math. J., 48 (1972), 197-201.

DEPARTMENT OF MATHEMATICS VASSAR COLLEGE