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AN ALGEBRAIC PROOI OF THE
COMPLETENESS OF SENTENTIAL LOGIC

I. INTRODUCTION

In fhis paper we prove the completeness of sentential logic
using concepts of Boolean structures, For readers unfamiliar
with the terminology, '"sentential" §r e€lementary" logic (éometimes
called the Statement Calculus) is_the usual form of vélid reasoning,
omitting-quantification over variables, For examplé, statements
such as "P or Q" and "if P then not Q and not R'i1 represent such
forms. Statements including quantification, such as "if for all
x, P(x), then for some y, Q{y)" do not fall into the category
discussed here; they belong to ﬁhé so~-called first-order logic.
The restriction to elementary logic is reasonable since the-proof
of coméleténess inrthe first order case paréllels the proof.presented
hére, though it is technically much more difficult.

The study'of‘elementary logic is primarily concerned with
'discovering the forms of valid reasoning. Aé an example, let A

be the statement "If P then P or Q" where P and Q are arbitrary

assertions., The distinctive feature of statement A is that it



is reéarded-as true independent of the truth or falsity of

assertions P and Q,Vthe more basic statements from which is is
composed. It is these stafements which are true simply on the

.basis of their form not their content.which represent the subject
matter of sentential logic. The "completeness” of this logic

asserts that if a statemenf is of such a (tautologous)} form then

it can be proved. Now, as soon as therconcept of proéf is mentioned,,
we begin to ask about axioms, rules of inference, theorems, etc.

But first let us establish some ground rules for the formal

language.

II. THE STATEMENT CALCULUS

In order, to formalize the discussion 6f statements such as
those mentiongd in g I, it.is necessary to introduce a symbolic
language I. in which these statements can be expressed.

The primitive symbols of L are the fpllowing: _ )

1. Proposi#ipnal Variaﬁles: a cogntable set, P = [Pl’p2""}'
2. Connectives: —> 5 | (no commas)

3, Parentheses: ( , )
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P is our set of basic statement symbols with which other

statements are built. "~ " is interpreted as "if , . .

-

"o

then . . .," and "Fi is thg negation symbol. The eorrect way
to build sentences are these:
1. Any propositional variaﬁle is a‘wélléfofmed formula (wff)
2. If A and B are wffs, then T} A 'is'Q wif, and
(A-;$ B) is a wff.
Lét W Dbe the set of all wffs, As examples, 'tj(Pl——e P,)
€ W,‘and P1P2 £ W (more thgn one variable but no‘connective).

11

The element of W referred to above can be interpreted as not,

1

if P. then P,

The utility of the formal language L in our
discussion is obvious. Let us now make rigorous the above assign-

ment of meaniﬁg to the statements of L.

Def. 1 An interpretation is a map g: P —> [T,F)}.

Let I be the set of all interpretations. An interpretation
then is an assignment of meaning (but only truth or falsity) to
each basic statement of our languége. A value map extends these

assignments to each wff in W,
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Def, 2 A value map-baséd on the inﬁerpretation g 1s a map
Vgt W3 (7,7} defined indictively as follows:
Vg(pi) = g(pi) for all Pi € P.
If A is = B for some B € W, then
‘Vg(A) =F iff Vg(B) = T
If A is (B—> ¢) for some B, C € W, then‘
Vg(A) =F iff. Vg(B) =T and Vg(c)-: F.
Using the above, the value map of an interpretation g can
be computed for any;wff.in W.
bef. 3 If A €W, and g € I, .then
A lS true in g if Vg ®) = T;
A . is false in g_Aif vg(A) =F,
Def, 4 A eW 1is a tautolqu if it is true in all interpretations,
(Denoted by [ A).
Def, 5 If A € W; then g € I 1is a model of A iff Vg(A) = T,
One can see that a étatement A is a tauﬁology if and only

if every interpretation g is a model of A, 1In other words A

is "true" regardless of whether any of the basic statements Pl 99
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etc., are frﬁe or false. Thus, tautologies are of primary
interest; they represenf those special forms involved with valid
reasoning mentioned in I.

Since the completeness theorem concerns the relationship

between tautologies and what is "provable,"

we need a precise
notion of what a "proof" is. We begin by présenting certain
axioms and rules of inference which will be ﬁsed in our definitioq
of a proof..

The following are statements of W which we take as

axioms:

1. @A—> (B—>A))

2. (B—y (B—3C))—) (B=—>B)—> B —>)))
3. (A —y 9B)—> (B—>4)) |
4. (BA—>A)

5. (771 A—7>A)

6. (A—> 717 A)

Note that all of these axioms are tautologies. Some of them

\
are familiar. For instance, 3) is a statement of the contra-

positive law. It should be noted that these formulas technically

are not elements of W in themselves; they are axiom schema. To



obtain an axiom, simply substitute a wff for A,B, and C in

1) - 6), As abbreviations we will write
(A v B) (A —> B)
(A A B) T@A—> 7B)
(A & B) (B—> B)A (B~ A))
Their meanings can be derived from that of = and —> and are

described as follows:

(AVB) is true if either A or B is true, or both
(AAB) is true if both A and B are true

(A¢<> B) is true if A and B are either both true, or both false.

The rules of inference which allow us to proceed from axioms to

other "theorems"

For any A,B,C € W,

From:

A,B

(A AB)

(Av B)

(A v (BvC))

(A ABAC))

A

A¢> B), (Bv C)
A<> B), (BA C)
(A v A)

& N B)

are as follows:

Infer:

(AAB)

(BV/\ A)

(B A)

((Av B)VC)
(AABYAC)

(A v B)

(BvC)&—> (BvC))
((AAC) &> (BAC))
A

A



From: - . Infer:

11. (A ~5B) o (AaAC)—>B)
12. (A—> B) A-—>(BV C))
13. @A B) | | A |
14, A, (A—Y B) | | B

The most important property of a rule of inference is that
it preserve tautologousness; the reader can check that the above
rules satisfy this reQuirement. This list of rules of inference
may seem lengthy. However, .all the above rules can in fact be

derived from the last rule, commonly known as modus ponens {(in

Latin, "method of affirming"). For example, we can derive

(infofmally) rule No. 3):

1. A Vv B) . an assumption

2. (MTA-—>B) translation.of 1.

3. ({(7"A ~— 717IB)—=(B—>A)) contrapoéitive axiom

4, (B—=> 7B) - | axiom 6)

5. {7"A—>17 B) 2. and 4,

6. (7B—>A) 3., 5., and modus ponens
7. (BV A) | translation of 6,

We now formalize the above proof process and define what is
meant by a proof, a proof from assumptions and a theorem.

Def. 6 W . .,-Wn € W is a proof sequence from assumptions

1"

C(l,..., C<]{ iff each w;, 1 £1i %n, is



l. an axiom, or
2. An assumption from [0<1"‘3C{k]’ or

3. inferred from.wl,...,w._

io1 by a rule of inference.

Def. 7 If A 1is the last wff in a proof sequence from
assumptions, we say A is provable from these assumptions.

(Denotgd [O<1,...,c(k] a, ox (f |— &, if q5= [c{l,...,cfk].

Def. 8 _An'gbsolute proof sequence is'a proof sequence with an
empty assumption set.
Def, 9 A € W -is a theorem if it is provable from the empty
set of éssumptions. {Denoted |- A).
The relation between the two forms of proof can be formalized
into a powerful tool which we simply state without proof as the
Deduction Theore‘m. {A} - B iff |- (A—J/_B)‘.
This theorem fprmalizes the often used'méthod of assuming
as axioms the hypothesis of a theorem, and then proving the
conclusion. One hasn't really proved #he conclgsion; he has

proved "if the hypothesis is true, then so is the conclusion,"

We shall need the following concept:
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1

Def. 10 CE;CL W is deductively inconsistent iff

d F }1(plnm§,pl). Otherwise, éz is deductiﬁely'consistent.

In ofher words; CE is deductively'inconsisteﬁt if, by
assuming C( s One can prove something which-is,patently false.
One can easily prove the following-lgmma.which says that it does
not matter exactly what patently false statement is‘provable from

q.

Lemma 1 The following are eguivalent:

1. & is deductively inconsistent;
2. for some A € W (| A and 4 |- TA;
3. for all A €W (_|]-'A and ¢ } A,
With the description of the formalization of elementary

logic completed, we now know precisely what the objects are that

are dealt with in the completeness theorem, which, informally,

states that evexy tautology is a theorem. As the title of this

paper suggests, we will use the concepts of Boolean structures in

the proof.

ITYI, BOOLEAN STRUCTURES

Def. 11 A Boolean ring is a ring with identity in which every

element is idempotent, that is, for all b in the boolean ring,
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As an example, consider the two-element ring {0,1}, with

operations defined by:

+ 0 1 e 1
o o] _ 1 O O 0
1 1 ] 1 o 1

This boolean ring is a field; it is the only boolean
field and is in fact isomorphic to 2/22,
As another'example, let X be an arbitrary set. Then the
X 23
set 27 = {f:X—> /&Z} is a boolean ring, with the operations
defined pointwise.

This all serves ag an introduction to a more natural formu-

lation of these structures, the boolean algebra:

Def. 12 A boolean algebra is a non-empty set B with two binary

. . - .
operations, A , ¥, and one unary operation, , and two distinct
unigue elements O and 1, satisfying:

l. pv0O =7p : AL =p

2.pAp'=O pvp! =1
3. PAQ = gAPp Pvqg = gvp
4, pA(gvr) = (PAG) VvV (PAr) Pvigar ) = (pv @)A(Pv r)

for all p,g, and r € B,
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1

The foliowing are well-known theorems about boolean

algebras:
5. 0' =1 , , 1' = O
6. pA O =0  p¥1l=1
7. pH =p
8. pPAP=p PVP =P
9. (prq)' =p'va' | {pvaq)' =p'Ag’
10. pA(gAr) = (PAQ) AT pvi{igvr) = (pvg) vr

As an example, consider an arbitrary nonuempﬁy set X.
Then the set of all subsets of X 1is a bkoolean algebra, with

distinguished elements @ and X, and with operations defined by

PAQ = PNQ (intersection)
PVvQ = PUQ (unieon)

P! = P (complementation)
Boolean algebras and boolean rings can be interdefined.
For, if B = <B, +, '> is a boolean ring, we can define

PVQ=p + g+ Pq
PAGQ =P + q

p' =1+p

for p,qg € B. B = <B,/\,\/, ©, 0, l>’ ; then becomes a boolean
algebra. Simiiarly, if B = <B,/Y,\/, ', O,ﬂ_>

is a boolean algebra, we can define.
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Pp+g= (pAag')v (P'A a)

P.9 = PAC
B = ‘<B, +, '> igs then a boolean ring.-
We shall take the informal approach of naming the boolean ring
or algebra by its underlying set .Bf

Def, 13 A boolean ideal in a boolean algebra B is a subset M

of B such that

1. 0 € M _ ,
2, if p e M and g € M, then pvqg € M
3. if p € M and g € B, then pAg € M.
Boolean ideals have a close relationship to ring ideals.
In fagt,
Theorem 1 M is ‘a boolean ideal in the boolean algebra B
iff M 1is a ring ideal in the boolean ring B..
The proof of the above theorem is a simplg consequence of
the definitions,

The concept of a filter will be needed also.

Def. 14 A poolean filter in a boolean algebra B is a subset

”

N of B s.t.
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1. 1L €N
2, if p € N and g € N, then pAgq € N

3. if p € N and .q € B, then pvg e-ﬂ-

Ideals and filté;sxaré dual concepts in that if M is a
boolean ideal, then N = (p|p!' € M} is a boolean filter. And
if N is a Boolean filter, tﬁen Ml= [p]b‘ € N) is a booiean ideal,
Def. 15 .An ideal is maximal.if it is a proper idéal that is not
included in any other pfoper ideal.

This general definition, which applies to all ideals in all
rings, can now be applied to boolean algebras. Maximal boolean
ideals have a simple characterization,

Lemma 2 If M is é boolean ideal in a boolean algebra "B, then
M is maximal iff for all p € B, either p e M df p' € M,

bu% not both.

PROOF: Assume M is maximal, and that the?e exists an element
P, € B s.t. neither Py e-M nor p ' € M, Define N by

o

N =f{pvag | g € M, PVP, = po]. Tt is easily checked that N

is an ideal of B, Also, M is a proper subset of N, since

qgq=0vg € N Yq € M. But P, € N, and Py ?’M. Thexefore, M 1is
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not méximal,.contradicting the hy;othesis.

If M contains p or p' but not both.for all p € B,
then any ideal N éontaining M (properly) would éontain some
Py ¢ M. Thus pé € M cN and hence N would containl
Ps A pé = 1, But, if-any ideal contaihs'l, it is the entire
boolean algebra. Tﬁeréfore,l M is maximal.. QED

The above lemma is guite plausible from a ring-theoretic
viewpoint., For an ideal M to be maximai in B, it is necessary
and sufficient that B/M be a field. But fhe only bodlean field is

. 21/

the two-element field, ,/ézl' Hence we would expect that
every'maximal ideal would "split" the elements of B right down
the middle, so to speak.

A useful lemma concerning maximal boolean ideals will
now be provéd.
Lemma 3 If M is a maximal boolean ideal, then x VY e M iff
Xx €M and vy € M,

PROOF: The "if" part, of course, follows directly from the

definition. Assume X ﬁ M, and x vy € M. Then x' € M since
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‘M is maximal, by Lemma 2. Therefore x' v (xvy) € Mf and hence
(x' v X) vy € M by associétivity of v. But x'" v x =1, and
thus 1 vy =1 € M,ryielding, a contradiction. Thus, x e M.
Similarly, vy € M. QED.

The priméry theorem about maximal ideals is called,
cryptically, the Maximal Ideal Theorem. It éssures us that
maximal ideals exist under the proper circumstancesr

The Maximal Ideal Theorem If B is a boolean algebra, and I

is a proper ideal in B, then there exists a maximal ideal M
of B conﬁaining I.
The proof of the maximal ideal theorem involves Zorn‘;
Lemma, which, of course, is equivalent to the axiom. of choice.
Wé are now ready to begin the proof of the completeness

of elementary logic. Up to this point we have dealt on two

seemingly unrelated topics, formulization of elementary logic and

basic properties of boolean structures. We are now ready to

describe their connection,

Iv, THE CONSTRUCTION OF THE EQUIVALENCE RELATION ON W

Let W Dbe the set of all wffs of %L, as in § 2, Define

16
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an equivalence. relation on W by:
A =B iff |- (A& B)
Theorem 2 = 1is an equivalénce relation,
PROOF: We mqst establish reflexivity, symmetry, and transitifity.

l) = is reflexive

1. F a—ya) : axiom 4)

2. |~ ((B—3 A) A BA—S A)) rule 1) with 1.
3. - A <> 3) ' _ translation of 2.
4, A = A ' definition of =.
2) = 1is symmetric, Assume A = B
l. |— (A<= B) . definition of =
2. - (&—>B)A(B—>A)) translation of 1.
3. = ((B— a)A a—> B)). rule 2) with 2.
4, f; (B&> A) ' . translation of 3.
5.; B = A definition 6f =,
3) = is transitive. Assume A =B and B = C.
1. |~ (Ae>B),  (Be=>cC) by definition of = ,
: - translation of - , and rule
13)
2. (A} B deduction tﬁeorem
3. [a} f¥ (B—> C) nature of proof sequence
4. (A} |- c Modus ponens with 2. and 3.
5. = (&a— @) . ' deduction theorem

Similarly we have |- (C — A), from which we infer | {(A¢—> C)



and thus A = C. QED.
Thus = 1is an equivalence relation, We next form W, the
set of equivalence classes-of_ =. Let the equivalence class of

a wif A .be denoted by [A]., We shall make W into a boolean

algebra.

V. THE BOOLEAN ALGEBRA W .
We first define the three operations and the two distinct
elements O and 1 on W. We do this as follows in the

natural way:

Al A [B] = [(&AB)]
(a] v [B] = [(&V B)]
[a]! = [-1A]

0O = ["B] where |- B

1 = [ B ]'.where }—_B
‘Of coursé, it. must be shown that A s ¥V, 'y, O, and 1 are
all weil—defined,_and that the boolean algebra axioms are
satisfied. We show that A is well-defined and leave the rest
to the reader.

In order to verify that A is well-defined we assume

18
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: Al = AZ’ and Bl'E B2, and show that (AI\Bl) = (AzﬂBz)
L. > @;¢>A,) . - definition of =
N . no 1
2. | (B8j~> B,) .
3. F (Al—f§ Az), }—-(Az-—é Al) _ definition of , rule 13)
. n n
5. = ((&;A Bj)—> A,) ' ' rule 11)
6. k- ((Blf\Al)——é B2) | - rule 11)
_7- [(Alﬂ Bl)] — A, s [(BlA Al)] [~ B, deduction theorem
8. {(a;A B} |2, , [(®B;AB))) |- B, commutativity of A
9, [(Alh Bl)] }f-(Azf\Bz) rule 1)
10. - ((Alf\Bl)—ﬁﬁ (Az/\Bz)) deduction theorem
ll-_F“((Azf\Bz)’¥§ ByAB)) similarly

12. | (B AB)) & (B,NAB,))

13. (Al/\Bl) = (Azf\Bz) definition of

QED -

definition of <>

Assuming now that the operations A , v, and “are well defined,

we still need to verify the boolean algebra axioms. We check

two and leave the rest to the reader.

Claim [A] v O = [A]

PROOF: [A] v O = [A] v [-1B] where |- B,

but [A] v [9B] = [(A v 1B)]

now ; {davaB)] |~ (1A —y 7B) by definition of
also: - ((1Aa—> 1B)—> (B —>A)) axiom 3)

Thus {(a v=B)] - (B—>A) modus ponens,

but - B assumption

v
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then {@da v B)Y) A - by modus ponens
hence [ ((& v1B) — A) by deduction theorem
clearly,” |- (A —> (A vB)) by rule 12) .
Thus b~ B¢y A v B)). translation of .
hence A= (A v B) by definition of =
Therefore, [Al = [(A v B)]

= [A] v [T1B]

= [A] v O QED

claim " [A] A [A'] = O

PROOF: [A]A[A'] = [A]A[™A] = [(A'/\jA_)‘]

it

[ 71(A — 777A)] by definition of A

O since |}~ (A-—3 777 A) {axiom 6))

QED,

VI. THE KEY LEMMA

Recailing the developmenﬁ of elementary logic %n I1, the
"prqof theory'" and the "model theory" were freated quite
separately and were practically unrelatgd. Yet the completeness
theorem deals with precisely this relationship. Hence, we would
like a bridge between the two concepts. This bridge is the
following lemma, and it is thg key step in thé proof of

completeness.
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Al

Lemma 4 If A ¢ W: ;s deductively consistent, then A has a
model (i.e., there exists an interpretatiogl g which makes A
true).

PROOF: The proof of this Lemma involves several claims,

Let A Dbe a statement in W, andlaSSume A is deductively
consistent. Thus, there does not exist a s#atement B such
that Avf—— B and A|-TB. Let F = [[B]'EYT\?- | + @&@— B)].

F is a subset of the boolean algebra Ww. It i; not simply a
subset however.
Claim F 1is a boolean fiiter.

PROOEF : 1 € F, since 1 = [B] where |- B.
but if F; B, then {A] |- B, énd |— (a —> B)
by the deduction theorem. Thus 1 = [B] ¢ F.
Assume next [B], [C] € F. Hence ‘

= @—B), |- @—cC).
or {A} - B, (A} |- ¢ by the deduction theorem
thus (A} } (BAC) . by rule 1)
therefore [(BAC)] erF, and [B]n [C] € T,
Assume finally [B] € I, and [C] € T
Therefore F—»(Af—5 B).

And so — 3a—> (B v C)) by rule 12)
thus [(B vC)] € F, hence [B] v [C] € F,

also O f I, since A 1is deductively consistent.
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Thus F is a proper Eoolean filter in W, Also, {A] ¢ F,
since |- (A—% B) (axiom.4).

Rec%ll now that "filterf is the dual concept to an ideal
(IIT). We shall now define the dual ideal to F: Let
I = {[B] ¢ ﬁ~[ {B]l' ¢ F}. I is an idéal, by duality, It is a
proper ideal, since 1 f I. From the Ma#imél Ideal Theorem, we
know that there exists a maximal ideal in W containing T .,
Let M Dbe such a maximal idéal. We now construct the model of
A which is called for in the Lemma.

Let g: P-—> {T,F} be defined by g(p;) = T iff [p,] £ M.
g is thén an interpretation: -But is g a model of A? The
following claim gives a complete charqcte;ization of those state-
ments which are true in g.
g;gygl The value map Vg,- of g, satisfies the foilowing:
Vg(B) =T 4iff ([B] ¢ M.
PROOF: We shall prove this inductively, from the definition of a
value map. First, note that Volpy) =T iff g(p;) =T iff
p;] g M. Assume now that B is ~7C for some C € W. Then

Vg(B) =T iff V_(7C) =T iff V_(C) =F iff c] eM iff

22
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[TB] e M (by axiom 5) i1ff [B]' € M (by definition of ') iff

[B] ¢ M (since M is maxima1). Finally assume B is (C—) D).

Then V, (B) = F iff Vg (c)‘_-: T and Vg(D) =F iff [c] # M and
[D} e M iff [C]' € M and [D] E.M (sipce_ M is maximal). iff
[1C] e M and [D} e M iff [1C] v [D] e M .(by Lemma 3) iff-
[t'TC v D)] e M iff [(C~f§'D)1 € M (by definition of v) iff
[B] € M, Thﬁs Vg(b) = F iff [B]V e M. Or, Vg(B) =T iff
[B] € M. QED.
We are left with one unfinished step: to prove that g 1is
a model of the statement A,
Claim g is a model of A,
PROOF : We know that [A] € F. Therefoi‘e, [A]r € I since F and
I are dual. But then [A]' € M, since. I C M. Hence [A] £ M,
since M 1is a proper maximai ideal. Therefore, Vg(A) = T, by
previous claim. Hence g is é model of A, by:definition. QED.
Hence for any deductively conéistent-stétement A, we can

exhibit a model. Or, in the contrapositive form:

Lemma 5 If a statement A ¢ W has no models, then it is
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deductively inqonsistent.
This lemma, as mentioned above, is the big link between
proof theory and moée; theorye and it is theikey;step in the proof

- of the completeness theorem, which can now be proved quite easily,.

VII. THE COMPLETENESS THEOREM

The completeness theorem sta#es that an& tautology is
provable; i.e,, any statement which is true in a;l interpretatioﬁs
can actually be proved from the axioms and rules of inference

described in 2., In our notation, this becomes The Completeness

Theorem. If A €W énd ]fA, then |- A,

PROOF: Assume [ A, that is, A 1is a tautology.
Hence, A is true in every interpretation.

Thus, "1A is false in every interpretation

or, Tl1A has no models.:

Therefore, T A is aeduct;vely inconsistent (by Lemma 5) -
Hence {1a) |- ﬂ(Pl—~? pl) by definition.

Then }- (7B —3 7(pl—¥? Py)) by‘deductioﬁ theorem

But | ((TA —F7(;—y py)) —% ((p;— P1)*¥FA) is axiom 3)
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so }= ((pl_w$)pl)~~4} A) by modus ponens

Also, |=~(pl~—i>lpl) is axiom 4)

Thus | A by modus ponens.

QED.
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GODEL'S PROOF OF THE INCOMPLETENESS
OoF ' .
AXIOMATIC NUMBER THEQORY

I. INTRODUCTION

The well known theorem discussed in this paper, Godel's’
Incompleteness Theorem, is a landmark in the.Foundations of
.Mathematics and has meaning for mathematicians, logicians, and
philoséphers alike. It dramatically exposes the limitations of
the axiomatic approach which Hilbert had hoped would be the ﬁathe—
maticians! final apology.

Although the meaning of severél of the terms in bur title
may be unknown to some readers; we offer some introductory remarks
explaining the subject wifhout becoming toorte¢hnica1. Essentially
Godel's Incompleteness Theorem says that thére exist statements
about natural numbers which are neither provable nor disprovable
from the axioms of number theory. The use of the Qord "statement"
reguires SOmé explanation of the language in which sentences

about number theory are expressed. The concept of provability
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is perhaps intuitively vague but can be formulated precisely.
The axioms of number theory are the Familiar Peano's Postulates

about which more will be said later.

IT. THE I.AN?;UAGE

The language_which is used in Godel's proof for expressing
sentences about natural numbersis commonly éalled a‘first—order
language. The primitive symbols (which are analagous to the
alphabet of a conventional language) are listed and explained in
Table I. There are a cduntably infinite setrof variables and
constants. The reader will notice that we have used "outfix"
notation for the function symbols, writing +(x,y) instead of
X+y. Also, other familiér logical connectives can be defined in
terms bf these., A & B is an abbreviation of 'ﬁ(‘1Av 1B), and
A —r B an abreviation of -1AvB, the former being logical con-
junction "A and B" and the latter the conditiénal statement
"if A then B".

These symbols can be combingd in an infinite number of

ways to form strings of symbols only some of which are meaningful,



TABLE I

The Primitive Symbols of the Language

Symbol ‘ Explanation
{ ’ _ Left parenthesis.-
) Right parenthesis _
1 : Negation symbol “1A (= "not A")
\Y Logical disjunction AvB (= "A or B")

fl

Logical eguality x =y (= "x equals y")

v Universal Quantifier VxA(x) (= "for all x, A(x)")

3 Existential Quantifier 3JxA (x) (="there exist an x,
such that A (x)

& Less than x¢y (= "x is less than y')

S _ Successor function symbol Sx (= "the suécessor of x")

+ ‘ Addition function symbol +(x,y) (="x plus y")

. | Mﬁltiplicatiqn function symbol - (%,y) (= "x times y")

e Exponentiation function symbol e(x,y) (= nxd 1y

X, Variable | |

c, Constant standing for N.N.i (c:O = O,ci:l, etec.)

, Comma

There are a countable number of variables and constants.
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B

We shall now describe exactly which of these strings are "formulas."
The terms of the language are the following

1. x, Any variable

i

2. = Any constant

3.vSa Where a is any term
4.1%(a,b) a,b are terms

5, «(a,b) - a,b are terms

6. e(g,b) a,b .are terms

The Atomic Formulas of the language are the following:

1, (t = s) Where t,s are any terms

- 2. (t £ s) Where t;s are any terms
For example, (+(02,C3)«C.SC8) is an atomic formula. (It ex?resses
the statement 2 + 3 £ successor of B). The class of formulas
of the language-can now finally be described:-

1. Ail atomic formulas are formulas,

2, T7A is a formula if A 1is a formula

3. (A v B) is a fofmula if A,B are formulas

4, (E’Xi)A and (E}xi)A are formulas if A 1is a formula containing

Xy and if A does not already contain the symbols V’xi or

3 x.:

1l

For example, ((xy =.C5) v (+(Cl,C3)<1xl)) is a formula.
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It expresses the statement "%, = 5 or 1 + 3 <& Xl”. As another

1
example, we have (3 xl)(+(xl,c5) = C7) .which says ''there exists
an x s,t. X + 5 =7, We may then omit the outermost parentheses
of a formula when no confusion is possible.

This language, though somewhat liﬁited, is quite powerful
in that with it one can express most of the common properties of
the natural numbers, For instgnce, the statement thgt'addition
is commutative can be written as (&JXl)(k/xz)(+(xl,x2) = +(X2;X1D-
There are statements, however, which one cannot express in this
language; for instance, "the set'of even natural numbers is
infinite”:cannot be (try it!).'The reader'maf be intefested in

discovering other "unexpressible" statements.-

TTI. GODEL NUMBERING

Kurt‘GBdel in the mid-1930's invented a clever method of
assigning natural nuﬁbers to the formulas of this formal language
in such a way that the langpage could in effect talk about itself.
This procedureAhas since been called GSdel numbering iﬁ his honor.

He needed a rule or function assigning to each formula of number
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theoff (abbréviated N) and t6 each finite sequence of formulas a
natural number, Thé'reader can easily convince himself that this
is plausible, ;ince‘there are a countable number of gymbols,

and a countable number of formulas, and a;so a couﬁtable number

of finite sequences of formulas. Finife'sequences of formulas

are iﬁportant since a proof will be defined és such a sequence
satisfying certain proPerties. This GOdel numbering function

(let us call it g) must satisfy the following Fwo properties:

1., g must be 1 -1

2. g must be "computable," i.e., for any formula or sequence
of formulas we could effectively compute its GBdel
nuhber, and for eéch nétural number we could effectively
compute the formula (if any) asséciatéd with it.
How can we construct this mapping? Let us first define g

on the symbols of N, (which are listed in Table I):-

gl(] = 3 g[=] = 13 g[+] = 23

gl)l =5 gi¥l = 15 gl+] = 25

gl,) =7 g3l = 17 gle] = 27.

g{1l = 9 gl«] = 19 glx;] = 29+4i

giv] = 11 g[s] = 21 g[ci] = 31+41 i = 0,1,...
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In this manner every symbol has a natural number associated

to it in a 1-1 way.

Assign to every finite string of symbols 01. . 'Orn (and
2 (@)
thus to every formula) the natural number i p.9 i where'Pj

=1l
. . th . .
is the j prime number, Therefore, g(trl...Uh)_=

29(97) ¢ 39(T5 o (9(T3) s Png(ﬁh)

g 1s 1-1 on the strings, by the unique factorization of natural
numbers,

Now assign to each sequence of strings Sl . e Sn the

n
r p,96;5)

j=1

number g in the same manner as above. g is still
1-1 on the strings and sequences of strings. (Notice that no.

string of symbols has the Godel number as any sequence of strings).

Finally, note that g is "computable'" in the sense described above,

Bx. 13 g[(S C, =C)] = 23 . 321 L 531, 413 1435 130
Ex. 2: g[+(1§o;s(xl)).= S(+(XO,X1))]
translation: X + S(xl) = S(x0 + xl)
gi-] = 223 33529 77 L 112l 133017330 197, 23%. 2013 512t

c 373 - 2123, 433 . 47°%. 5357

31 5

. 573, 595 . 672

whew!



IV. SOME PROOF THEORY

At the intﬁitive.level the quesfidn ”wbat is a proqfé" is
not trivial and borders on the philosophical, However, we can
fprmulate a formal working definition wﬁich cofresponds nice}y to
our intuition; ‘A proof, in méthematiés és in any other logical

discipline, must start somehwere. There is a basic set of

axioms, from which other statements are proved. Once the place
to start or axiom set is given, one must know the method of moving
from one statement to t@e ngxt, i.e., the rules of inference.
Let us prescribe Ehese concepts mo;e precisely in our system of
axiomatic:number theory.

First, the axioms. The axioms of N, also known as
Peano's Postulates, are the following formulas:

1. "1(S8x_ = C_) [O is not the successor'bf any natural number ]
2. ((SxO = lelwé txo = xl)) [the successer fuqction-is 1-1]

3. (+(xO,CO) = xo)' [d is identity for addition]

4, (+(xO,le)'= S(+(xo,xl)))[inductive definition of addition)
5. (f(xO,CO) = CO) [0 times any natural ngmber is 0]

6. (-(XO,SX = +(-(xo§l),xo)) [inductive definition of

)
1 multiplication]
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7. '7(xo<_co) fno natural number is less 0]
B. ((x,&8%y) &> ((x,<x)) v (x5 = %))
9. ((A(C)&(Vx,)) @) > A(Sx,))) —> (Vxq) @(x)))

[induction axiom for any formula A]
These axioms are, of course, additions to the purely logical
axioms of first-order logic, an example of which is the logical

equality axiom:

X, o= %y =~y (Plx) &> Y (x)))
where kP is any statement with one free variable, Among the

.logical rules of inference are the following:

R1): Generalization - from A(xo)

« I3

infer = (¥x ) (& (x))
R2): Specification - from (b’xo)(A(xo))

infer A(t ) where € is any term of L,
R3): Modus Ponens - from A , A—> B

infer B.

With the above defined, we can now give an explicit

definition of a proof.

Def: A proof segquence from assumptions Qﬁa set of formulas of N)

is a finite seqguence of formulas 0<l,. . .,c<n, satisfying the
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B

fdlowing: Each c{i, i=l,. . . , n, is either

o

an axiom;
2., a formula in Ct'(an assumption}, or
3. derivable from {0(1,...,¢Xi_1} by one of the rules

of inference,

This is quite a natural definitioﬁ, and leads also to
the following:
Def: A formula A is a theorem from assumptions ({ if it is
the last formula of a proof sequence from assumptions Cz. We
write {({ }A.

Thus a theorem is any formula which is "provable,” in
the sense described above. Let us denote our set of axioms by
P (for.Peano’s Postulates).. Thus if ‘A is a theorem of axiomatic
-number theory, we write P f— A,

An important Meta-theorem in Proof Theory is the Deduction

Theorem. Jt is stated below:

The Deduction Theorem From ({V{A} } B one may infer ({ } (&> B),
and from |— (A— B) one can infer ({ Vv{aA]} | B.
The proof of the deduction theorem is not difficult, but

it will not be given here. = For a'proof in the general first-order
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. 1
case, see Schoenfield, p. 33, This metatheorem is guite powerful

as a derived rule of inference, as will be seen shortly.

V. SOME DEFINITIQNS

In order to aécurately state GOdel's. theorem, we shall need

a few definitions.

Def A set of formulas ﬁ; is inconsistent if there exists a
formula A of N s.t. ¥ } A and ¥ | 3A.

Def 3 is consistent otherwise, Def J_ is w-inconsistent if there

—

exists a formula L«P(xo)'(i.e.J with an unguantified wvariable)}s.t.

PR A S PED M S R CHD I, = l_kp.(ci)"'
for all :L= 0, 1, « . ., but 3 | 7 (VXO)(\P(KO))-

E is w—consistent otherwise . Notice that if 1Zis incon-

sistent then iz-is w-inconsistent, by the specification rule.
Hence if ) is w-consistent then s:_is consistent.

Def: Ei is incomplete if there exists a formula \P'of N s.t,

neither \P nor its negation is provable fromjz:. In symbols,

Ej is incomplete if there exists a formula ‘P if N s.t. not

ST 1 and not ¥ Y.
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VI. STATEMENT OF THE THEQREM

We now have at hand all of the facts necessary to formulate

B3

Godel's theorem.

Godel's Incompléteness Theorem ‘If P 1is w-consistent, theq P
is incomplete.

We would expect a reasonable formulation. of axiomatic ﬁumber
theory to be w-consistent. w-inconsistency is a somewhat para-
doxical property. Therefore Godel's theorem can be restated
informally as follows. _If Peano's Postulates satisfy certain
quite natural conditions, there a;e statements gxpreséible in our
language which can neither be proved nox disproved. We shall now
present the proof of Godel's theorem,

V1I, THE KEY T.EMMA

Before stating the key lemma needed in the proof, we shall
require some new terminology, incorporated in the following
definitions.:

Def: Define a relation Sub(x,y,2z) on the natural numbers to be

true if and only if x is the Godel number of a formula A with
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one free variable and =z 1is the Godel number of the formula

obtained from A by replacing every occurrence of the free

31)

vaiiable in A by the cbnstant cy. For example, sub(229,0,2
is true. (A& = ”xo”, and the transformed statement is ”CQ“)f
Sub is thus a substitution relation. Define Pr(L,ﬁ) to be true
if and oniy if the formula with Godel number n  is the last
line of a proeof sequence which has Godel number L.

The key Lemma can.now be sta#ed:
Lemma 1 There exists formulas in our formal lgnguage denoted

by sub (xl,xz,XB) and pr(xl,x ;uch that

o)

.,c ) and

if Sub(n,i,m) is true, then P |- 5Ub (c,s¢55%,

if Sub(n,i,m) is false, then P |— —} Sub (cn,ci,ém) and
if Pr(L,n) is true, then P |— Ppr (cl,cn) .-and

if Pr(L,n) is false, P |- BF (ci,cn).
This lemma, sometimes referred to as the expressibility Lemma, is
very powerful., It essentially translates statements about sub-~
stitution aqd proof to statements about ﬁatural humbers; this
link-up is.thé primary application of Godel numbering‘and is

difficult to prove -- the probf will not be given here. However,
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1

the fact that this L.emma is true is not unreasonable, since our

' and the notion of proof is -

Godel function g was'”compﬁtable,
finitary. Hence given any two natural numbers N, m we can
"decode" both iﬁto the strings of symbolé they ;epresent énd,
actually determine in a finite.number of éteps whetﬁer or not
the two strings satisfied the required propertiesf Since we can
carxy out this procedure, it élso becomes possiblie to "prove"
formally the statements whose existence the Lemma guarantees., A
formalization of this prpce@ure is in fact what is used in the
proof of Lemma l.- Its function in'the proof of the main theorem
will becomé clear shortly.

There is another 1émma which will be needed in the proof.

It is more intuitive than the expressibility lemmas and we shall

also omit its proof}

—> X, = xz) for all n.

Lemma 2 P |- sub(cn,qn,x1)'4% {sub(cn,cn,xz)

This lemma expresses the l-lness of the Sub formula, and will

also be needed below,.
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VIITI, THE MAIN THEQREM

Let FP be ény formula of N with one free variable, x,,
say \p(xz). Let An bé the formula (V:xé)(éﬁb(xl,xl,xzré\P(xzn. Let
n be the Godel number of An‘ " Let Am be the.formula
(sz)(éﬁb(cn,cn,xz)_—>-gﬂ(xz)); and'ief m. be the Godel number qf

Am. Note: Notice that Sub(n,n,m) is true. The main theorem is then:

Theorem 1 P | kP(c:m) o A
PROOF :

1, P,lP(cm), sub(cn,cn,xzjk— sub(cn,cn,cm)—4>(éﬁb(cn,cn,xz)-}(x2=cm))
by Lemma 2.

2. P, q}(cm), sub(cn,cn,xz)f—-éﬁb (e, CnsCp)
by note and expressibility

n 2)_% ¥2 =

1),2), ahd modus ponens

3. P, LP(cm), Eﬁﬁ(cn,cn,xz)f- §Gb(cn,c ,X c

4, P, qj(cm), sub (cn,cn,xz)}——sub (e sc ,%,)

5 an assumption
5. p, Yle), SUb (c ,c %) x, = ¢
_ 3),4), and modus ponens
6. P,VKP(cm)k—sub(cn,cn,xz)—? X, = ¢
_ _' 5), deduction theorem
7. P, %?(cm),sub(cn,cn,xz)}— X, = cm_gi(tp(cm)<_9ip(xz))

=~ a logical axiom of equality
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l;.
12.
13.

14,

le

P, B (ey), suble,c,xy) - P e Y ixy)
6),7) modus ponens
P, ql(cm), sub(cn,cn,xz)}- %Q(Cm)
. an assumption
' e b
Py W o(ey)s swblep e x) b k)
8),9), and modus ponens
P, 'Kp(c ]——subc,c,x a-?\P
by lO), deduction theorem
P, ¥ (c) Hx,) (sub (e ,c ,x,) =Y (x,))
11), generalization rule
P, Y ) A,
12), by definition of A
P |- %)(c _;> A
13), and deduction theorem
The other direction is slightly shorter:
(& ). P, 5Ub (e ,c,x,) 7Y ix,) |~ suble e e )P (e
Rule of specialization
P, Sub (cn,cn,xz)—%ﬁ%3(x2)|~ sub (cn,cn,cm)
by note and expressibility Lemma
p, 5ub (cn, s X )—%'? (x )Iﬂ-%j(c }
,2), -modus ponens
=T - J
Pl (8UB(c e ,%,)-7 P (x,)) >
. 3), deduction theorem
St . - —_—
Pl= (¥x,) (8ub(c,cp,x,)~> P (x,))—=> Y ()

generalization rule

. Pl=A_~ &P

definition of Am QED
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IX. GODEL'S THEOREM

Godel's Theorem which we restate now is a corollary to Theorem 1.

Gdel's Incompleteness Theorem If P is w-consistent, then P

is incomplete.

The proof is constructive.in that we exhibit the reqﬁired
stétemént‘? s.t. not P Y and not P |71,
PROOF : Assﬁme P is w—cbnsiétent. Define %?(xz) of theorem 1
.to be (Vx3)(‘]§§(¥3,x2)). Loosely speaking, LF‘(xz) states that
there is no proof fof the formula of ﬁ with Godel number Xo
Let An"Am' be as in Theoreﬁ 1.
Case I: Assume P |- A . Then we can prove Am- from Peanérs
Postulates and thus, there‘exists a proof seguence for Am; Let
L Dbe the Godel number of this proof seguence. Since m is the
Godel number of A s Pr(L,m} is true, Therefore, by the expressibility
Lemma, P }- EE(CL,cm) but P | A — tP (Qm) by Theorem 1.
So, P‘}— Amfﬁ (Vx3)(% §E(x3,cm)) but we are assuming P - A_.
Therefore, by modus ponens, P }— (ﬁx3)(‘1pr(x3,cm)). Consequently,

r }—*1 pr(qL,cm) by rule of specialization. This contrgdlcts the
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consistency of P. Therefore, our assumption that P | Am is

intennable.
Case II: 'Assume P "1 A
=e2 o= m

1. P |- q’(cm)-J? A by Theorem 1
2. P A, 1)

_ 1), law of cohtrapositives
3. P =T ()

assumption, 2),modus ponens

iy
)

T (W) BT (xg0)
3), Definition of \P(cm)
5. P = (3xgy) BT (xg.c)
4), Algebra of quantifiers.

6. But we know not P }--A .
= m
Therefore Pr (L,m) is false for every L.
Therefore P |~ 7 §}(go,cm), P }-“}§}(ci,cm). . . Vi
by expressibility Lemma.
Thus, since P is w—-consistent, we must have not:
P | 71 (Vx4)71 BT (x,,c )
or, not P | (Ix,) P (x35cm), which contradicts 5).
Therefore, we have not P F—*1'Am.

We have shown that Am is neither provable nor disprovable

18
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from Peano's Postulates. Thus i1f P is w-consistent, there are.
formulas which can neither be proved nor disproved. P 1is there—

fore incomplete and Godel's theorem is established.

Thg reader may wonder whether Peano's Postulates are a
crqcial factor in this proof; and'whethgr otaer axioms for natural
number theory can be found which ‘somehow circumvent the process
described above. The answer is NO. It follows froﬁ'GBdel's
proof that aﬁy axiom system which is of sufficient power to cépture
the elementéry notions of addition, multiplication, and order in
the natural numbers will be incomplete;

X. ATTEMPTS AT CONSISTENCY PROQFS

As another corollary fo Theorem 1, we obtaig the following
interesting result, due to‘Tarski:
Theorem One‘cannot prove the consistency of Peano's Postulates within
the fraﬁework of axiomatic number theory.
PROOF: Define a relation .Neg(i,jj on the natural numbers by

Neg(i,j) is true if and only if i 1is the Godel number of a
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formula A énd 7 1is the Godel ﬁumber of 1 A, As one might suspect,
there is also-an exp;essiﬁility lemma aésociated fo Neg, i.e., there
exists a formuia of N, say 'ﬁsﬁ (xl,xz), s.t. if Neg(i;j) is
true, then P - fleg (ci,cj); and if Neg (i,]j) is false, tﬁenl
P k— '1ﬁE§(ci,cj). ‘Let C be.fhe formula expressiﬂg cogsistency,
in terms of pr and Neg:
C = (vﬁl) (\fxz) (vx 5) (V#c4) (p“r.(xl,x_?)&fi“r (#3,x4)—% 1 1eg (x,,%,))
then
¢ = (3x)) 3x,) @x5) @x,) B (x),%,) &P (x5,%,) 406G (x,,%,) )

Let \P(xz) " be as in Godel's Theprem, i.e.,

Y x,) = (vx3) (AFE (x5,%,))

1. We know P = ¢ (cm)-f? A

definition of Am, Theorem 1,

2. P, TW(c) 1P (c )= A
1), law of contrapositives
3. 2,1 P ) Y (e
' assumption
4. P, '—l\{)(cm).[-——lAm'

2),3), modus ponens

5. put P, Y () |-A_
by definition of 'T\P(cm).
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1

Let m' be the Godel number of A,
Then

6. B, T\Pey) b @) Ex,) (BF (x)50,) , 85% (x5, ') 48T (o0, 1))
' 4),5), and ﬁy expressibility of PB%, heg
7. P, Y () -1 ¢
| 6}, definition of C.
8. P Ll & (cnt)-}"_l c
7) , deduction theorem

Now assume P |- C

9. P - c—=>Y¥ ()

8), law of contrapositives

10. P P*LP (cm)

8),9), modus ponens

11. 2 =Y (e )> A

Theorem 1

12. P |~ A

10), 11), modus ponens

This is a contradiction to Godel's Theorem ~- we have
just shown A~ is unprovable. Thus not P |~ C.
Thus we have shown that we cannot prove C'froﬁ
Peano's Postulates, and the thgorem is established. The reader may

wonder whether this particular formula expressing consistency is
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crucial to the proof; the answer here is NO. Given any formula
[
A which 'represents” consistency in any reasonable sense, we would

be able to prove that P P— A —%-C; Hence if A were provable, so

would C Dbe —-- but we have seen above that € is not.

XI. OTH;ER.EXPOS ITO_RY AND HISTORICAL AREM-ARKVS

Consider the English sentence "I am not~provable.” Let us
suppose informally that there exists sonie notion of proof and
provability in Engliéh. Then.we would of course insist that
whatever one "proved" would be true. If one could then prove the
above sentence, it would be true, and hence one would not be
able to p?bve it -—~ a clear contradiction. This, then, is an
example of a sentence in English which cannot be proved. (Notice
then that it is a Frue septence). Godel's numbering system took
this statement, a "meta-statement' in that it dqes not belong to
the formal language L, and exp?essed it ihlthe formal language,
in this way using the language to speak about itself. The reader

may find it quite helpful to refer to this English conterpart when

attempting to understand more fully the nature of the Incompleteness
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Theorem.

In 1936 Barkley Rosser Strengthenéd Godel's theorem by
weakening the hypothesis from W—consistency to consistency. He
proved the féllowing:

.Theorem If P is consistent, then P is incomple#e.
The proof of the above theorem is more technical but uses the

same fundamental principles as that of the theorem proved in this

paper.
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THE INDEPENDENCE OF THE CONTINUUM HYPOTHESIS

1. INTRODUCTION

The éuestiqn of whether or not the Continuum Hypothesis can be
proved frqm thé other axioms of axiomatic';et theory has been an open
questioﬁ for many years, Recently, the-problem has been solved by Cohen
and simpler arguments presegted by Scott; Soiovéy, and others. Wer
intend here to discuss the nature of independence proofs and to briefly
describe the boolean valued logic used to-obtain the independence
‘results.

A, General Axiomatics

The peculiar feature of mathematics gs a science is its deductive
nature: while other sciences rely most heavily on observation for the
justifiéation and verification of their results, mathematicians
demand proof, Yet no @athematician would argﬁe that minaless
cranking-out of "thearems" without any regard for their meaning
or importance is a part of méthematics. They, too, are concerned
with a "real" wbrid -- the world of ideas, intuition, and relationships
between concepts. This éervésAto motiﬁ;te.fwo aspects of the proof

process: the decisions of what to try to prove and on what to base



the proof, The latter is the subjéct of the immediate discussion,
The choice of axioms 1s a central and illuminationg facet of all
of modern ‘mathematics.
Axiomatic theories are formally all of the same mold; they
have a set of axioms which refer to some (possibly unspecifiéd)
"universe of discourse', and rules of inference for deriving other.
statements from the axioms. But in motivation, axiomatic theories
break into two classes. Let us refer to them as "pure" and "approximate"
theories -—~ the reason will soon be clear. As an example of the
first type let me cite abstract group theocry. A group is a set G
with a binary operation + satisfying the following axioms:
l. For all a and b in G, a+b is in G,
2. For all a, b, and ¢ in G, (atb)+c = at+ (btc}).
3. There exists an element e in G such that ate = e+a = a
for all a in G.

4. For every a in G there exists an element b in G such that
atb = e,

These axioms describe groups completely, By the Completeness

‘Theorem for first-order logic, any statement that is true in every

group is provable from these axioms. One might say then that the
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abstract study of groups ié identical with the study of these axioms
and what can or cannot be proved from them.' In this sense then
the axiomatic theofy is pure.‘ These axioms are not designed to
describe groups, but grogps are defined as any object satisfying
these axioms.

In contrast to this type of theory is tﬁat best represented by
éxiomatic number theory. The iptuitive notion of natural numbers
is not conceived as a set of axioms which describe them, but as an
entity which in some waysdefies description., 1In order to capture the
concept and axiomatize it, one choo;eé properties of the natural
numbers which are intuitively_obvious agd takes these as axioms.
Hopefully these axioms will describe numbers complétely in the sense
that any true statement about natural numbers ié proﬁable from
them. The axioms most commonly_chosen are called Peano‘s Postulates
and‘refer to a universe N with one unary function symbol S.

1. There exists a diétinguished element 0 of N.

2. If n is in N, then S{(n) is in N.

3. There does not exist an n in N such that S (n} = 0.



4, T£ S{n) = S{m) for m and n1in N, then m = n.
5. If A is a subset of N containing O and closed under S,
then A = N.

Interpreting the function S as the succéssor function, these
axioms are seen to be obiously.true in the intuitive natural
numbers. But we cannot be sure that all true statemgnts about the
natural numbers are provable ﬁrom them -— in facf, Gbdel's
Incompleteness Theorem statés that they cannot. The;e axioms then.
do not capture the concept of natural number entirely -—- they are
only "approximate", and in this sense are distinctly different
from the axioms for group theory.

A similar process is carried‘out in_Euclidean gecmetry,
Euclid, thé first pr0ponent‘of the axiomatic method, tried to
describe the intuitive notion of plane geometry by means of five
axioms which he felt were self—evident; He was not interested in
describing all "geometries" which satisfy certain postulates, but

only geometry in the plane. One can see that the motivation for

the axiomatization is the same as that for number theory.



B, What is Independence?

The most desirable situation in any axiomatic theory would
be to havé as simple'an axiom set as possible‘without altering
the body of theorems which are derivable. What is self-evident to
one may seem incomprehensible to another; therefore, in keeping
the iist of axioms simple one would lessen the probability of
disagreement and in geneFal simplify the entire subject. Hence the
searchrfor_a minimal axiom set is of some importance,

If a statement is neither provable nor disprovable from a given

axiom set, it is said to be.independent. For example, in group .
theory the statement
5. For all a and b in G, atb = bfa

is independent of the four axioms given above. “One way to prove
that a statement is not provéble from a set of axioms ( this is not
a contradiction! } is to exhibit a structure in which the axioms
are true but the given statement is not.'( Since the proof process
preserves truth, if the‘statement-were proﬁable then it would have

to be true in that structure also.,) The existence of non-commutative



groups and commutative ones) prq%es that the above statement

is independent, 1In the.pure type of axiomatic #heory fhis is not

so interesting: ohe'simply obtains anothef éheoryJ the theory of

abelian groups in this case. in the approximate type, however, the

addition of a new independent ;xiom may. not simply change the subject,

but may allow one Lo ﬁrove new theorems'about-thé same subject,
Euclid, in formulating his postulates for plane geometry,

found that he needed the parallél postulate to prove‘many theorems

which he felt-were true. This postulate, which states that there is

one and only oné line through a giﬁen point parallel to a given line,

was felt to lack the attribute of béing ”self—e_v:i_'cfient"| which his

other postﬁlates had, and for gver QOOO years mathematiéians

attempted to prove it from the other postulates. None succeeded.

It was not until the nineteenth century that people began to wonder

whether it was provable at. all from these other postulates; the

denial of this axiom led to non-Euclidean geometries which were

distinctly different, yet not ;nconsistent.

How could one prove that the parallel postulate was not
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provable? One such proof which is eéspecially relevant to the discussion

is that given by Young, and it proceeds as follows. We stait wifh
the Euclidean plaﬁe.‘ This‘disarms all who ﬁish to deny the existence
of "non~Euclidean® geometry. We take as‘”poiﬁts” the points of the
plane interior to the unit cirecle, and take as ”lings“ chords of
the dircleﬂ Many postulates hold immediately, for in;tance, that
uthrough two distinct "points" there passes one and only one ﬁline”.
Howevef, defining "paralieﬂ’as-non—intersecting, we see that thé
parallel postulate fails. It is possible to define "distance"
in such a way as to validate all the other postulates.except this
one; this-makes it conclusive #ha#.it cannot“be‘derived frdm the
others.

Note that in the sketch above we assumed a Euclidean plane to
start with, i. e., assumed the parallel postulatef In the. proof
of the indepéndence of the Continuum Hypothesis (CH) in set theory
we also assume the CH; and then modify the notion of "set", "well-

ordering”, "cardinal number'", ete. In fact, powerful principles

like the axiom of choice and the CH are needed to prove that the
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uncrthodox sets have the desired properties. Before getting ahead
of ourselves, however, let us acquire the proper framework for the

discussion.

IT. AXIOMATIC SET THEQRY

4, Foundations

Set theory is another example of an 'approximate" axiomatici
theory. "Intuiltive set theofy was simply too imprécise for the
mathematicians of the twentieth century. Paradoxes ﬁere emerging
for which there seemed no solution. The ultimate result of this
problem was a complete oVerhaul'of the foundations of set theory
and many attempts at a#iomatizatidﬁ. The most common and widely
accepted 6f these‘is Zermeio~fraenkel set theory, the axioms of
which are reproduced here.

1. The Axiom of Extensionaglity: If two sets A and B have the

same elements, then they are the same set.

2. The Null Set Axiom: There exists a set @ which contains
no other set. '

3. The Sum Axiom: For any two sets A and B, there exists a set

C containing all and only the members of A and B.

4., The Power Set Axiom: Given any set A there exists a set

B such that B contains as members all and only the subsets of A,
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5. The Axiom of Regularity: Every non-empty set A contains an

element x such that x and A are disjoint.

6. The Axiom of Infinity: There exists a set A containing the

empty set such that whenever B is an element of A, the set
B{J[B) is an element of A, '

7. The Axiom of Replacement: The range of any function is a set.

All of #he above axicms can be formﬁlatedrin a firstforﬁer
language with one binary relation e denbt;ng set hembership.
For igstance, the axiom of extensionality can be w;itfen as
(Wx) (xeAé> %eB)—y A=B
The reader may be interested in formulating the other axioms Similarly;
In this paper the symbolic form will have to be resorted to in
certain Qases;

How intuitive and‘self-eqident are these axioms? It is generally
accepted that they are guite satisfactory in this respect, and 'in
nearly every form of axiomatic set theory these statements appear as
either axioms or theorems, The following axiom, over ﬁhich thexre has

been much controversy, does not share this property.

8. The Axiom of Choice: Given any set A there exists a function
f from the set of subsets of A to A such that f£f(x)e x for

every subset x of A,
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The primary objection to this axiom is that it 1s not constructive;
the choice function f is not explicitly given -- only its existence
is assured, This obﬁection_is quite valid and can only be refuted
by refering to the power of this theorem -- without it, for example,

one cannot prove that every set has a cardinal number.

B, Cardinal Number Theorv

Two sets A and B are egquipollent if there exists a one-to-~one,

onto function f from A to B. Eguipollence is an equivalence relation
and intuitively classifies sets as to their size; for example,

two finite sets are eguipollent if and only if they have the same

nuﬁber.of elements. Car@inai Ngmbers are speciél sets which are meant
to represent equipollence qlasses in the following way: two sets

have the same cardinal number associated tp theﬁ if and only if

they are eguipollent, To.construct these special sets is no easy
matter and it shall not be attempted here. However, .it is a con-
sequence of the axiom-of éhoice that one can construct a cardinal

number for every set such that the above property holds, It is also
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a theorem that any set of cardinal numbers is well-ordered in a
natural way,

The finite cardinals are isomorphic to‘the set of natural numbers,
Hence their properties avre weli-known. The first infinite cardinal,

/ .
denoted-jﬁg is the cardinal number of the set of integers {(and

o) J
of ‘every countable set), All infinite cardinals are denoted by these

is the next cardinal number after

'
alephs, and they are such that 7\|

~7 : A
?uo, and so forth. Being "the next cardinal number" means that

/

there is no set whose cardinality is greater than TL- but less that

&
/ _
7L} . This is by definition of the alephs, and in fact is their main
prbperty.
Cantor, the man who founded modern cardinal number theory and
in so doing revolutionized a good part of mathematics, proved the

following theorem:

Cantor's Theorem If A is a set, then the set of all subsets of A,
A

denoted 2 , has cardinality strictly greater than that of A,

/
r "L r
. ] = /
This theorem, applied to the set ?ba', states that él > 3~m .

/ ' : LA
Since 7¥} is the next infinite cardinal after A, , we must then have
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/
Mo
>U o> ‘ ~
/"¢t o. It can be shown that while '),0 is the cardinality
f
§ o - .
of the integers, 2, is the cardinality  of the continuum. The
_ N Al
. . 97 e . .
Continuum Hypothesis is that 2~ — /~t , i.Je., that there is no

set of real numbers with car@inality strictly greater than that of the
integeré, but strictly less than that of the continuum, This
faécinating conjecture was the object of many attempts at proof,

bu£ none-succeedéd. Yet neither could anyone find an appropriate

set of real numbers to disprove it. The proof that it was.independent,
of-the axioms for set theory (even including the powerful axiom of -
choice) was a startling and draméticresult, in all ways analogous
to the corresponding discovgry concerning Euclid's infamous parallel
postulate,

III. THE CONSTRUCTION OF THE MODEL

A. Boolean Preliminaries

We shall proceed shortly to a definition of a universe V of
objects, which will correspond to the "sets” of our theory.
Simultaneously with the definition of V-will be given a definition

of the predicates e and = , in the following way: for each pair
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of objects a and b of V we associate two elements P and Q of a
given Boolean algebra, which elemenﬁs'are to be associated with-
the statements ach and a=b, respectively. These shall be called the
"Boolean values" of aecb and a=b, and will be denoted [laeb|| and
| |[la=b ||, respectively.
With the Boolean values of the atomic formulas of the language

so defined, the Boolean values for other statements without free

variables can bhe given as follows:

/
[1rx]] = ||x]]

| [x&v ]|

H

HTIA Y.

If F(x) is a statement containing no free occurrences of any variable

excepnt x,'then ||(¥fx)F(x)|]'= i(\ | |[E(a)||. (we choose the Boolean
o av

algebra to be complete, thereby assufing the existence of the above

infimum). Then:
Evell = 1]V ]
| = [l (v 1]

[ (T=)F @) |] = \CI |F(a) ]|

R S and no matter how these

If X contains free wvariables Kys ooe
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are replaced by menbers of V the resulting statement without
free variables has Boolean Value 1, we then set |[X|]| = 1.
The érocedure in proving that some specific statemen#.xo is
not deriyable ip set theory is to establisﬁ two results:
(1) Every statement derivable in set theory has Boolean vélué 1.
(2) The statement XO does not have Boolean value 1,
Let us first outline how (1) is established. .This is done
by showing that if X is an axi@m of set theory, then‘llxll m.;,.and

if Z can be derived from X andlY'by the rules of set theory, and

[1x]| = [1¥]] = 1, then ||2]] = 1.

B. The Logical Axioms apd Buleé

Set theory can be formulated such that the only rule of inference
is modus ponens, Thus the application of the rules of set theory is
taken care of by the following theorem:
Theorem If |[[X|]| =1 an_d [ |Ix>¥ || = 1 then [[¥[{ = 1.
The proof is essentiaily the following argumeﬁt; f | [x=2Y|] =1

4 !
then ||X]||v ||¥]] = 1. But [|X{]| = 0, since ||X]|]| = 1. Hence
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. 1
|]¥}l| = 1. 1In a similar manner all of the axioms of first-order
logic can be shown to have Boolean value 1, For example, let us
establish that the axiom (b’x)F(x,b)—}F(b,b) has Boolean value 1.
We must show that [[](%’x)F(x,b)][:?][F(b,b)]|],= 1, or equivalently,
that [/ [IF(a,b) || ||F(b,b)|]] = 1. This is if and only'if

acy ' ‘
A lF(a,p)||£ ||F(,b)||, which is obvious, 'since /\ acts as an
aeV
infimum dperation with respect to the partial ordering .

It remains then to investigate the axioms of set theory and to
show that they'have Boolean value 1. We must define the universe V

and the Boolean values of the atomic statements in order to do this,

as cne might expecf.

C. Tﬁe Construction gg_tﬁe Model

Let us recall the proof of the independence of the parallel
postulate. To invalidate the postulate, "points" and "lines" were
introduced which differed slightly from the classicgl points and
lines —-- however, as‘few changes as possible were made, since the

other postulates were to remain valid. We are at a similar point,
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We shall need to modify the notion of "set" and "set membership",
but only so much as to invalidate the Continuum Hypothesis, while
keepinglthe other axioms valid.

To every classical set Alﬁhéré ig associated a characteristic
function fA such that fA(x) =1 if xeh,- and ﬁA(x) = 0 if xﬁA;.
Identifying 1 with truth and O with falsity, wermight.say that thé
statement x€A takes the value ﬁA(x). Wwith this in mind the
generalization to a Boolean valﬁed logic 'is evident.’ A ”set” will
be a function f whose ﬁalues are elements of the given Bpolean
algebra. Thus the Booleén value of the statement acef is_f(a).

[lacg] | = £()

Once this is defined, equality is not difficult to define. Since

we have -a=b if and only if (V’x)(xeaéﬁ x€b}, define

| la=Db] | 1 (W x) (xea$? xeb) ||

i

A a6 ) ||
®e\/
It is not practicable to introduce all our "sets” at once.

Thus, when we introduce a new "set" £, we can define f(a) for those

a's which have already been introduced, For other a's, f(a) will
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be left un@efined. We can still define aef and ng,:however; this
is done by setting

| |acf]| | = H(gx) (a=x & xef) ]|
and by restricting the domaih of the infimum operation /\ in
the definition of g=f to the'domain of f‘andgi

This paper is not the placé to enter into the details of the
construction of the model. The principle, however, should be clear:
our "sets" will not correspond to functions into.{d,l], but to
functions into a given Boolean algebra, The modification is
slight enough to. assure that the.axioms of set theory have Boolean
value 1, but is great enough to Force the Continuum Hypothesis not

to have value 1.

D, The Key Result

Let us assume that.the Boolean algebra used in thé construction
satisfies;the countablé'chain condition. This assures us of
several necessary results, among which. is tﬁat the "set" corresponding
to the set of integers is well-behaved, and that "cardinality"

inside the model is the same as cardinality in classical set theory.
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Let then g be a function from the classical set of integers to
the given Boolean élgebra. If g is the constant function 1,
then g corresponds to the set of integers'itself. .But if‘g.is
arbitrary, it then refers to a "subset" of the integers, just as
a function from the integers to {0,1}.defines a subset in the
classical sense ({x|g{x) = 1} is the subset: in the classical case),
How many such "subsets" of the integers exist? Clearly if the
Boolean algebra has a large number of elements, such subsets
will be quite numerous -- numerous enough, in fact, to force
/
”é?%“, the "cardinality" of the set of all "subsets" of the integers,
{211 -refering to the Boolean valued model) to be strictly greater
[ : : :

than 7\~’, thereby refuting the Continuum Hypothesis.

The main question is this: can a Boolean algebra be found which
is of large enough cardinality to obtain the above result while
still satisfying the countable chain condition? The answer is yes,
In fact, Boolean algebras with arbitrarily large cardinalities

exist which satisfy the countable chain condition.

Thus, with a suitable choice of the Boolean algebra, we can
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force the Continuum Hypothesis to have Boolean value 0. Also,
. since every axiom of set theory has Boolean value 1 and the rules
of inference preserve Boolean value 1, every statement derivable in
set theory has Boolean value 1. Thus, the Continuum Hypothesis
is not derivable in set theory and hence is independent of the

axioms.

IV. FINAL REMARKS

The proof sketched above.actualiy only showsrﬁhat_thé Continuum
Hypothesis 1s not provable from the axioﬁs of set theory ~-— it
does not show that it is not disprovable, or, in othgr words, that
it is consistent. This was done, however, in the late 1930's by
Kurt ngél and his proof usea methods thch ére quite different
from those described in this paper. With his result, independence
is established.

Boolean valued logic can also be used #o prove that the
axiom of choice is independent of the other axioms for set theory.
The relationship between thesg arguments and Cohen's original

"forcing" techniqﬁes are subtle but can be discovered. However,



1
Boolean arguments seem to be of more general application than

the fdrcihg arguments used in the original proof.

20.
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