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I. INTRODUCTION 

AN ALGEBRAIC PROOF OF THE 

COMPLETENESS OF SENTENTIAL LOGIC 

In this paper we prove the completeness of sentential logic 

using concepts of Boolean structures. For readers unfamiliar 

with the terminology, "sentential" or elementary" logic (sometimes 

called the Statement Calculus) is the usual form of valid reasoning, 

omitting quantification over variables. For example, statements 

such as "P or Q" and "if P then not Q and not R" represent such 

forms. Statements including quantification, such as "if for all 

x, P(x), then for some y, Q(y)" do not fall into the category 

discussed here; they belong to the so-called first-order logic. 

The restriction to elementary logic is reasonable since the proof 

of completeness in the first order case parallels the proof presented 

here, though it is technically much more difficult. 

The study of elementary logic is primarily concerned with 

discovering the forms of valid reasoning. As an example, let A 

be the statement "If P then P or Q" where P and Q are arbitrary 

assertions. The distinctive feature of statement A is that it 
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is regarded as true independent of the truth or falsity of 

assertions P and Q, the more basic statements from which is is 

composed. It is these statements which are true simply on the 

basis of their form not their content which represent the.subject 

matter of sentential logic. The "completeness" of this logic 

asserts that if a statement is of such a (tautologous) form then 

it can be proved. Now, as soon as the concept of proof is mentioned, 

we begin to ask about axioms, rules of inference, theorems, etc. 

But first let us establish some ground rules for the formal 

language. 

II. THE STATEHENT CALCULUS 

In order, to formalize the discussion of statements such as 

those mentioned in § I, it is necessary to introduce a symbolic 

language L in which these statements can be expressed. 

The primitive symbols of L are the following: 

1. Propositional Variables: a countable set, P = (p
1

,p
2

, ... }. 

2. Connectives: (no commas) 

3. Parentheses: ' 
) 



3 

P is' our set of basic statement symbols with which other 

statements are built. 11 --7" is interpreted as "if .•• 

then . . . , " and 11 1 " is the negation symbol. The correct way 

to build sentences are these: 

1. Any propositional variable is a well-formed formula (wff) 

2. If A and B are wffs, then /A is a wff, and 

(A~ B) is a wff. 

Let W be the set of all wffs. As examples, 1 (P
1 

..----!) P
2

) 

E W, and P1P2 I W (more than one variable but no connective). 

The element of W referred to above can be interpreted as "not, 

if P1 then P2 ." The utility of the formal language L in our 

discussion is obvious. Let us now make rigorous the above assign-

ment of meaning to the statements of L. 

Def. 1 An interpretation is a map g: P ·-? (T ,F). 

Let I be the set of all interpretations. An interpretation 

then is an assignment of meaning (but only truth or falsity) to 

each basic statement of our language. A value map extends these 

assignments to each wff in W. 



Def, 2 A value map based on the interpretation g is a map 

v · W --7 (T,F} defined indictively as follows: 
g' 

V (p.) = g(p.) for all p, E P. g ~ ~ • 

If A is 1 B for some B E W, then 

V (A) = F g 
• ff v ( ) • g B = T 

If A is (B ---7 C) for some B, C E 1'1, then 

and v (c) = F. 
g 

Using the above, the value map of an interpretation g can 

be computed for any wff. in W, 

Def. 3 If A E W, and g E I, then 

A is true in g_ if 

A is false in g_ if 

V (A) = T; 
g . 

V (A) =F. 
g 

4 

Def. 4 A E W is a tautology if it is true in all interpretations. 

(Denoted by I= A) • 

Def. 5 If A E W, then g e I is a model of A iff V (A) = T. 
g 

One can see that a statement A is a tautology if and only 

if every interpretation g is a model of A. In other words A 

is "true" regardless of whether any of the basic statements P1P2 , 
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etc., are true or false. Thus, tautologies are of primary 

interest; they represent those special forms involved with valid 

reasoning mentioned in I. 

Since the completeness theorem concerns the relationship 

between tautologies and what is "provable," we need a precise 

notion of what a "proof" is.· we begin by presenting certain 

axioms and rules of inference which will be used in our definition 

of a proof. 

The following are statements of 'il which we take as 

axioms: 

1. (A-7 (B~A)) 

2. ((A-" (B----tC))----0 ((A-7BJ·-7 (A~C))) 

3. ((IA-7 1B)----7 (B--7A)) 

4. (A--) A) 

5. (iiA--'?A) 

6. (A~IlA) 

Note that all of these axioms are tautologies. Some of them 

are familiar. For instance, 3) is a statement of the contra-

positive law. It should be noted that these formulas technically 

are not elements of W in themselves; they are axiom schema. To 



obtain an axiom, simply substitute a wff for A,B, and C in 

1) - 6). As abbreviations we will write 

(A V B) 

(A /\ B) 

(A~ B) 

for 

for 

for 

(-r A --:;:, B ) 

I (A--7 -,B) 

((A~ B) 1\ (B ----'7 A)) 

Their meanings can be derived· from that of ·1 and --;:. ·and are 

described as follows: 

(A v B)' is true if either A or B is true, or both 

(AI\ B) is true if both A and B are true 

6 

(A 0 B) is true if A and B are either both true, or both false. 

The rules of inference which allow us to proceed from axioms to 

other "theorems" are as follows: 

For any A,B,C € w' 

From: Infer: 

1. A,B (A A B) 

2; (A 1\ B) (B 1\ A) 

3. (AV B) (B VA) 

4. (A v (B V C)) ( (A\;' B) V C ) 

5. (A 1\ (B I\ C)) ((A 1\-B) !\C) 

6. .A. (A VB) 

7. (AM B) ' (B V C) ( (A v C) <---7> (B v c)) 

8. (A H B)' (B 1\ C) ((A 1\C) ~ (B (\C)) 

9. (A V A) A 

10. (A 1\ A) A 

I' ,· 



From: Infer: 

11. (A -----') B ) ((A 1\ C) -7 B) 

12. (A ------'/ B ) ' (A~ (B V C)) 

13. (A 1\ B) A 

14. A, (A-7 B) B 

The most important property of a rule of inference i's that 

it preserve tautologousness; the reader can .check that the above 

rules satisfy this requirement. This list of rules of inference 

may seem lengthy. However, .all the above rules can in fact be 

derived from the last rule, commonly known as modus ponens (in 

Latin, "method of affirming"). For example, we can derive 

(informally) rule No. 3): 

1. (A V B) 

2. (IA---JB) 

3. ((lA ------'7 IIB)----?(IB----}A)) 

an assumption 

translation.of 1. 

contrapositive axiom 

axiom 6) 4. (B ~liB) 

5. ( I A -')>II B) 

6. (/B-4-A) 

7. (B V A) 

2. and 4. 

3., 5., and modus ponens 

translation of 6. 

We now formalize the above proof process and define what is 

meant by a proof, a proof from assumptions and a theorem. 

Def. 6 

o<l' ••• ' o< k 

. . ' W € W is a proof seguence from assumptions 
n 

iff each wi' 1 L.. i b n, is 

7 



1. an axiom, or 

2. An assumption from (a<1 , •• ,c<k), or 

3. inf.erred from w1 , ..• , w i _1 by a rule of inference. 

Def. 7 If A is the last wff in a proof sequence from 

assumptions, we say A is provable from these assumptions. 

(Denoted ( o< 1 , ••• , o( k) f- A, or 0: J- A, if c( = ( c{ 1 , ••• , o( k) • 

Def. 8 An absolute proof seguence is a proof sequence with an 

empty assumption set. 

Def. 9 A € W is a theorem if it is provable from the empty 

set of assumptions. (Denoted 1- A) • 

The relation between the two forms of proof can be formalized 

into a powerful tool which we· simply state without proof as the 

Deduction Theorem (A) f- B iff 1- {A ~B) • 

This theorem formalizes the often used method of assuming 

as axioms the hypothesis of a theorem, and then proving the 

conclusion. One hasn't really proved the conclusion; he has 

proved "if the hypothesis is true, then so is the conclusion." 

We shall need the following concept: 



10 

Def. 10 (l C W is deductively inconsistent iff 

C( f- .I (p1 ~ p 1 ) . Otherwise, {( is deductively consistent. 

In other words, C( is deductively inconsistent if, by 

assuming C( , one can prove something which is patently false. 

One can easily prove the following lemma which says that it does 

not matter exactly what patently false statement is provable from 

C(. 

Lemma 1 The following are equivalent: 

1. a_ is deductively inconsistent; 

2. for some A € w CCI- A and {t 1- I A; 

3. for all A € w C(_ 1- A and <:{ 1- I A. 

With the description of the formalization of elementary 

logic completed, we now know 'precisely what the objects are that 

are dealt with in the completeness theorem, which, informally, 

states that every tautology is a theorem. As the title of this 

paper suggests, we will use the concepts of Boolean structures in 

the proof. 

III. BOOLEAN STRUCTURES 

Def. 11 A Boolean ring is a ring with identity in which every 

element is idempotent, that is, for all b in the boolean ring, 



As an example, consider the two-element ring (0,1), with 

operations defined by: 

+ 0 1 . 0 1 

0 0 1 0 0 0 
. 

1 1 0 1 0 1 

This boolean ring is a field; it is the only boolean 

field and is in fact isomorphic to Z/2Z. 

As another example, let X be an arbitrary set. Then the 

z 
set 2X = (f:X4 1/zz) is a boolean ring, with the operations 

defined pointwise. 

This· all serves as an introduction to a more natural formu-

lation of these structures, the boolean algebra: 

DeL 12 A boolean algebra is a non-empty set B with two binary 

operations, A , v, and one unary operation, 
I. . . 
, and two dlstlnct 

unique elements 0 and 1, satisfying: 

1. pVO=p 

2.P!\P 1 =0 

3. Pl\q = q/\p 

4. p 1\ (qvrl = (p /\ q) V (p!\r) 

pl\l=p 

PVP 1 = 1 

pyq = qVp 

P v (ql\r ) = (Pv q)l\ (p v r ) 

for all p,q, and r .€ B. 

11 
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The following are well-known theorems about boolean 

algebras: 

s. Ol : l 1 1 : 0 

6. PI\ 0 : 0 pV l: l 

7. p" : p 

8. p 1\P : p p\/p: p 

9 • (p 1\ q) I : pI V q I (pvq) I :pi!\ ql 

10. p 1\ (q,l\r) : (p/lq) /\r p v ( q vr ) : (p v q) vr 

As an example, consider an arbitrary non-empty set X. 

Then the set of·all subsets of X is a boolean algebra, with 

distinguished elements ¢ and X, and with operations defined by 

P /1 Q : Pn Q (intersection) 

PV Q = PV Q (union) 

pi (complementation) 

Boolean algebras and boolean rings can be interdefined. 

For, if B = (B, +, ·) is a boolean ring, we can define 

pv q : P + q + pq 

p/\q:p q 

pi : l + p 

for p,q € B. B = <B, f\, V, ', 0, l) , then becomes a boolean 

algebra. Similarly, if B: (B,I\,V, 1 ,0,1) 

is a boolean algebra, we can define 



B= (B, +,-) 

p + q = (p f\ q I ) \' (p I (\ q) 

p. q = PI\ q 

is then a boolean ring. 

We shall take the informal approach of naming the boolean ring 

or algebra by its underlying set B. 

Def. 13 A boolean ideal in a boolean algebra B is a subset M 

of B such that 

1. 0 E M 

2. if p E M and q E M, then p V q e: M 

3. if p E M and q E B, then p/\ q € M. 

Boolean ideals have a close relationship to ring ideals. 

In fact, 

Theorem 1. M is a boolean ideal in the boolean al,gebra B 

iff M is a ring ideal in the boolean ring B. 

The proof of the above theorem is a simple consequence of 

the definitions. 

The concept of a filter will be needed also. 

Def. 14 A QO~lean filter in a boolean algebra B is a subset 

N of B s. t. 

13 
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l.l_EN 

2. if p E N and q E N, then p 1\ q E N 

3. if p E N and ·q E B, then p V q E .N • 

Ideals and filters are dual concepts in that if M is a 

boolean ideal, then N = (PIP' E M} is a boolean filter. And 

if N is a boolean filter, then M = (PIP' E N} is a boolean ideal. 

Def. 15 An ideal is maximal .if it is a proper ideal that is not 

included in any other proper ideal. 

This general definition, which applies to all ideals in all 

rings, can now be applied to boolean algebras. Maximal boolean 

ideals have a simple characterization. 

Lemma 2 If M is a boolean ideal in a boolean algebra B, then 

M is maximal iff for all p E B, either p E M or p' € M, 

but not both. 

PROOF: Assume N is maximal, and that there exists an element 

p E B s.t. neither 
0 

p
0 

E N nor p 1 E M. 
0 

Define N by 

N - (p V q I q E " PVP - p } It is easily checked. that N 
- "'' 0 - 0 • 

is an ideal of B. Also, N is a proper subset of N, since 

q=OVqEN 1/qEN. Butp
0

EN,andp
0

fN. Therefore, N is 



not maximal, contradicting the hypothesis. 

If M contains p or p 1 .but not both for all p E B, 

then any ideal N containing M (properly) would contain some 

Thus p 1 EMC:N 
0 

and hence N would contain 

p
0 

A p~ = 1. But, if any ideal contains 1, it is the entire 

boolean algebra. Therefore, M is maximal. QED 

The above lemma is quite plausible from a ring-theoretic 

15 

viewpoint. For an ideal M to be maximal in B, it is necessary 

and sufficient that B/M be a field. But the only boolean field is 

the two-element field, Z~z1 . Hence we would expect that 

every maximal ideal would "split" the elements of B right down 

the middle, so to speak. 

A useful lemma concerning maximal boolean ideals will 

now be proved. 

Lemma 3 If M is a maximal boolean ideal, then x V Y E M iff 

X E: M and y E: M. 

PROOF: The "{f" part, of course, follows directly from the 

definition. Assume x f M, and x v y E M. Then x' E M since 
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M is maximal, by Lemma 2. Therefore x' v (xvy) E M, and hence 

(x' v x) v y E M by associativity of v. But x' v x = 1, and 

thus 1 v y = 1 E M, yielding, a contradiction. Thus, x E M. 

Similarly, y E M. QED. 

The primary theorem about maximal ideals is called, 

cryptically, the Maximal Ideal Theorem. It assures us that 

maximal ideals exis·t under the proper circumstances. 

The Maximal Ideal Theorem If B is a boolean algebra, and I 

is a proper ideal in B, then there exists a maximal ideal M 

of B containing I. 

The proof of the maximal ideal theorem involves Zorn's 

Lemma, which, of course, is equivalent to the axiom of choice. 

We are now ready to begin the proof of the completeness 

of elementary logic. Up to this point we have dealt on two 

seemingly unrelated topics, formulization of elementary logic and 

basic properties of boolean structures. We are now ready to 

describe their connection. 

IV. THE CONSTRUCTION OF THE EQUIVALENCE RELATION ON W 

Let W be the set of all wffs of L, as in ~ 2. Define 



an equivalence relation on W by: 

A ;= B iff f-- (A~ B)· 

Theorem 2 is an equivalence relation. 

PROOF: We must establish reflexivity, symmetry, and transitivity. 

3) - is transitive. Assume 

l. f-- (A~B), 1- (B(-'?C) 

A _ B and B s C. 

by definition of = , 

17 

translation of , and rule 
13) 

2. (A} 1-- B deduction theorem 

3. (A} 1-- (B -7 C) nature of proof sequence 

4. (A} 1- c Modus ponens with 2. and 3. 

5. f- (A-J C) deduction theorem 

Similarly we have 1-- . (C -';> A) , from which we infer 1- (A~> c) 
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and thus A _ C. QED. 

Thus is an equivalence relation. We next form W, the 

set of equivalence classes of ~· Let the equivalence class of 

a wff A . be denoted by [A). We shall make W into a boolean 

algebra. 

V. THE BOOLEAN ALGEBRA W 

We first define the three operations and the two distinct 

elements 0 and 1 on W. We do this as follows in the 

natural way: 

[A) 1\ [B) = [{AI\ B)) 

[A) V [B) = [ {A V B) ) 

[A)' = [lA) 

0 = [I B) where 1- B 

1 = [ B ) where 1- B 

Of course, it.must be shown that A, V, 1 , 0, and 1 are 

all well-defined, and that the boolean algebra axioms are 

satisfied. \'le show that II is well-defined and leave the rest 

to the reader.· 

In order to verify that II is well-defined we assume 
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1. h (Al~ A2) definition of -

2. 1- (Bl~ B2) 
II II 

3. f-- (Al-'7 A2)' 1- (A2-7 Al) definition of 
' 

rule 13) 

4. f-- (Bl-----')- B2)' f- (B2----'? Bl) 
II II 

5. f- ((All\ Bl)~ A2) rule 11) 

6. f-- ((Bli\Al)~ B2) rule 11) 

7. ((Al/\Bl)} f- A2 ' ( (Bll\ Al)) 1- B2 .deduction theorem 

8. ((Al/\Bl)} 1- A2 ' ( (All\ Bl) ) 1- B2 commutativity of 1\ 

9. ((All\ Bl)} f- (A2!1 B2) rule 1) 

10. f- ( (Al (\ Bl) --7 (A2/\ B2)) deduction theorem 

11. 1- ((A2/\B2)~ (Al/\Bl)) similarly 

12. f- ( (Al/\Bl) H (A2/\B2)) definition off---7 

13. (All\ Bl) - (A
2

;\ B
2

) definition of -
QED 

Assuming now that the operations 1\, v, and ~are well defined, 

we still need to verify the boolean algebra axioms. We check 

two and leave the rest to the reader. 

Claim [A] v 0 = [A] 

PROOF: [A] v 0 =[A] v [IB] where j- B. 

but 

now: 

also: 

Thus 

but 

[A·] v [IB] =[(A v !B)] 

((AviB)} 1- (-rA-7/B) bydefinitionof v 

f- ( (I A-----')- I B) ----',> (B -7 A) ) axiom 3) 

( (A v 1 B) ) f- (B -7 A) modus ponens. 

f- B assumption 



then ( {A v I B)) !- A 

hence f- { (A v -, B ) ~ A) 

clearly,· f- (1\ ·--4 (A vI B)) 

Thus f- {AM (A v B) ) 

hence A.:,{AVIB) 

Therefore, [A] ~ [(A v B)] 

= (A] v [I B] 

= [A] v 0 

Claim (A J 1\ [A 1 J = 0 

by modus ponens 

by deduction theorem 

by rule 12) 

translation of 

by definition of -

QED 

PROOF : [A] /1 [A 1 ] = [A] t\ [ '"'I A J = [ (A !\ I A)] 

= [/(A --7 II A)] by definition of t\ 

= 0 since f- {A --1 :t 1 A) (axiom 6)) 

QED, 

VI . THE KEY LEMMA 

Recalling the development of elementary logic in II, the 

"proof theory" and the "model theory" were treated quite 

separately and were practically unrelated. Yet the completeness 

theorem deals with precisely this relationship. Hence, we would 

like a bridge between the two concepts, This bridge is the 

following lenwa, and it is the key step in the proof of 

completeness. 

20 



Lemma 4 If A E W is deductively consistent, then A has a 

model (i.e., there exists an interpretation g which makes A 

true) . 

PROOF: The proof of this Lemma involves several claims. 

Let A be a statement in W, and assume A is deductively 

consistent. Thus, there does not exist a statement B such 

that A f- B and A f-- "1 B • Let F = ( [ B ] E l'l I f-- (A ·-----7 B) ) . 

F is a subset of the boolean algebra W. It is not simply a 

subset however. 

Claim F is a boolean filter. 

PROOF: 1 E F, since 1 = [B) where 1- B. 

but iff-- B, then (A} 1-B, and 1- (A-.c7B) 

by the deduction theorem. Thus 1 = [B] E F. 

Assume next [B), [C) E F. Hence 

f-- (A -7 B) , 1- (A --'7 C) . 

or (A} 1- B , (A) 1- c by the deduction theorem 

thus (A) f- (B/\ C) by rule 1) 

therefore [ (BI\ C)] E F, and [B) f\ [C] E F. 

Assume finally [13] E F, and [C) E W . 

Therefore 1- (A~ B). 

And so 

thus 

also 

1- (A ----'7 (B v C)) by rule 12) 

[(B v C)] E F, hence [B) v [C) E F. 

0 IF, since A is deductively consistent. 

21 



Thus F is a proper boolean filter in W, Also, (A] € F, 

since /- (A-'{ A) (axiom 4). 

Recall now that "filter" is the dual concept to an ideal 

(III). We shall now define the dual ideal to F: Let 

I = ( (B) E W (B] 1 E F}. I is an ideal, by duality, It is a 

proper ideal, since 1 f I. From the Haximal Ideal Theorem, we 

know that there exists a maximal ideal in W containing I . 

Let M be such a maximal ideal. we nov; construct the model of 

A which is called for in the Lemma. 

Let g: P~ (T,F} be defined by g(pi) =Tiff [pi] j M. 

g is then an interpretation. But is g a model of A? The 

following claim gives a complete characterization of those state-

ments which are true in g. 

Claim The value map Vg' of g, satisfies the following: 

iff (B] f H. 

PROOF: We shall prove this inductively, from the definition of a 

value map. First, note that V (p.) = T 
g l 

iff 

[pi] ¢ 1-1. Assume now that B is I C for some C E W. Then 

V (B) = T 
g 

iff iff iff (C J € M iff 

22 



[I B] € M (by axiom 5) iff [B ] 1 € M (by definition of 1 ) iff 

[B] ¢ M (since M is maximal) . Finally assume B is (C -7 D) . 

Then v
9

(B) = F iff V (C) = T and V (D) = F iff [C] f. M and g g 

[D] € M iff [C]' € M and [D] € M (since. M is maximal). iff 

[iC] € M and [D] € M iff [IC] v [D] € M (by Lemma 3) iff 

[([C v D)] € M iff [(C-')D}] € M.(by definition of v) iff 

[B] € M. Thus v
9 

(b) = F iff [B] E 1'1. Or, v
9

(B) = T iff 

[B] € M. QED. 

We are left with one unfinished step: to prove that g is 

a model of the statement A. 

Claim g is a model of A. 

PROOF: We know that [A] € F. Therefore, [A]' € I since F and 

I are dual. But then [A]' € M, since I C: M. Hence [A] /. M, 

since M is a proper maximal ideal. Therefore, V (A} = T, g 
by 

previous claim. Hence g is a model of A, by definition. QED. 

Hence for any deductively consistent statement A, we can 

exhibit a model. Or, in the contrapositive form: 

Lemma 5 If a statement A € W has no models, then it is 

23 
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deductively inconsistent. 

This lemma, as mentioned above, is the big link between 

proof theory and model theory, and it is the key, step in the proof 

of the completeness theorem, which can now be proved quite easily. 

VII. THE COMPLETENESS THEOREM 

The completeness theorem states that any tautology is 

provable; i.e., any statement which is true in all interpretations 

can actually be proved from the axioms and rules of inference 

described in 2. In our notation, this becomes The Completeness 

Theorem. If A E W and FA, then f- A. 

PROOF: Assume F A, that is, A is a tautology. 

Hence, A is true in every interpretation. 

Thus, 1 A is false in every interpretation 

or, I A has no models. 

Therefore, lA is deductively inconsistent (by Lemma 5) 

Hence (I A) j- 1 (p1 ~ p 1
) by definition. 

Then f- ( 1 A -· -'7 1 (p
1 
--) p 1 ) ) by deduction theorem 

But f- ( ( l A -7l(P1-'t p 1 )) ·~ ( (p1 -"'? p1)~ A) is axiom 3) 



so !-"" ( (p1---:~ p
1

) --j- A) by inodus ponens 

Also, 1-- (p1 -~ p 1 ) is axiom 4) 

Thus J- A by modus ponens. 

QED. 
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GODEL'S PROOF OF THE INCOMPLETENESS 
OF 

AXIOMATIC NUMBER THEORY 

I. INTRODUCTION 

The well known theorem discussed in this paper, Godel's 

Incompleteness Theorem, is a landmark in the Foundations of 

Hathematics and has meaning for mathematicians, logicians, and 

philosophers alike. It dramatically exposes the limitations of 

the axiomatic approach which Hilbert had hoped would be the mathe-

maticians 1 final apology. 

Although the meaning of several of the terms in our title 

may be unknown to some readers, we offer some introductory remarks 

explai~ing the subject without becoming too technical. Essentially 

Godel's Incompleteness Theorem says that there exist statements 

about natural numbers which are neither provable nor disprovable 

from the axioms of number theory. The use of the word "statement" 

requires some explanation of the language in which sentences 

about number theory are expressed. The concept of provability 
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is perhaps intuitively vague but can be formulated precisely. 

The axioms of number theory are the Familiar Peano's Postulates 

about which more will be said later. 

II. THE LANGUAGE 

The language which is used in Godel's proof for expressing 

sentences about natural numbexs is commonly called a first-order 

language. The primitive symbols (which are analagous to the 

alphabet of a conventional language) are listed and explained in 

Table I. There are a countably infinite set of variables and 

constants. The reader will notice that we have used "outfix" 

notation for the function symbols, writing +(x,y) instead of 

x+y. Also, other familiar logical connectives can be defined in 

terms of these. A & B is an abbreviation of 1 ( !Av IB), and 

A~ B an abreviation of IAvB, the former being logical con-

junction "A and B11 and the latter the conditional statement 

11 if A then B11
• 

These symbols can be combined in an infinite number of 

ways to form strings of symbols only some of which are meaningful. 



Symbol 

( 

) 

I 

v 

= 

3 

s 

+ 

e 

x. 
l 

, 

TABLE I 

The Primitive Symbols of the Language 

Explanation 

Left parenthesis 

Right parenthesis 

Negation symbol -, A (= 11 not A 11 
) 

Logical disjunction AvB (= "A or B11
) 

Logical equality x = y (= 11 x equals y") 

Universal Quantifier VxA{x) (="for all x, A{x)") 

Existential Quantifier 3xA (x) (="there exist an x, 
such that A (x) 

Less than x£.y (= "x is less than y") 

3 

Successor function symbol Sx (= "the successor of x") 

Addition functi<?n symbol + (x,y) (="x plus y") 

Multiplication function symbol · (x,y) (= "x times y") 

Exponentiation function symbol e (x,y) (= "xY") 

Variable 

Constant standing for N.N.i 

comma 

There are a countable number of variables and constants. 
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. ' 

We shall now describe exactly which of these strings are "formulas." 

The terms of the language are the following 

l. x. Any variable 
J_ 

2. c. 
J_ 

Any constant 

3. sa Where a is any term 

4. + (a,b) a,b are terms 

. 5. • (a,b) a,b are terms 

6. e (a, b) a,b .are terms 

The Atomic Formulas of the language are the following: 

l. (t = s) Where t, s are any terms 

2. (t L s) Where t,s are any terms 

For example, (+ (c
2
,c

3
) <:::. sc

8
) is an atomic formula. (It expresses 

the statement 2 + 3 L:_ successor of 8). The class of formulas 

of the language can now finally be described: 

l. All atomic formulas are formulas. 

2. lA is a formula if A is a formula 

3. (A v B) is a formula if A,B are formulas 

4. (\fx.)A and (::jxi)A are 
J_ 

formulas if A is a formula 

x. 
J_ 

and if A does not already contain the symbols 

3 x. 
J_ 

containing 

'r/ x. or 
J_ 
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It expresses the statement "x
1 

= 5 or 1 + 3 <. X II 1 . As another 

an x s.t. x + 5 = 7. We may often omit the outermost parentheses 

of a formula when no confusion is possible. 

This language, though somewhat limited, is quite powerful 

in that with it one can express most of the common properties of 

the natural numbers. For instance, the statement that addition 

There are statements, however, which one cannot express in this 

language; for instance, "the set of even natural numbers is 

infinite" cannot be (try it!) ·The reader may be interested in 

discovering other "unexpressible" statements.· 

II. GODEL NU!vJBERING 

Kurt Godel in the mid-1930's invented a clever method of 

assigning natural numbers to the formulas of this formal language 

in such a way that the language could in effect talk about itself. 

This procedure has since been called Godel numbering in his honor. 

He needed a rule or function assigning to each formula of number 
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theory (abbreviated N) and to each finite sequence of formulas a 

natural number. The reader can easily convince himself that this 

is plausible, since there are a countable number of symbols, 

and a countable number of formulas, and also a countable number 

of finite sequences of formulas. Finite sequences of formulas 

are important since a proof will be defined as such a sequence 

satisfying certain properties. This Godel numbering function 

(let us call it g) must satisfy the following two properties: 

1. g must be 1 - 1 

2. g must be "computable," i.e., for any formula or sequence 

of formulas we could effectively compute its Godel 

number, and for each natural number we could effectively 

compute the formula (if any) associated with it. 

How can we construct this mapping? Let us first define g 

on the symbols of N, (which are listed in Table I) : 

g [ ( J = 3 g[=] = 13 g[+] = 23 

g [) J = 5 g[l;l] = 15 g [. J = 25 

g [' J = 7 g [3 J = 17 g[e] = 27. 

g['l] = 9 g[<.] = 19 g [x. ] = 29+4i 
l 

g[v] = 11 g [S J = 21 g [c. ] = 31+4i i = 0' 1' .•. l 



In this manner every symbol has a natural number associated 

to it in a 1-1 way. 

Assign to every finite string of symbols CJ1 .•. ern (and 

n 
thus to every formula) the natural number IT P. g (O""i) where P. 

j=l J J 

.th 
is the J prime number. Therefore, g ( v 1 ..• IJ"n) = 

g is 1-1 on the strings, by the unique factorization of natural 

numbers. 

Now assign to each sequence of strings s1 . • • Sn the 

number 
n 
'Tf 

j=l 

p g (S.) 
j J g in the same manner as above. g is still 

1-1 on the strings and sequenc.es of strings. (Notice that no 

string of symbols has the Godel number as any sequence of strings). 

7 

Finally, note that g is "computable" in the sense described above. 

Ex. 2: g[+(x
0

,S(x1 )) = S(+(x
0

,x1 ))] 

translation: x
0 

+ S(x1 ) = S(x
0 

+ x 1 ) 

whew~ 
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IV. SOME PROOF TrillORY 

At the intuitive level the question "what is a proof?" is 

not trivial and borders on the philosophical. However, vle can 

formulate a formal >vorking definition which corresponds nicely to 

our intuition. A proof, in mathematics as in any other logical 

discipline, must start somehwere. There is a basic set of 

axioms, from which other statements are proved. Once the place 

to start or axiom set is given, one must know the method of moving 

from one statement to the next, i.e., the rules of infe.rence. 

Let us prescribe these concepts more precisely in our system of 

axiomatic number theory. 

First, the axioms. The axioms of N, also known as 

Peano's Postulates, are the following formulas: 

l. I(Sx =C) [O is not the successor of any natural number] 
0 0 

2. 

3. 

4. 

5. 

6. 

( (Sx
0 

= Sx1)~ (x
0 

= x
1

)) [the successer function is 1-l] 

(+ (x ,C ) = x ) [0 is identity for addition] 
0 0 0 

(+(x
0

,Sx1 )·= S(+(x
0
,x

1
)))[inductive definition of addition] 

( · (x , C ) = C ) [0 times any natural number is 0] 
0 0 0 

(· (xo,Sxl) = +(• (xofl) ,xo)) [inductive definition of 
multiplication] 



7. 

B. 

9. 

I (x ( C ) [no natural number is less 0] 
0 0 

((x
0

C.Sx1 ) 0 ((x
0
<x

1
) v (x

0 
=x

1
))) 

((A(C
0

)&(Vx
0

) (A(x
0

) ----=7 A(Sx
0

))) ----t- (\ix
1

) (A(x
1
))) 

[induction axiom for any formula A] 

These axioms are, of course, additions to the purely logical 

axioms of first-order logic, an example of which is the logical 

equality axiom: 

where 'f is any statement with one free variable. Among. the 

logical rules of inference are the following: 

Rl): Generalization- from A(x
0

) 

infer ('</x
0

) (A (x
0

)) 

R2): Specification from ( \1' x
0

) (A (x
0

)) 

9 

infer A (t) where t is any term of L. 

R3): Modus Ponens from A, A~ B 

infer B. 

With the above defined, we can now give an explicit 

definition of a proof. 

Def: A proof sequence from assumptions q(a set of formulas of N) 

i.s a finite sequence of formulas o< 1 , • • , o<.n, satisfying the 



fdllowing: Each o{ . , i=l,. 
J.. 

, n, is either 

l. an axiom, 

2. a rormula in ({ (an assumption), or 

3. derivable £rom (o< 1 , ..• ·, c<i_1 } by one of the rules 

of inference. 

This is quite a natural definition, and leads also to 

the following: 

Def: A formula A is a theorem from assumptions ({_ if it is 

the last formula of a proof sequence from assumptions « . we 

write «_!-A. 

Thus a theorem is any formula which is "provable," in 

the sense described above. Let us denote our set of axioms by 

10 

P (for Pea no 1 s Postulates).. Thus if A is a theorem of axiomatic 

.number theory, we 'lvrite P f- A. 

An important Meta-theorem in Proof Theory is the Deduction 

Theorem. It is stated belmv: 

The Deduction Theorem From QV(A} f- B one may infer C(l- (A·-7> B), 

and from C( 1- (A-7B) one can infer (( V(A} 1- B. 

The proof of the deduction theorem is not difficult, but 

it will not be given here. For a proof in the general first-order 
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case, see Schoenfield, p. 33. This metatheorem is quite powerful 

as a derived rule of inference, as will be s.een shortly. 

V. SO!'lE DEFINITIONS 

In order to accurately state Godel 1 s. theorem, we shall need 

a few definitions. 

Def A set of formulas ~ is inconsistent if there exists a 

formula A of N s. t •. L r A and I: I- I A. 

Def L" is consistent otherwise. Def 2:_ is w-inconsistent if there 

exists a formula ~(x0 ) (i.e., with an unquantified variable}s.t . 

for all i = o, 1, • • • , but I" [-( ('r/x) (\O(x )). . o T o 

'2: is ,,_consistent otherwise.N.otice that if ~is incon-

sistent then ~is w-inconsistent, by the specification rule. 

Hence if 2:, is w-consistent then L_ is consistent. 

Def: ~ is incomplete if there exists a formula ~·of N s.t. 

neither ~'? nor its negation is provable from L. In symbols, 

~ is incomplete if there exists a formula tp if N s. t. not 
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VI. STATEHENT OF THE THEOREM 

lile now have at hand all of the facts n.ecessary to formulate 

Godel's theorem. 

Godel's Incompleteness Theorem If P is w-consistent, then P 

is incomplete. 

\1e would e:xpect a reasonable formulation. of axiomatic number 

theory to be w-consistent. w-inconsistency is a somewhat para-

doxical property. Therefore Godel 1 s theorem can be restated 

informally as follows. If Peano's Postulates satisfy certain 

quite natural conditions, there are statements expressible in our 

language which can neither be proved nor disproved. We shall now 

present the proof of Godel"' s theorem. 

VII. THE KEY LEJ'fil'JA 

Before stating the key lemma needed in the proof, we shall 

require some new terminology, incorporated in the following 

definitions.· 

Def: Define a relation Sub(x,y,z) on the natural numbers to be 

true if and only if x is the Godel number of a formula A with 
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one free variable and z is the Godel number of the formula 

obtained from A by replacing every occurrence of the free 

vaiiable in A· by the constant c • 
y 

For example, sub(2 29 ,o,2 31 ) 

is true. (A = 11 x 11 and the transformed statement is 11 c 11 
) 0 J 0 • 

Sub is thus a substitution relation. Define Pr(L,n) to be true 

if and only if the formula with Godel number n is the last 

line of a proof sequence which has Godel number L. 

The key Lemma can now be stated: 

Lemma l There exists formulas in our formal language denoted 

by sub (xl'x2 ,x3) and pr(x1 ,x2 ), such that: 

if Sub (n, i,m) is true, the·n P f- sub (c ,c.,c) and n 1 m 

if Sub (n,i,m) is false, then P f- I SUb (c,c.,c) and n 1 m 

if. Pr (L,n) is true, then P 1- pr (cl,cn) .and 

if Pr(L,n) is false, p 1- I pr (c.,c ). 
1 n 

This lemma, sometimes referred to as the expressibility Lemma, is 

very powerful. It essentially translates statements about sub-

s·ti tution and proof to statements about natural numbers; this 

link-up is the primary application of Godel numbering and is 

difficult to prove --the proof will not be given here. However, 
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the fact that this Lemma is true is not unreasonable, since our 

Godel function g was "computable," and the notion of proof is 

finitary. Hence given any two natural numbers N, m we can 

"decode" both into the strings of symbols they represent and 

actually determine in a finite number of steps whether or not 

the two strings·satisfied the required properties. Since we can 

carry out this procedure, it also becomes possible to "prove" 

formally the statements whose existence the Lemma guarantees. A 

formalization of this procedure is in fact what is used in the 

proof of Lemma 1. Its function in the proof of the main theorem 

will become clear shortly. 

There is another lemma which will be needed in the proof. 

It is more intuitive than the expressibility lemmas and we shall 

also omit its proof. 

Lemma 2 P r- sub(c ,c ,x1)~ (sub(c ,c ,x2 )-1 x 1 ~ x 2 ) for all n. n .n n n 

This lemma expresses the 1-lness of the sub formula, and will 

also be needed below. 
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VIII. THE I,1AIN THEOREM 

Let f be any formula of N with one free variable, x 2 , 

n be the Godel number of An. · Let Am be the formula 

Am. Note: Notice that Sub(n,n,rn) is true. The main theorem is then: 

Theorem 1 

PROOF: 

A 
rn 

1. P, lfl (ern), sub(cn,cn,x2 ) 1- sub(cn,cn,crn)--7 (SUb(cn,cn,x 2 ) ~ (x 2=crn)) 

by Lemma 2. 

2. P, '{)(ern), sub(cn,cn,x2 ) j-- sub (cn,cn,crn) 

by ~ and expressibility 

3. p, LfJ (ern), SUb (cn,cn,x2 ) 1- sub (cn,cn,x2 )·~ x 2 = ern 

1),2), ahd modus ponens 

4. P, '])(ern)' sub (cn,cn,x2 ) 1- sub (cn,cn,x2 ) 

; an assumption 

c rn 

3),4), and modus ponens 

6. p, lf (c ) f- sub (c , c , x 2 ) -7 x
2 

= ern . rn n n 

5), deduction theorem 

7. P, tf/ (ern) ,sub(cn,cn,x2 ) 1- x 2 = crn--7 ( lfl(crn) <__:.7'f(x 2 )) 

~ a logical axiom of equality 



8, P, 4J (em), sub(en,cn,x2 ) f- ~ (cm)H 'P (x2 ) 

6),7) modus ponens 

9, P, 1.{>· (em), ffilb(cn,cn,x 2 ) 1- 'f (em) 

an assumption 

10. P, if! (em), sub(cn,en,x2 ) j- 'f (x2 ) 

8) , 9) ·' and modus ponens · 

ll. P, i{J (em) j- sub(en,en,x2)~ 'f (x2 ) 

by 10), deduction theorem 

12. P, If! (em) j-('vx2 ) (sub (en,cn,x2 ) ·.-:t '{J (x2 )) 

11), generalization rule 

12) , by defini·tion of Am 

A 
m 

13), and deduction theorem 

The other direction is slightly shorter: 

1. ( {::::- ) p, sub ( e , e , x
2

) ----::;. \ n (x
2

) 1- sub ( c , e , c ) -)' 1.1J ( c ) n n · T n n m T m 

Rule of specialization 

2. P, sub (cn,cn,x2 )-7' 'f (x2 ) 1- sub (cn,en,cm) 

16 

by note and expressibility Lemma 

3, P, sub (en,cn,x2 )~ 1 (x2 ) j- 'f (em) 

1 ,2),·modus ponens 

4. p j- (sub (cn,en,x2 l--1 lf (x2 )) ~ ~e (em) 

3), deduction theorem 

generalization rule 

QED 
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IX. GODEL 1 S THEOREM 

Godel's Theorem which we restate now is a corollary to Theorem 1. 

Godel's Incompleteness Theorem If P is w-consistent, then P 

is incomplete. 

The proof is constructive in that we exhibit the required 

statement \jl s. t. not P f-l{l and not P f-1 I{J. 

PROOF: Assume P is w-consistent. Define ~ (x2 ) of theorem 1 

there is no proof for the formula of N with Godel number x 2 • 

Let An' Am be as in Theorem 1. 

Case I: Assume Then we can prove A 
m 

from Peano's 

Postulates and thus, there exists a proof sequence for Am. Let 

L be the Godel number of this proof sequence. Since m is the 

Godel number of A , Pr(L,m) is true. Therefore, by the expressibility 
m 

Therefore, by modus ponens, P 1-- (vx 3) (I pr (x 3 ,cm)). Consequently, 

P f- 1 pr(~,cm) by rule of specialization. This contradicts the 



consistency of P. Therefore, our assumption that P f- Am is 

intennable. 

Case II: Assume P 1- I Am 

by Theorem 1 

1), law of contrapositives 

assumption, 2),modus ponens 

4. P ~ 1 (Vx 3)-,pr(x3'cm) 

3), Definition of l.fJ (em) 

5. p r (:3x3) pr (x3,cm) 

4), Algebra of quantifiers. 

6. But we know not P j- Am. 

Therefore Pr(L,m) is false for every L. 

by expressibility Lemma. 

Thus, since P is w-consistent, we must have not: 

or, not 

Therefore, \ve have not P j- 1 ·Am. 

VIe have shown that A is neither provable nor disprovable 
m 

18 



19 

from Peano 1 s Postulates. Thus if P is w-consistent, there are 

formulas which can neither be proved nor disproved. P is there-

fore incomplete and Godel' s theorem is established. 

The reader may wonder whether Pea no 1 s · Postulates are .a 

cruaial factor in this proof, and whether other axioms for natural 

number theory can be found which somehow circumvent the process 

described above. The answer is NO. It follows from Godel's 

proof that any axiom system which is of sufficient power to capture 

the elementary notions of addition, multiplication, and order in 

the natural numbers will be incomplete. 

X. ATTEMPTS AT CONSISTENCY PROOFS 

As another corollary to Theorem 1, we obtain the following 

interesting result, due to Tarski: 

Theorem One cannot prove the consistency of Peano's Postulates within 

the framework of axiomatic number theory. 

PROOF: Define a relation Neg(i,j) on the natural numbers by 

Neg(i,j) is true if and only if i is the Godel number of a 
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formula A and j is the Godel number of 1 A. As one might suspect, 

there is also-an expressibility lemma associated to Neg, i.e., there 

exists a formula of N, say ~ (x1 ,x
2
), s.t. if Neg(i,j) is 

true, then P f- neg (c.,c.); and if Neg (i,j) is false, then 
1 J . . 

p r I neg (ci, cj) • Let c be the formula expressing consistency, 

in terms of pr and Neg: 

then 

Let 

2. 

3. 

4. 

5. but 

be as in Godel's Theorem, i.e., 

definition of A , Theorem l. · 
m 

P, I'{) (c ) f-1 lfl (c )--?-1 A m m m 

1), law of contrapositives 

P, I l{J (c ) f-1 1 0 (c ) m l- m 

assumption 

2),3), modus ponens 

P,jlf (em) rAm 

by definition of I lf (em). 



Then 

Let m' be the Godel number of lA. 
m 
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6. P, I 'f(cm) 1- Gx1 ) (::Jx2 ) (pr(xl'crn),&pr(x2 ,cm')&Neg(crn,cm')) 

4),5), and by expressibility of pr, neg 

7. P, I 'fl (em) l-1 C 

6), definition of C. 

8. P f-l<fl (c)~-, C 
1 ITt 

7), deduction theorem 

No\•7 assume P f- C 

8), law of contrapositives 

8), 9L modus ponens 

11. P 1- f (c ) -7 A ra n 

Theorem 1 

12. P f- Am 

10), 11), modus ponens 

This is a contradiction to Godel's Theorem --we have 

just shown A 
m 

is unprovable. Thus not P 1- c. 

Thus we have shown that we cannot prove C .from 

Peano's Postulates, and the theorem is established. The reader may 

wonder whether this particular formula expressing consistency is 



crucial to the proof; the answer here is NO. Given any formula 

• 
A which'represents" consistency in any·reasonable sense, we would 

be able to prove that P 1- A ~ C; Hence if A tvere provable, so 

would C be --but we have seen above that C is not. 

XI. OTHER EXPOSITORY AND HISTORICAL REMARKS 

Consider the English sentence "I am not provable." Let us 

suppose informally that there exists sonie notion of proof and 

provability in English. Then >ve would of course insist that 

whatever one "proved" would be true. If one could then prove the 

above sen·tence, it would be true, and hence one would not be 

able to prove it -- a clear contradiction. This, then, is an 

example of a sen·tence in English which cannot be proved. (Notice 

then that it is a true sentence). Godel's numbering system took 

this statement, a "meta-statement" in that it does not belong to 

the formal language L, and expressed it i·n the formal language, 

in this way using ·the language to speak about itself. The reader 

may find it quite helpful to refer to this English conterpart when 

attempting to understand more fully the nature of the Incompleteness 
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Theorem. 

In 1936 Barkley Rosser strengthened Godel 1 s theorem by 

weakening the hypothesis from w-consistency to. consistency. He 

proved the following: 

Theorem If P is consistent, then P is incomplete. 

The proof of the above theorem is more technical but uses the 

same fundamental principles as that of the theorem proved in this 

paper. 
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THE INDEPENDENCE OF THE CONTINUUM HYPOTHESIS 

I. INTRODUCTION 

The question of whether or not the Continuum Hypothesis can be 

proved from the other axioms of axiomatic set theory has been an open 

question for many years. Rec-ently, the problem has been solved by Cohen 

and simpler arguments presented by Scott, Solovay, and others. We 

intend here to discuss the nature of independence proofs and to briefly 

describe the boolean valued logic used to obtain the independence 

results. 

A. General Axiomatics 

The peculiar feature of mathematics as a science is its deductive 

nature: while other science.s rely most heavily on observation for the 

justification and verification of their results, mathematicians 

demand proof. Yet no mathematician would argue that mindless 

cranking-out of "theorems" without any regard for their meaning 

or importance is a part of ma·thematics. They, too, are concerned 

with a "real" world -- the world of ideas, intuition, and relationships 

between concepts. This serves to motivate two aspects of the proof 

process: the decisions of what to try to prove and on what to base 
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the proof. 
\ 

The latter is the subject of the immediate discussion. 

The choice of axioms is a central and illuminationg facet of all 

of modern·mathematics. 

Axiomatic theories are formally all of the same mold; they 

have a set of axioms which refer to some (possibly unspecified} 

"universe of discourse", and rules of inference for deriving other 

statements from the axioms. But in motivation, axiomatic theories 

break into two classes. Let us refer to them as "pure" and "approximate" 

theories --the reason will soon be clear. As an example of the 

first type let me cite abstract group theory. A group is a set G 

with a binary operation+ satisfying the following axioms: 

1. F.or all a and b in G, a+b is in G. 

2. For all a, b, and c in G, (a+b)+c = a+ (b+c). 

3 •. There exists an element e in G such that a+e = e+a = a 

for all a in G. 

4. For every a in G there exists an element b in G such that 

a+b = e. 

These axioms describe groups completely. By the Completeness 

Theorem for first-order logic, any statement that is true in every 

group is provable from these axioms. One might say then that the 
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abstract study of groups is identical with the study of these axioms 

and what can or cannot be proved from them •. In this sense then 

the axiomatic theory is pure. These axioms are not designed to 

describe groups, but groups are defined as. any object satisfying 

these axioms. 

In contrast to this type of theory is that best represented by 

axiomatic number theory. The intuitive notion of natural numbers 

is not conceived as a set of axioms which describe them, but as an 

entity which in some 111ays defies description. In order to capture the 

concept and axiomatize it, one chooses properties of the natural 

numbers which are intuitively obvious and takes these as axioms. 

Hopefully these axioms will describe numbers completely in the sense 

that any true statement about natural numbers is provable from 

them. The axioms most commonly chosen are called Peano's Postulates 

and refer to a universe N with one unary function symbol s. 

1. There exists a distinguished element 0 of N. 

2. If nisin N, then S(n) is inN. 

3. There does not exist ann inN such that S(n) = 0. 



4.IfS(n) ' . = S(m) form and n 1n N, then m = n. 

5. If A is a subset of N containing 0 and closed under S, 

then A = N. 

Interpreting the function S as the successor function, these 

axioms are seen to be obiously true in the intuitive natural 

numbers, But we cannot be sure that all true statements about the 

natural numbers are provable from them --in fact, G~del's 

Incompleteness Theorem states that they cannot. These axioms then 

do not capture the concept of natural number entirely -- they are 

only "approximate", and in this sense are distinctly different 

from the axioms for group theory. 

A similar process is carried out in Euclidean geometry. 

Euclid, the first proponent of the axiomatic method, tried to 

describe the intuitive notion of plane geometry by means of five 

axioms which he felt were self-evident. He was not interested in 

describing all "geometries" which satisfy certain postulates, but 

only geometry in the plane. One can see that the motivation for 

the axiomatization is the same as that for number theory. 

4. 
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B. What .is Independence? 

The most desirable situation in any axiomatic theory would 

be to have as simple an axiom set as possible without altering 

the body of theorems which are derivable. What is self-evident to 

one may· seem incomprehensible to another; therefore., in keeping 

the list of axioms simple one would lessen the probability of 

disagreement and in general simplify the entire subject. Hence the 

search for a minimal axiom set is of some importance. 

If a statement is neither provable nor disprovable from a given 

~xiom set, it is said to be independent. For example, in group 

theory the statement 

5. For all a and b in G, a+b = b+a 

is independent of the four axioms given above. One way to prove 

that a statement is not provable from a set of axioms ( this is not 

a contradiction! ) is ·to exhibit a structure in which the axioms 

are true but the given statement is not. ( Since the proof process 

preserves truth, if the statement were provable then it would have 

to be true in that structure also.) The existence of non-commutative 
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groups ( and commutative ones) proves that the above statement 

is independent. In the pure type of axiomatic theory this is not 

so interes.ting: one simply obtains another theory, the theory of 

abelian groups in this case. In the approximate type, however, the 

addition of a new independent axiom may. not simply change the subject, 

but may allow one ·to prove new theorems· about. the same subject. 

Euclid, in formulating his postulates for plane geometry, 

found that he needed the parallel postulate to prove many theorems 

which he felt \vere true. This postulate, which states that there is 

one and only one line through a given point parallel to a given line, 

was felt to lack the attribute of being "self-evident" which his 

other postulates had, and for over 2000 years mathematicians 

attempted to prove it from the other postulates~ None succeeded. 

It was not until the nineteenth century that people began to vmnder 

\vhether it v1as provable at. all from these other postulates; the 

denial of this axiom led to non-Euclidean geometries which were 

distinctly differen·t, yet not inconsistent. 

How could one prove that the parallel postulate was not 
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provable? One such proof which is especially relevant to the discussion 

is that given by Young, and it proceeds as follows. We start with 

the Euclidean plane. This disarms all who wish to deny the existence 

of "non-Euclidean" geometry. We take as "points" the points of the 

plane i'nterior to the unit circle, and take as "lines" chords of 

the circle. !"!any postulates hold immediately' for instance' that 

through bvo distinct "points" there passes one and only one "line". 

However, defining "parallel'' as non-intersecting, we see that the 

parallel postulate fails. It is possible to definE) "distance" 

in such a way as to validate all the other postulates except this 

one; this makes it conclusive that it cannot·be derived from the 

others. 

No'te that in the sketch above we assumed a Euclidean plane to 

start with·, i. e. , assumed the parallel postulate. In the. proof 

of the independence of the Continuum Hypothesis (CH} in set theory 

we also assume the CH, and then modify the notion of "set", "well-

ordering", "cardinal number", etc. In fact, pmverful principles 

like the axiom of choice and the CH are needed to prove that the 
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unorthodox sets have the desired properties. Before getting ahead 

of ourselves, however, let us acquire the proper framework for the 

discussion. 

II. AXIOl'!ATIC SET THEORY 

A; Foundations 

Set theory is another example of an "approximate" axiomatic 

theory. Intuitive set theory was simply too imprecise for the 

mathematicians of the twentieth century. Paradoxes were emerging 

for 'vhich there seemed no solution. The ultimate result of this 

problem was a complete overhaul of the foundations of set theory 

and many attempts at axiomatization. The most common and widely 

accepted of these is Zermelo-Fraenkel set theory, the axioms of 

which are reproduced here. 

1. The Axiom of Extensionality: If two sets A and B have the 

same elements, then they are the s.ame set. 

2 •. The Null Set Axiom: There exists a set ¢which contains 

no other set. 

3. The Sum Axiom: For any two sets A and B, there exists a set 

C containing all and only the members of A and B. 

4. The Pmver Set Axiom: Given any set A there exists a set 

B such that B contains as members all and only the subsets of A. 
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5. The Axiom of Regularity: Every non-empty set A contains an 

element X such that X and A are disjoint. 

6. The Axiom of Infinity: There exists a set A containing the 

empty set such that whenever B is an element of A, the set 

B(J(B} is an element of A. 

?. ~Axiom of ReJ2lacement: The range of any function is a set. 

All of the above axioms can be formulated in a first-order 

language with one binary relation E , denoting set membership. 

For instance, the axiom of extensionality can be written as 

The reader may be interested in formulating the other axioms similarly. 

In this paper .the symbolic form will have to be resorted to in 

certain cases. 

How intuitive and self-evident are these axioms? It is generally 

accepted that they are quite satisfactory in this respect, and in 

nearly every form of axiomatic set theory these statements appear as 

either axioms or theorems. The following axiom, over which there has 

been much controversy, does not share this property~ 

8. The Axiom of Choice: Given any set A there exists a function 

f from .the set of subsets of A to A such that f(x)E x for 

every subset x of A. 
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The primary objection to this axiom is that it is not constructive; 

the choice function f is not explicitly.given --only its existence 

is assured. This objection is quite valid and can only be refuted 

by refering to the power of this theorem -- without it, for example, 

one cannot prove that every set has a c·ardinal numbe.r. 

B. Cardinal Number Theory 

Two sets A and B are equipollent if there exists a one-to-one, 

onto function f from A to B. Equipollence is an equivalence relation 

and intuitively classifies sets as to their size; for example, 

two finite sets are equipollent if and only if they have the same 

number of elements. Cardinal Numbers are special sets which are meant 

to represent equipollence classes in the follm~ing way: two sets 

have the same cardinal number associated to them if and only if 

they are equipollent. To construct these special sets is no easy 

mat·ter and it shall not be attempted here. However, it is a con-

sequence of the axiom of choice that one can construct a cardinal 

number for every set such that the above property holds. It is also 
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' a theorem that any set of cardinal numbers is well-ordered in a 

natural way. 

The finite cardinals are isomorphic to the set of natural numbers. 

Hence their properties are well-kno>vn. The first infinite cardinal, 

I 
denoted -;\..

0 
, is the cardinal number of. the set of integer·s (and 

of every countable set). All infinite cardinals are denoted by these 

alephs, and they are such that 'X 1 is the next cardinal number after 

.,t 
1'-0 , and so forth. Being "the next cardinal number" means that 

I 
there is no set whose cardinality is greater than "7\.-

0 
but less that 

I 
/( 1 • This is by definition of the alephs, and in fact is their main 

property. 

Cantor, the man who founded modern cardinal number theory and 

in so doing revolutionized a good part of mathematics, proved the 

following theorem: 

Cantor's Theorem If A is a set, then the set of all subsets of A, 

denoted ')A , has Cardinality strictly greater than that of A. 
0\.. 

I 
i 

This theorem, applied to the set 'A-o , states 
f.-o ~ 

that :[ > , o 

I · I 
Since "X- 1 is the next infinite cardinal after "/-- 0 , "\ve must then have 
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. I 
It can be shown that while ):-0 is the cardinality 
I 

";\-o 
of the integers, 1 is the cardinality.of the continuum. The 

~ I q 1 o_ \:_ 
Continuum Hypothesis is that oL - 1 1 , i.e., that there is no 

set of real numbers -vli th cardinality strictly greater than that of the 

integers, but strictly less than that of the continuum. This 

fascinating conjecture was the object of many attempts at proof, 

but none succeeded. Yet neither could anyone find an appropriate 

set of real numbers to disprove it. The proof that it was independent 

of the axioms for set theory (even including the powerful axiom of 

choice} was a startling and dramatic result, in all ways analogous 

to the corresponding discovery concerning Euclid's infamous parallel 

postulate. 

III. THE CONSTRUCTION OF THE MODEL 

A. Boolean Preliminaries 

We shall proceed shortly to a definition of a universe V of 

objects, which will correspond to the "sets" of our theory. 

Simultaneously with the definition of V will be given a definition 

of the predicates € and = , in the following way: for each pair 
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of objects a and b of V we associate bvo elements P and Q of a 

given Boolean algebra, which elements are to be associated with 

the statements aEb and a=b, respectively. These shall be called the 

"Boolean values" of aEb and a=b, and will be denoted II aEb II and 

II a=b I J', respectively. 

With the Boolean values of the atomic formulas of the language 

so defined, the Boolean values for other statements without free 

variables can be given as follows: 

I 
1/lX/1 = 1/X/1 

I I x&Y I I = I I x I II\ I I Y I I · 

If F (x) is a statement containing no free occurrences of any v'ariable 

except x, then II (\;lxJF(xJ II = 1\ /IE (a) 1/. 
<l-£-V 

Me choose the Boolean 

algebra to be complete, thereby assuring the existence of the above 

infimum). Then: 

1/XVY/1 = 1/X//V 1/Y/1 
I 

llx-hll = llxiJ.V IIYII 

II (3 x)F (x) II = V IIF {a) II 
a.~v 

If X contains free variables x
1

, •..• ,xn , and no matter how these 
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are replaced by members of V the resulting statement without 

free variables has Boolean Value l, we then set J JxJ J = l. 

The procedure in proving that some specific statement. X
0 

is 

not derivable in set theory is to establish two results: 

(1) Every statement derivable in set theory has Boolean value 1. 

(2Y The statement X
0 

does not have Boolean value 1. 

Let us first outlinehow (l) is established. This is done 

by showing that if X is an axiom of set theory, then J JxJ J = 1, and 

if Z can be derived from X and Y by the rules of set theory, and 

1/X/1 = 1/Y/1 = l, then 1/z/1 = 1. 

B. The Logical Axioms and Rules 

Set theory can be formulated such that the only rule of inference 

is modu·s ponens. Thus the application of the rules of set theory is 

taken care of by the following theorem: 

Theorem If JJxJJ = 1 and J/X~Y// = 1 then //Y// = 1. 

The proof is essentially the following argument. If J/X~Y // = l 

/ I 
then JJxJJy //Y// = l. But JJxJJ = o, since //X// = l. Hence 
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II Y II = 1. In a similar manner all of the axioms of first-order 

logic can be shown to have Boolean value 1. For example, let us 

establish ·that the axiom .('Q'x)}" (x,b)-7F (b,b) has Boolean value 1. 

We must show that [II (\fx)F (x,b) II=/ IIF (b,b) Ill - 1, or equivalently, 

that[(\ IIF(a,blii=/IIF{b,b)lll = 1. This is if and only if 
~£.V . 

I\ ·I IF (a,b) II L IIF (b,b) II, which is obvious, ·since 1\ acts as an 
«€\! 

infimum operation with respect to the partial ordering 

It remains then to investigate the axioms of set theory and to 

show that they have Boolean value 1. We must define the universe V 

and the Boolean values of the atomic statements in order to do this, 

as one might expect. 

c. The construction of the Model 

Let us recall the proof of the independence of the parallel 

postulate. To invalidate the postulate, "points" and "lines" were 

introduced which differed slightly from the classical points and 

lines -- however, .as ·few changes as· possible were made, since the 

other postulates \·Jere· to remain valid. vle are at a similar point. 
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We shall need to modify the notion of "set" and "set membership", 

but only so much as to invalidate the Continuum Hypothesis, while 

keeping the other axioms valid. 

To every classical set A there· is associated a characteristic 

function fA such that fA(x) = 1 if x€A,· and fA(x) = 0 if x/A. 

Identifying 1 with truth and 0 with falsity, we might. say that the 

statement xEA takes the value fA (x). vVith this in mind the 

generalization to a Boolean valued logic·is evident. A "set" will 

be a function f whose values are elements of the given Boolean 

algebra. Thus the Boolean value of the statement a€f is f(a). 

llaEfll=f(a) 

Once this is defined, equality is not difficult to define. Since 

we have ·a=b if and only if ('t/ x) (x€a ~ xEb), define 

= 1\ lla(x)(...:)b(x) II 
MV 

It is not practicable to introduce all our 11 sets" at once. 

Thus, when we introduce a new "set". f, we can define f(a) for those 

a 1 s which have already been introduced. For other a 1 s, f (a) >vill 
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' be left undefined. We can still define aE:f and g=f, however; this 

is done by setting 

jjaE:fjj = jj(~x)(a=x&xeflll 

and by restricti,ng the domain of the infimum operation 1\ in 

the definition of g=f to the domain of f and g. 

This paper is not the place to enter into the details of the 

construction of the model. The principle, however, should be clear: 

our "sets" will not' correspond to functions into (0,1}, but to 

functions into a given Boolean algebra. The modification is 

slight enough to.assure that the axioms of set theory have Boolean 

value 1, but is great enough to force the Continuum Hypothesis not 

to have value 1. 

D. The Key Result 

Let us assume that the Boolean algebra used in the construction 

satisfies· the count.able chain condition. This assures us of 

several necessary results, among which· is tha·t the 11 set" corresponding 

to the set of integers is well-behaved, and that "cardinality" 

inside the model is· the same as cardinality in classical set theory. 
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' Let then g be a function from the classical set of integers to 

the given Boolean algebra, If g is the constant function 1, 

then g corresponds to the set of integers itself. BUt if g is 

arbitrary, it then refers to a "subset" of the integers, just as. 

a function from the integers to (0,1}-defines a subset in the 

classical sense ((xI g (x) = 1} is the subset· in the classical case). 

How many such "subsets" of the integers exist? Clearly if the 

Boole.an algebra has a large number of elements, such subsets 

will be quite numerous -- numerous enough, in fact, to force 

I 

"2~", the 11 cardinality" of the set of all 11 subsets" of the integers, 

(all·refering to the Boolean valued model) to be strictly greater 

I . 
than ~I' thereby refuting the Continuum Hypothesis. 

The main question is this: can a Boolean algebra be found which 

is of large enough cardinality to obtain the above result while 

still satisfying the countable chain condition? The answer is yes, 

In fact, Boolean al·gebras with arbitrarily large cardinalities 

exist which satisfy the countable chain condition. 

Thus, with a· sui table choice of ·the Boolean algebra, we can 
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force the Continuum Hypothesis to have Boolean value 0. Also, 

since every axiom of set theory has Boolean value 1 and the rules 

of inference preserve Boolean value 1, every statement derivable in 

set theory has Boolean value 1. Thus, the Continuum Hypothesis 

is not derivable in se·t theory and hence is independent of the 

IV. FINAL REHARIZS 

The proof sketched above actually only shows that.the continuum 

Hypothesis is not provable from the axioms of set theory -- it 

does not show that it is not disprovable, or, in other words, that 

it is consistent. This was done, however, in the late 1930's by 

Kurt G"odel and his proof used methods which are quite different 

from those described in this paper. With his result, independence 

is established. 

Bool.ean valued logic can also be used to prove that the 

axiom of choice is independent of the other axioms for set theory. 

The relationship between these arguments and Cohen's original . . 

"forcing" techniques are subtle but can be d.iscovered. However, 
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Boolean arguments seem to be of more general application than 

the forcing arguments used in the original proof. 
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