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A CHARACTERIZATION OF METRIC SPHERES IN
HYPERBOLIC SPACE BY MORSE THEORY

THOMAS E. CECIL

(Received July 16, 1973)

0. Introduction. Let Mn be a differentiable manifold of class C°°.
By a Morse function / on Mn, we mean a differentiable function / on
Mn having only non-degenerate critical points. A well-known topological
result of Reeb states that if M* is compact and there is a Morse func-
tion / on Mn having exactly 2 critical points, then Mn is homeomorphic
to an ?^-sphere, Sn (see, for example, [3], p. 25).

In a recent paper, [4], Nomizu and Rodriguez found a geometric
characterization of a Euclidean ^-sphere SnaRn+p in terms of the
critical point behavior of a certain class of functions Lp, p e Rn+P, on Mn.
In that case, if p e Rn+P, x e Mn, then Lp(x) = (d(x, p))\ where d is the
Euclidean distance function.

Nomizu and Rodriguez proved that if Mn {n ^ 2) is a connected,
complete Riemannian manifold isometrically immersed in Rn+P such that
every Morse function of the form Lp, p e Rn+P, has index 0 or n at any
of its critical points, then Mn is embedded as a Euclidean subspace, Rn,
or a Euclidean ^-sphere, Sn. This result includes the following: if Mn is
compact such that every Morse function of the form Lp has exactly 2
critical points, then Mn = Sn.

In this paper, we prove results analogous to those of Nomizu and
Rodriguez for a submanifold Mn of hyperbolic space, Hn+P, the space-
form of constant sectional curvature —1.

For p € Hn+P, x e Mn, we define the function Lp(x) to be the distance
in Hn+P from p to x. We then define the concept of a focal point of
(Mn, x) and prove an Index Theorem for Lp which states that the index
of Lp at a non-degenerate critical point x is equal to the number of
focal points of {Mn, x) on the geodesic in Hn+P from x to p.

In section 2, we prove that a metric sphere Sn c Hn+P can be charac-
terized by the condition that every Morse function of the form Lp,
p e Hn+P, has exactly 2 critical points.

In section 3, we give an example which shows that a result analo-
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gous to that of Nomizu and Rodriguez for the non-compact case cannot
be proven. More explicitly, we exhibit a complete surface M2 c H*
which is not umbilic on which every Morse function of the type Lp has
index 0 at any of its critical points.

The author would like to express his sincere gratitude to his adviser,
Katsumi Nomizu, for his assistance in this work.

1. The functions Lp and the index theorem. We will use the fol-
lowing representation of hyperbolic space Hm (for more detail, see [2],
vol. II, p. 268). Consider Rm+1 with a natural basis eQ, elf -—,em and
a non-degenerate quadratic form H defined by

H{x, y) = -x°y° + Σ a V for a? = Σ α>*βfc and y = Σ »*«*
A = l jfc=θ Λ; = 0

Then Hm is the hypersurface

{x e Rm+11 H{x, x) = - 1 , x° ^ 1} ,

on which g, the restriction of H, is a positive definite metric of constant
sectional curvature —1.

Let Mn be a connected, Riemannian manifold, and let / be an iso-
metric immersion of Mn into Hn+P. We first define the following class
of functions on Hn+P; for p, q in Hn+P

Lp(q) = d(p, q) ,

the distance in Hn+P from p to q. If we use the above representation
of Hn+P, then we have

Lp(q) = cosh~ί(-H(p,q)).

For p e Hn+P, x e Mn, we define Lp(x) = Lp(f(x)). If p£f{M% then the
restriction of Lp to Mn is a differentiable function on Mn. From this
point on, we will only consider Lp such that p$f(Mn).

We now proceed to develop the concept of focal point and prove an
Index Theorem for Lp. Let N(Mn) denote the normal bundle of Mn.
Any point of N(Mn) can be represented as (u, rζ) where u e Mn, reR, and
ξ is a unit length vector in Tu

L(Mn), the normal space to Mn at u.
We define 7(u, ξ, r), — oo < r < °°, to be the geodesic in Hn+P para-

metrized by arc-length parameter r such that

Ύ(u, ζ, 0) = u and Ύ(u, ξ, 0) = ξ .

Let U be a local co-ordinate neighborhood of Mn with co-ordinates
u\ , un. Then, in terms of the co-ordinates x\ , α;n+2) in Rn+P+1, the
immersion /(?7) can be represented by the vector-valued function
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x{u\ > -,un) = {x\u\ , u% , xn+p(u\ , un)) .

In terms of this representation, the geodesic y(u, f, r) is given by

Ύ(u, ξ, r) = (cosh r)x(u) + (sinh r)ξ .

We define a map JF from N(Mn) to iP + 3 ) by

i*7^, rξ) = y(u, ξ, r) .

As in the Euclidean case, the concept of focal point is defined in terms
of the degeneracy of F*9 the Jacobian of F.

DEFINITION. A point p e Hn+P is called a focal point of (Mn, u) of
multiplicity v if p = F(u, rξ) and F* has nullity v > 0 at (u, rζ) e N(Mn).
(We say p is a focal point of Mn if p is a focal point of (ΛP, u) for
some u e Mn.)

For ξe Tu

λ(Mn), Aζ denotes the symmetric endomorphism of Tu(Mn)
corresponding to the second fundamental form of Mn at u in the direc-
tion of ξ. The following proposition identifies the focal points of Mn.

PROPOSITION 1. A point p e Hn+P is a focal point of (Mn, y) of
multiplicity v > 0 if and only if

p = F(y, rξ) and coth r = k

where k is an eigenvalue of Aξ of multiplicity v.

PROOF. Fix (y, rξ) e N(Mn), and let U be a co-ordinate chart of Mn

with co-ordinates u\ , un such that yeU. Then N( U) can be con-
sidered as U x Rp. We now examine the nullity of F* at (y, rξ).

We first assume r Φ 0. Choose ξίf •••,?, orthonormal normal vector
fields on U such that ξ,(y) = ξ. Let βe TU

L{U) for some ueU. Then
we can write

β = μ ( 7 l - Σ (ίθ"fi + t2ξ2 + + ίpfp) whereΣ (

0 ^ ^ < oo and Σ ( '̂)2 ^ 1 .

The ί5' are the direction cosines of /S, and μ = | |/3 | | . The coordinates
(u1, - , un, μ,t2, , ίp) are local co-ordinates on N(U). For any j , we
compute from the definition of i*7 that,

F*\T)

where the curve 7](t>) is defined by
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ηψ) = (cosh r)x(y) + (sinh r){Vl - (P)%(y) + V^{y)) .

Then,

- / f) \ I
Ύ](p) =r (sinh r)ζj{y) Φ 0 and thus, FA —r I Φ 0 .

Similarly,

FJ — J\ = η{μ) where η{μ) ~ (cosh μ) x (y) + (sinh μ)ξ^y) .

Then

= (sinh μ)x{y) + (cosh μ)ζ1(y) and || η(μ) || = 1 for all /̂  .

In particular,

(̂/*)

In fact, the above calculations show that if

then ^ ( F ) = 0 only if V = 0. If we let

we shall soon compute ^ ( X ) . That computation and the above will
show that

F*(X + V) = 0 only if F = 0 .

(We remark that if r = 0, we must choose a slightly different co-ordinate
system to obtain the same result.)

Thus to find a vector Xe T{y,rξ)(N(U)) such that F*(X) vanishes, we
must concern ourselves with vectors of the form

It is convenient to let Ye Ty(U) such that

X=(Y,0)

when we consider T(ytre)(N(U)) as Ty(Mn) 0 Rp. To facilitate the calcu-
lation of F*(X), we assume that the vector field & defined above has
been chosen so that Vr 1 ^ = 0, where V 1 is the connection in the
normal bundle induced by V, the covariant derivative in Hn+P. From
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the definition of F we compute using the vector representation,

(1)
F+(X) = F*(Y, 0) = /7F(cosh Φ + (sinh

= (cosh rψγx + (sinh rψγξ1 — (cosh r) Y + (sinh r)Γγζi

However,

Since we have chosen £x so that

Fγ

1ζ1 = 0 and ξ^y) = ζ we have

Thus (1) becomes

F*(X) = F*(Y, 0) = ( c o s h r ) F - (sink r)AξY,

and we see that FJJΓ, 0) vanishes if and only if

coth r = k ,

where /c is an eigenvalue of Aζ and F is an eigenvector of k. This
shows that if coth r has multiplicity v > 0 as an eigenvalue of A?, then
there is a i -dimensional subspace of T{y,rξ)(N(U)) on which .F* vanishes.
Thus in that case, p = jPd/, rf) is a focal point of multiplicity v. q.e.d.

Next for j> e Hn+P, we want to examine the critical points on Mn of
the function Lp. We will find an expression for the index of Lp at
a non-degenerate critical point y of Lp. This and Proposition 1 yield
an Index Theorem for Lp which states that the index of Lp at y equals
the number of focal points on the geodesic in Hn+P from f(y) to p.
The following proposition characterizes the critical points of Lp on Mn.

PROPOSITION 2. Let peHn+p and xoe Mn such that f(xQ) Φ p.
( i ) x0 is a critical point of Lp if and only if p = F(xOf rζ) for ξ

a unit vector in Tx^(Mn).
(ii) x0 is a degenerate critical point of Lp if and only if coth r = k

for k an eigenvalue of Aξ.
(iii) If x0 is a non-degenerate critical point of Lp, then the index

of Lp at x0 is equal to the number of eigenvalues kt of Aξ such that

ki > coth r .

Here each kt is counted with its multiplicity.

PROOF. For x e Mn and U a sufficiently small neighborhood of x, we
may identify U with its image f(U)aHn+p. Then using the vector
representation of Lp, we compute the derivative of Lp. Fix x0 e Mn,
and let X be a differentiate vector field on U. Then
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XLp(x) = Xcosh'1 (-H(x, p))

(H(x, p)2 - 1)1/2 (H(x, p)z - 1)

where D is the Euclidean covariant derivative in Rn+P+1.
For the fixed point xoe U, there is a unique unit-length vector

βe TXQ(Hn+p) such that

( 3 ) p = (cosh r)#0 + (sinh r)/3 where r = Lp(αj0) .

From (2) and (3) we have

since ίf(X, α0) = 0 because Xe TXQ(Hn+p).
From (4) we see that x0 is a critical point of Lp if and only if

H(X, β) = 0 for all Xe TXQ(Mn); that is, if and only if βe T^{M% and
thus p = F(a?0, r£). This proves (i).

Now let p = i^^o, rί); we calculate the Hessian of Lp at x0. Let
X, F be differentiate vector fields on U. Then for x e U, we have

Then since H(XX, p) = 0, we have

, _ λ (H(x, pY - I)1

( 5 )
- 1 rr/r, γ > p )

(H(x, pY - 1)

From knowledge of the embedding of Hn+P in Rn+P+1, we know that
for xe U,

(6) A-XI. = FrXl + fl(X, Γ)*

and

(7) vYX = FYX+a(X, Y)

for α(X, Y) the second fundamental form of Mn in iP+ ί >, and for V the
covariant derivative in M*. Now (3), (6), (7) yield

H{DYX, p) \xo = sinh rH(a(X, Y), ξ) - cosh rH(X, Y)

(8) = sinh rH(AsX, Y) - cosh rH(X, Y)

= lί((sinh rA, - cosh r/)X, Γ)

where / is the identity endomorphism on TxiM").
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We note that

H(xOf vY = cosh2 r and thus (H(x0, pf - 1)1/2 = sinh r .

The above equation and (8) imply that we can re-write (5) as

(9 ) YXLp(x0) = H((-Aξ + coth rI)X, Y) |.o .

From this expression for the terms of the Hessian of Lp at x0, we
conclude that x0 is a degenerate critical point of Lp if and only if

coth r = k

for k an eigenvalue of Aξ, proving (ii).
The index of Lp at x0 is defined as the number of negative eigen-

values of the Hessian of Lp at x0. We see from (9) that if cothr is
not an eigenvalue of Aζ, then the index of Lp at x0 equals the number
of eigenvalues kt of Aξ, counted with their multiplicities, such that

ki > coth r .

This proves (iii) and completes the proof of Proposition 2. q.e.d.

Propositions 1 and 2 yield immediately the Index Theorem for Lp.

THEOREM 1. (Index Theorem for Lp) For peHn+p, the index of Lp

at a non-degenerate critical point x e Mn is equal to the number of focal
points of (Mn, x) which lie on the geodesic in Hn+P from f{x) to p. Each
focal point is counted with its multiplicity.

2. A characterization of metric spheres in terms of the functions
Lp. We now proceed to prove the main result of this paper which we
state as follows.

THEOREM 2. Let Mn be a connected, compact, differentiable manifold
immersed in Hn+P. If every Morse function of the form Lp, p e Hn+P,
has exactly 2 critical points, then Mn is embedded as a metric sphere, Sn.

In the above statement, the notation "metric sphere" means the fol-
lowing. There exists a totally geodesic (n + l)-dimensional submanifold
Hn+1 c Hn+P, a point q e Hn+\ and c e R, such that

In the remainder of this section, we assume Mn satisfies the hypo-
theses of Theorem 2. We first consider the set T,

T = {pe Hn+P I p is not a focal point of Mn} .

By Sard's Theorem, T is dense in Hn+P (see [3], p. 36). Propositions 1
and 2 show that Lp is a Morse function if and only if pe T. Using
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these facts, we can prove the following proposition. With minor changes,
the proof is identical to the proof of the corresponding proposition for
submanifolds of Rm proven by Nomizu and Rodriguez ([4], p. 199). Hence,
we omit the proof here.

PROPOSITION 3. Let p e Hn+P, and assume that Lp has a non-degener-
ate critical point at xe Mn of index j . Then, there is a point q e Hn+P

such that Lq is a Morse function which has a critical point z e Mn of
index j (q and z may be chosen as close to p and x, respectively, as
desired).

To prove Theorem 2 we will proceed in the following way. Let /
be the immersion of Mn into Hn+P. We will show that / is umbilic.
Then it is known that a compact umbilical submanifold of Hn+P must be
a metric sphere S*. The proof of this fact is very similar to Cartan's
argument for submanifolds of Rm (see [1], p. 231).

We first prove the following result.

PROPOSITION 4. Let x e Mn and suppose there is a unit length vector
ζ e Tt(Mn) such that Aξ has an eigenvalue whose absolute value is greater
than 1. Then, Aξ = Xl for λ e R.

PROOF. Let λ be the eigenvalue of Aξ with largest absolute value.
We know from the hypothesis that

| λ | > 1 .

We may assume λ > 1; for if λ < — 1, then we simply prove the propo-
sition is true for A_ξ which has an eigenvalue — λ > 1. This will, of
course, also prove the result for Aξ.

Take r > 0 such that

μ < coth r < λ

where μ is the second largest positive eigenvalue of Aζ. If no such μ
exists, we simply insist that

1 < coth r < λ .

By Proposition 2, we know that for p = F(x, rf), Lp has a non-
degenerate critical point at x. Also by Proposition 2, the index of Lp

at x is equal to the multiplicity, say j , of the eigenvalue λ. If Lp is
a Morse function, then the hypothesis of Theorem 2 imply that j = n,
since we know j > 0. If Lp is not a Morse function, we know by
Proposition 3 that there is a point qeHn+p, such that Lq is a Morse
function having a critical point of index j . Again we conclude j = n.
Thus λ is an eigenvalue of multiplicity n, and so Aξ = λl. q.e.d.

We remark that unlike the case for submanifolds of Rm, we cannot
conclude immediately that / is an umbilical immersion because of the
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needed requirement in Proposition 4 that Aζ must have an eigenvalue
whose absolute value is greater than 1. Thus, further reasoning is
necessary; the following proposition extends Proposition 4 to a local
neighborhood U of x. This proposition is the key to overcoming the
above-mentioned difficulties.

PROPOSITION 5. Let x e Mn and suppose there is a unit length vector
σeTχ(Mn), such that Aσ has an eigenvalue whose absolute value is
greater than 1. Then there is a neighborhood U of x in Mn such that
f is umbilical on U and such that the second fundamental form a(X, Y)
does not vanish on U.

P
PROOF. Let V be a co-ordinate neighborhood of x and let ζlt , ξ.

be orthonormal normal vector fields on V such that ξ^x) = ±σ; the sign
is chosen so that AhU) has an eigenvalue β > 1.

Since the eigenvalues of Aξl are continuous, there is a neighborhood
U of x, U is contained in V, such that for any u e U, Ah(u) has an eigen-
value which is greater than 1. Thus a(X, Y) does not vanish on U.

We fix an arbitrary point ue U. By Proposition 4 we know Ah{u) = cl
for some c > 1. Hence if the codimension p = 1, the proof is complete.

Assume p > 1. For the fixed ueU, we define a function λ on
Tt{Mn) as follows. For any ξ e T^(Mn), λ(f) is the largest eigenvalue
of Aξ. We know λ is a continuous function on Ti{Mn). Thus there is
a neighborhood N of ξ^u) in Ti(Mn) such that λ(f) > 1 if ζeN. By
Proposition 4, Aς = λ(f)I if ξeN. Since N is open, we know that for
each j there is a unit length vector ξ e N such that

ξ = αfi + δίy for some α, δ > 0 such that α2 + 62 = 1 .

We know

(10) Aξ = \(ξ)I

but we have

(11) Aξ = Aaξί+bξj = α A f l + bAξj .

Now Afl = λ(fθ J and thus (10) and (11) give

j _ [λ(g) - αλfo)] r
Ae, 5 i

Thus all the eigenvalues of Aξ. are the same, and we are justified
in writing

A ξ j = \ ( ξ s ) I l ^ j ^ p .

Then if c5 eR,l^j^p, we have

AΣcjξj = Σ CjAξj = ± c,(λ(fy)J) = Σ (Ci
J J j=l J 3 = 1 i = l

Hence,
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and λ is a linear function on Tϊ(Mn).
We have shown that for each ueU, there is a linear function λ(f)

on Ti{Mn) such that Aξ = λ(f)/ for any ξ e Ti(Mn). This means that /
is umbilical on U, and the proof is complete. q.e.d.

The following remark can be proven by methods similar to those
employed by Cartan ([1], p.231); the proof is essentially the proper use
of Codazzi's equation and is omitted here.

REMARK 1. Let U be a neighborhood of Mn on which the second
fundamental form a(X, Y) does not vanish, and such that / is umbilical
on U. Then the mean curvature vector η has constant length on U.

The following proposition and Proposition 5 will show that / is an
umbilical immersion on Mn.

PROPOSITION 6. The mean curvature vector rj has constant length
\\Ύ)\\ > 1 on Mn.

PROOF. Let p e Hn+P such that Lp is a Morse function. Since Mn is
compact, there exists x e Mn such that Lp has a non-degenerate maximum
at x. Hence the index of Lp at x is equal to n.

From Proposition 2, we know there exists r > 0 and a unit-length
normal ξe T£(Mn) such that p = F(x, rξ), and we know Aξ = cl where
c > 1. Proposition 5 implies that there is a linear function λ on T^(Mn)
such that Aσ = \{σ)I for any σ e Tϊ(Mn).

Let ζlf •••, ξp be an orthonormal basis for Tϊ(Mn) such that ξ1 = $.
Then

7]{x) = ^ (trace ^ . ) ^ . = £ ^ % = ±

and so Aη{x) = (ΣjU λ2(ίy))7.
Since A?(x) = g(η(x), V(χ))I> w e conclude that

Let β = \\η(x)\\ and let

S = {ueM \\\y(u)\\=β}.

Since | | ^ | | is continuous on Mn, we know S is closed. However, Propo-
sition 5 and Remark 1 imply that S is open. Since xeS, S Φ 0, and
the connectedness of Mn implies S = Mn. Thus we have \\η\\ = /S > 1
on Λf\ q.e.d.
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Now Propositions 5 and 6 imply that / is an umbilical immersion of
Mn. As we remarked earlier, a compact umbilical Mn immersed Hn+P

must be a metric sphere Sn, and the proof of Theorem 2 is complete.

3. A remark on the non-compact case. In this section, we note
that a result corresponding to that of Nomizu and Rodriguez for the
non-compact case does not hold. That is, let Mn be a connected, com-
plete Riemannian manifold isometrically immersed in Hn+P. Assume that
every Morse function of the form LP1 p e Hn+P, has index 0 or n at any
of its critical points. Then we cannot conclude that Mn is an umbilical
submanifold of Hn+P.

The reason why the method of Nomizu and Rodriguez cannot be
applied is that there may not be any focal points on the geodesic
y(x, ξ, r) for some xeM* and ξ a unit length vector in Tϊ(Mn). In
fact, this occurs if | &< | < 1 for every eigenvalue kt of Aξ. Without the
existence of a focal point on y(x, ξ, r), we cannot use the Index Theorem
to prove Aζ = λJ.

We supply here a simple example of a non-umbilic, complete surface
M2 embedded in H3 such that every Morse function of the form Lp has
index 0 at any of its critical points.

As before, we represent Hz as a hyper surface of RA; then the surface
M2 is defined by the global parametrization y(s, t) as follows. Consider
λ, μ such that 0 < λ < 1 and μ = (1 - λ2)1/2, then

y(s, t) = —(cosh (μt) cosh s, λ cosh s, sinh (μt) cosh s, μ sinh s) .

Geometrically, M2 is a cylinder in if3 over the curve

7(ί) = JL(cosh (μt), λ, sinh (μt\ 0)

which has constant curvature λ.
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