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Abstract

This paper examines how model uncertainty affects students’ choice of major. The students, we

assume, do not know the true wage distribution associated with each major. In response to this

uncertainty, the students apply a max-min operator to their optimization problem, leading them to

choose the major that performs best under the worst-case alternative wage distribution. This behavior

is consistent with experimental evidence and the robust control literature. We show analytically that

greater uncertainty about a particular major causes the student to be less likely to choose that major

and that greater uncertainty across all majors causes fewer students to major in science, technology,

engineering, and math (STEM) majors. To test the model’s predictions, we have conducted a survey

of college freshmen. The results from this survey are consistent with the theoretical model.
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1 Introduction

One of the most important decisions an undergraduate student must make is the selection of a major

course of study. This decision impacts future career opportunities, potential earnings, and the likelihood

of being employed. Students must take many things into consideration when making this choice: aptitude

for course materials, interest in the field, career options, and expected compensation. Amongst others,

Mincer (1974) and Becker (1993) have explored the factors that influence major choice. In their models,

students are assumed to have full information about the career options and potential earnings of each

possible major. The students then balance this information against the other relevant factors in choosing

a major. These other factors have been explored more thoroughly in other studies using the same full

information assumption.1

It has been long recognized, however, that college students do not possess the level of knowledge

assumed in the above papers. In particular Betts (1996) and Arcidiacono et al. (2012) provide evidence

that college students’ expectations about future salaries and employment probabilities are often incorrect.

This has led to new research that relaxes the assumption of full information. Specifically, Zafar (2011) and

Wiswall and Zafar (2013) assume students face uncertainty about the true wage distribution associated

with each major.2 That is, the students believe that there are a number of alternative wage distributions

that could be the actual distribution. Employing a Bayesian approach, the authors assume that the

students place a prior distribution over all of the possible alternative wage distributions, which students

then update as they obtain new information. The students can calculate an expected wage for each

potential major based on the expected wage from each distribution weighted by the prior probability put

on that distribution. Drawbacks of this approach are that it requires all students to specify a probability for

each of the potentially infinite number of wage distributions and to update those priors using a relatively

complex algorithm.

In this paper, we explore an alternative way that students may respond to model uncertainty. As we

discuss below, this alternative approach is consistent with experimental evidence on how people behave

in the face of model uncertainty. In our model of major choice, students do not know the true wage

distribution for each major, similar to the assumption made in Zafar (2011) and Wiswall and Zafar

1Examples include Thompson et al. (2007), Seymour (1992), and Rask (2010) (which look at retention in STEM majors);
Crip et al. (2009) Griffith (2010), and Price (2010) (which look at Hispanic and female enrollments in STEM fields); and
Arcidiacono (2004) and Arcidiacono et al. (2011) (which look at ability sorting into majors and the affects of affirmative
action).

2There are numerous papers in the education literature that have used the term “uncertainty” to characterize the case
in which students know the true probability model generating the randomness and merely face uncertainty about the wage
draw; examples include Tobias (2002), Nicholson (2002), Beffy et al. (2012), and Hartog et al. (2012). In the robust control
and behavioral literatures, this type of “uncertainty” has typically been labeled as “risk” in order to distinguish it from the
case in which agents do not know the true probability model. The latter case – called model uncertainty – is the focus of
this paper.
At the end of section 3, we provide numerous salient differences between model uncertainty and risk aversion.
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(2013). In stark contrast to those papers, the students do not place a prior over the set of alternative wage

distributions.3 This assumption follows the robust control literature and in particular Hansen and Sargent

(2007).4 Assuming that the students are uncertainty averse and have a preference for robustness, each

student applies a max-min operator to their optimization problem. This operator induces each student

to choose the major that maximizes her subjective expected utility, where the expectation is taken with

respect to the worst-case wage distribution within the set of possible alternative distributions. In effect,

this behavior ensures that the student’s subjective expected utility never falls too far, regardless of which

distributions happen to be true.

In this setting, we show that uncertainty has two major consequences for major choice. First, if a

student faces greater uncertainty about one major’s wage distribution relative to another, then all else

equal, the student is weakly less likely to enroll in that major. Intuitively, this stems from the fact that

greater uncertainty increases the size of the set of possible alternative wage distributions, which then leads

the students to fear an even worse worst-case distribution. As a consequence, the students’ subjective

expected wage associated with that major falls, pushing the previously marginal students to choose a

different major. This analytical result does not depend on specific assumptions about the set of wages

associated with the majors.

Second, a change in the overall level of uncertainty influences the distribution of students across majors.

To obtain this second result, we assume that the students’ approximating wage distribution for each major

happens to be the empirical wage distribution, as described in the American Community Survey. With

this assumption, we can show numerically that an increase in uncertainty across all majors leads to a

systematic re-sorting of students across majors. In particular, we offer evidence that greater uncertainty

leads fewer students to major in science, technology, engineering, and mathematics (STEM) majors in favor

of non-STEM majors. This second conclusion could potentially help explain the often-cited shortage

of STEM majors, including The President’s Council on Jobs and Competitiveness (2011), Paglin and

Ruffalo (1990), and Arcidiacono (2004). This also suggests that new policy reforms aimed at providing

students with additional information about the distribution of wages of past graduates may also impact

the distribution of majors.5

We then test the model’s prediction that a student’s subjective expected wage increases as uncertainty

falls (as measured by increased familiarity) by conducting a survey of over 350 college freshmen. Along

3In Bayesian analysis, it is assumed that students can place specific weights on how likely each distribution is to be true,
while in our model students do not assign any weights to the distributions.

4The robust control approach has been used widely in the macroeconomics and finance literatures, including Barillas et
al. (2009), Cagetti et al. (2002), Dennis (2007), and Ellison and Sargent (2012). Dennis et al. (2009), Levin and Williams
(2003), and Walsh (2004) analyze how model uncertainty affects optimal monetary policy, while Karantounias et al. (2009)
and Svec (2012) do the same for optimal fiscal policy. To our knowledge, this paper is the first one to apply robust control
to an education model.

5An example of such a policy is the proposed bill “The Student Right to Know Before you Go” by Senator Ron Wyden
of Oregon.
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with demographic and other data, we elicit students’ degree of familiarity with various major fields and

their earnings expectations in those fields. If their responses are consistent with the theoretical model,

we would expect to find that students who are more familiar with the wages associated with a major

also have higher expected wages. Our survey results reflect this positive relationship. In addition, this

finding provides support for our use of robust control over a Bayesian approach due to the fact that there

is no a priori reason why a Bayesian model would predict that students’ earnings expectations would

systematically increase through the accumulation of additional information.

Since familiarity is the main driver in our model, we further explore the survey responses in order to

examine the relationship between familiarity and observables. We find that men are more familiar with

the physical and social sciences, while women are more familiar with health and biology. Given these

findings, our theoretical model would predict that men would be more likely to have careers related to

the physical and social sciences, while women would be more likely to have careers in health and biology.

These predictions seem broadly consistent with patterns we see in employment data (Carnevale et al.,

2011).

Our paper proceeds as follows. In section 2, we further discuss and justify our two key assumptions.

In section 3, we introduce a simple theoretical model of major choice and derive both analytical and

numerical results. Section 4 describes and analyzes a survey that provides evidence that familiarity

is positively correlated with expected wages, as predicted by the model. In section 5, we discuss some

additional implications of our work and conclude by offering policy suggestions.

2 Students and uncertainty aversion

Before we describe our model, it would be helpful to discuss our two key assumptions in more depth. The

first key assumption is that students face uncertainty about the true wage distribution associated with

each major. The second key assumption is that they respond to this uncertainty as if they are uncertainty

averse. As we argue below, there is reason to believe that both of these assumptions are reasonable.

In regard to the first assumption, it is generally well-accepted that college students do not have perfect

information about the career opportunities and employment prospects associated with each major. This

lack of information may be attributable to the fact that college students, and freshmen in particular,

have had little direct exposure to the employment characteristics of many different industries. Further,

there are many factors that affect expected earnings, including macroeconomic trends, government policy

(both domestic and foreign), technological progress, and changes in consumer preferences. As there is

considerable uncertainty about the future paths of these factors, the expected wages associated with each

major should also be uncertain to students.
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The latter assumption – that students respond to uncertainty as if they are uncertainty averse – is

consistent with much experimental evidence in the behavioral economics literature. Ellsberg (1961), for

example, finds that many subjects dislike gambles with unknown odds and have a preference for gambles

with known odds. He then suggests that one possible explanation of this finding is that the subjects believe

that there is a set of probability models that could possibly characterize the gamble with unknown odds and

that the subjects, when comparing the unknown-odds gamble to the known-odds gamble, pessimistically

worry that the worst probability model is correct.

Since Ellsberg (1961), a number of laboratory experiments have confirmed the basic finding that many

people behave as if they were uncertainty averse; see Camerer and Weber (1992) for an early review of

the literature. Abdellaoui et al. (2011) and Halevy (2007), using Ellsberg-type experiments, show that

people act as if they are uncertainty averse, though with a tremendous range of uncertainty aversion

across people. Other research has suggested that uncertainty aversion might characterize the behavior

of investors. Sarin and Weber (1993), for instance, show that German business students value assets

with a known distribution of possible returns more highly than assets with uncertain returns. More recent

evidence documenting investors’ uncertainty aversion include Ahn et al. (2011) and Bossaerts et al. (2010).

Finally, Anagol et al. (2011) provide evidence that children are uncertainty averse using a real-world test

with Halloween costumes and candy.

3 Theoretical model

In this section, we formulate a simple, two-period model analyzing students’ choice of a college major. In

the initial period, t = 0, students must choose a major. Assume that there are k possible majors from

which to choose: {m1,m2, ...,mk}. Each major has two relevant characteristics. The first characteristic

is the student’s level of difficulty associated with completing each major and is modeled as a utility cost.

Let di be the student’s difficulty level of major mi, where i ∈ {1,2, ..., k}. Under this formulation, a

student finds major 1 more difficult than major 2 if d1 > d2. We place no restriction on the distribution

of difficulty levels across major. Given this, we can define a type of student as a unique combination of

k difficulty parameters.6

The second characteristic of each major is the distribution of potential future wages associated with

each major. Let {wij}
ni

j=1 be the ni possible future wages of a graduate who majored in mi. One of

the potential “wages” in this set is the sum of the transfers received if the graduate is unemployed after

college. Let {πij}
ni

j=1 be the probability distribution associated with each major’s wages. Again, one of

6Although we discuss this parameter as the level of difficulty for a particular major, it can also be viewed as any factor
unrelated to wages that affects the value a student derives from choosing a major. For example, di could be a measure of
a student’s level of enjoyment associated with major mi or it could represent parental pressure, pushing a student to choose
one major over another.
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these probabilities represents the likelihood of being unemployed after graduating from major mi.

The randomness in potential wages – the only randomness in the model – is resolved at t = 1, at which

point the graduate receives a particular wage from within the set. As there are no further periods in the

model, the graduate consumes her entire wage, which she values according to the concave utility function

u ().

Given this setup, the objective of each student is to choose the major that maximizes the expected

value of her lifetime utility. In making this choice, the student must compare each major’s combination

of difficulty and expected future wages. If we assume that students had rational expectations, then the

expected utility of a student of type D̂ = {d̂1, d̂2, ..., d̂k} choosing to major in mi is

u0 − d̂i + β
ni

∑
j=1

πiju (wij)

where, by assumption, u0 is a constant across all students and majors. With this formulation, we can

determine the set of students that choose each major. As an example, all students whose type satisfies

d1 ≤ di + β
⎡
⎢
⎢
⎢
⎣

n1

∑
j=1

π1ju (w1j) −
ni

∑
j=1

πiju (wij)
⎤
⎥
⎥
⎥
⎦
,∀i

choose major 1.

In this paper, though, our goal is to analyze how model uncertainty affects students’ choice of majors.

To this end, we assume that all students are endowed with an approximating model for each major.

These k approximating models specify the probabilities associated with the potential future wages of each

major. The students, however, are not confident that these approximating models correctly specify the

true probability distributions for the majors. They worry that other probability models could potentially

characterize the stochastic nature of each major’s wages.7 In order to ensure that these alternative models

conform to some degree with the approximating model, we place restrictions on what types of alternative

models are allowed. To do so, we follow the robust control literature, and in particular, Hansen and

Sargent (2007).

For each major, we assume that each member of the set of alternative models is absolutely continuous

with respect to that major’s approximating probability model. This implies that the students only

consider models that correctly put no weight on zero probability wage outcomes. The alternative models

could place different weights on a major’s wages than is specified by the approximating probability model,

as long as the probability of that wage under the approximating probability model is between zero and

one. Further, the assumption of absolute continuity implies that the Radon-Nikodym theorem holds,

7While we focus on earnings uncertainty, we acknowledge that there are other factors that students could be uncertain
about, including the difficulty of each major. One benefit of focusing on earnings uncertainty is that we can obtain data on
the empirical distribution of earnings for students in different majors.
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which indicates that there exist measurable functions φi such that the expectation of a random variable

Xi under the alternative models can be rewritten in terms of the approximating probability model:

∼

E [Xi] = E [φiXi]

where
∼

E is the subjective expectations operator. To guarantee that each alternative model is a legitimate

probability model, we assume E [φi] = 1,∀i.

Using the functions φi, we can now define the distance between the alternative and approximating

probability models to be the entropy:

ε (φi) ≡ E [φi logφi] ,

a measure that is convex and grounded. Following the robust control literature, we will use this distance

measure to define the students’ multiplier preferences. The multiplier preferences characterize how the

students value each of the possible majors.

The objective of each student is to choose the major, mi, that maximizes the following criteria:

min
φij

⎧⎪⎪
⎨
⎪⎪⎩

u0 − di + β
ni

∑
j=1

πij [φiju (wij) + θiφij logφij] − βθiΨ
⎡
⎢
⎢
⎢
⎣

ni

∑
j=1

πijφij − 1
⎤
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

where
ni

∑
j=1

πijφij = 1 is the legitimacy constraint.

The coefficients θi > 0 are penalty parameters that index the degree to which the students are uncertain

about the probability models for each major. A small θi indicates that the students are not penalized too

harshly for tilting their probability model away from major i’s approximating model. The min operator

then yields a set of φij that diverge greatly from unity. The resulting probabilities {πijφij} are distant

from the approximating model. Thus, a small θi captures student behavior when they face a large degree

of uncertainty. A large θi means that the students face a sizable penalty for tilting their probability model

away from the approximating model. As a result, the min operator yields a set of φij close to unity,

implying that the worst-case alternative model is close to the approximating model. Thus, a large θi

captures student behavior when they face a small degree of uncertainty. As θi →∞, this model collapses

to the rational expectations framework discussed above. In this formulation, we allow students to face

different levels of uncertainty in each major. This is meant to capture some of the variation in the

students’ backgrounds and interests.

Solving for the student’s optimal choice of major is a two-step process. In the inner minimization

step, the student fears that, for a given major choice, the worst-case probability model over the wages

will occur. The solution that results from this minimization is the student’s subjective expectation.

The outer maximization stage determines the major that maximizes the student’s expected utility, taking
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into account knowledge of the endogenous tilting of their expectation. The solution from this stage is

the student’s robustly optimal major. We will solve each of the steps in turn, starting with the inner

minimization problem.

3.1 Inner minimization step

The first order condition with respect to φij is

u (wij) + θi (1 + logφij) − θiΨ = 0

Combining this condition with the legitimacy constraint, we can determine the optimal values of φij .

Following this procedure, we get

φij =
exp (−

u(wij)

θi
)

ni

∑
j=1

πij exp (−
u(wij)

θi
)

(1)

This equation describes the optimal subjective weights for major mi. There are two factors that affect

φij . First, these probability weights depend upon θi. A large θi implies that the degree to which φij

diverge from unity is small. Consequently, the subjective probability model is close to the approximating

model, and the student is not very pessimistic about her future wages. A lower θi implies that the

probability tiltings are large. This means that the subjective probability model is more pessimistic,

placing greater weight on low wage outcomes and smaller weight on high wage outcomes. Intuitively, this

means that the student views the possible utility outcomes associated with major mi as relatively worse.

The second factor that affects the distortions is the profile of utilities across states. Ceteris paribus,

as the distance in the student’s utility across states grows, then the degree to which the student tilts the

subjective expectation away from the approximating probability model grows. That is, if one state offers

much greater welfare for the student than does another state, the student will fear an alternative model

that places a much higher weight on the low wage state and a much lower weight on the high wage state.

3.2 Outer maximization step

In the maximization step, the student chooses the major that performs well even if the worst-case proba-

bility model characterizes the randomness associated with each major. To determine this, we incorporate

the optimal probability tiltings into the student’s objective function. Doing this, we get

u0 − di − βθi log
ni

∑
j=1

πij exp(−
u (wij)

θi
) (2)
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Given this, the student now compares her expected lifetime utility across all majors in order to choose her

optimal major. Using this equation, we can determine which types of students choose each major. As

an example, a student chooses major m1 if

d1 ≤ di + β
⎡
⎢
⎢
⎢
⎣
θi log

ni

∑
j=1

πij exp(−
u (wij)

θi
) − θ1 log

n1

∑
j=1

π1j exp(−
u (w1j)

θ1
)
⎤
⎥
⎥
⎥
⎦
,∀i (3)

Using this equation, we derive the following theorem:

Theorem 1 If a student’s uncertainty about a particular major rises, then all else equal, the student is

weakly less likely to enroll in that major.

Proof. Without loss of generality, consider a rise in uncertainty for major 1. Letting

−

d1 ≡ di + β
⎡
⎢
⎢
⎢
⎣
θi log

ni

∑
j=1

πij exp(−
u (wij)

θi
) − θ1 log

n1

∑
j=1

π1j exp(−
u (w1j)

θ1
)
⎤
⎥
⎥
⎥
⎦

for some alternative major mi, (3) then says that a student will choose m1 over that major mi if d1 is less

than the threshold
−

d1. So, to prove this theorem, we will show that ∂
−

d1
∂θ1

≥ 0, where the inequality is strict

whenever the distribution of wages is non-degenerate. The derivative of
−

d1 with respect to θ1 is

∂
−

d1

∂θ1
= − log

n1

∑
j=1

π1j exp(−
u (w1j)

θ1
) −

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

n1

∑
j=1

π1j exp (−
u(w1j)

θ1
)
u(w1j)

θ1

n1

∑
j=1

π1j exp (−
u(w1j)

θ1
)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

We want to show that ∂
−

d1
∂θ1

≥ 0, meaning that

n1

∑
j=1

π1j exp(−
u (w1j)

θ1
)(

−u (w1j)

θ1
) ≥

⎡
⎢
⎢
⎢
⎣

n1

∑
j=1

π1j exp(−
u (w1j)

θ1
)
⎤
⎥
⎥
⎥
⎦

log
⎡
⎢
⎢
⎢
⎣

n1

∑
j=1

π1j exp(−
u (w1j)

θ1
)
⎤
⎥
⎥
⎥
⎦

Letting x1j ≡ exp (−
u(w1j)

θ1
) > 0 and rearranging, we can show that this equation simplifies to

n1

∑
j=1

π1jx1j log (x1j) ≥
⎡
⎢
⎢
⎢
⎣

n1

∑
j=1

π1jx1j

⎤
⎥
⎥
⎥
⎦

log
⎛

⎝

n1

∑
j=1

π1jx1j

⎞

⎠
(4)

Because x log (x) is strictly convex, then (4) holds with strict inequality whenever the distribution of x’s

is non-degenerate and (4) holds with equality whenever x1j =
−

x,∀j. Thus, ∂
−

d1
∂θ1

≥ 0, and ∂
−

d1
∂θ1

> 0 if {x1j}
n1

j=1

is non-degenerate. This same logic applies when comparing m1 to any other major besides mi. Thus, if

m1 was the student’s preferred major, then a rise in uncertainty makes it less likely that the student will

still prefer major 1; if m1 was not the student’s preferred major, then a rise in uncertainty has no effect.
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Consequently, a rise in uncertainty makes a student weakly less likely to choose to enroll in that major.

Corollary 1 As a student’s uncertainty about a particular major rises, then all else equal, the student’s

subjective expected wage associated with the major falls.

Proof. Equation (1) determines the optimal probability tilting. All else equal, as θi falls, the endogenous

probability distortions diverge from unity, placing more subjective weight on the low wage outcomes and

less subjective weight on the high wage outcomes. Consequently, the subjective expected wage of mi falls

with the level of uncertainty.

We have now shown that the level of uncertainty affects a student’s choice of major. Specifically, a

rise in a student’s uncertainty about a particular major’s future wages leads that student to be weakly

less likely to enroll in that major. This occurs because the student’s subjective expected wage – and

hence, the student’s subjective expected utility – from choosing that major decreases with the degree of

uncertainty.

We would also like to explore how changes in the level of uncertainty across all majors affects major

choice. As students cannot lower their probability of choosing all majors, greater uncertainty across

all majors might have a distributional effect, altering how many students choose one set of majors over

another. To study this, we must turn to the quantitative implications of the model, as the student’s

choice of major depends upon the actual distribution of wages associated with each major.

3.3 Quantitative results

In this section, we will quantitatively explore the predictions of the simple model presented above using

wage and employment data collected from recent college graduates. Our goal in doing this is to examine

whether the equilibrium distribution of majors depends on the level of uncertainty across all majors.

To do so, we make three modifications to the theory presented above. First, we assume that the

students’ level of uncertainty is the same in all majors: θ1 = θ2 = ... = θk ≡ θ. This assumption, while too

restrictive, allows us to analyze a set of new policy initiatives currently being implemented around the

United States that are aimed at providing students with more information about their potential future

earnings by major. To give a brief example, public colleges and universities in the state of Virginia now

post information online about the salaries and employment histories of past graduates by major. Thus, by

making this assumption, we can predict the impact of the shift from one regime to another by varying the

level of θ. In one possible regime, students face little uncertainty, as wage and employment information

by major is available and known to the students when making their decisions. This regime, characterized

by a high θ, reflects the policy initiatives mentioned above. In another possible regime, students face a
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large degree of uncertainty. In this regime, perhaps, colleges and universities do not provide wage and

employment information to students and instead advisors are cautioned against discussing this information.

This regime is characterized by a low θ. Thus, while we believe that students do in fact have different

levels of uncertainty in different majors, this assumption allows us to capture the impact of a policy shift

of this type.

Our second modification to the theory is that we assume that there are eleven possible major fields

open to students: biology and life sciences, business, education, engineering, health, humanities and arts,

law and public policy, mathematics and computer science, physical sciences, psychology and social work,

and social science.8 For each of these majors, let di ∈ {0.4,0.5, ...,1}, ∀i. This implies that there are

7 possible difficulty levels for each major. If there exists one student for each unique combination of

difficulty levels, then there are 711 total students. This assumption does not qualitatively change our

conclusions.

For our third modification, we assume that all students within a particular major face the same set of

potential wages and the same probability distribution over those wages. While we believe that in reality

different students draw from different wage distributions based on their aptitude and skills, we abstract

away from this variation and assume that all idiosyncratic differences across students are captured by

differences in the difficulty parameters.

In addition to these theoretical modifications, we obtain actual wage and employment data for recent

college graduates from The American Community Survey (ACS) Public Use Microdata Sample in 2011. In

particular, we obtain the median, 25th percentile, and 75th percentile wages for each major listed above.

With these data, we assume that students in each major face 4 possible wages at t = 1: the median wage

in that major, the 25th percentile wage, the 75th percentile wage, and the transfers associated with being

unemployed.9 We assume that the students, if employed, have a 50% chance of earning the median wage

and a 25% chance of earning either of the other two wages. We also pull data on the graduates’ likelihood

of unemployment after graduating from one of these eleven types of majors from ACS. These data allows

us to form the wage and probability distribution for each of the eleven majors. These data are presented

in Tables 1 and 2.

With these data and for a given value of θ, we can use (2) to determine the expected utility of each

student for each major. This allows us to determine how many students choose each major for that given

level of uncertainty. We then vary θ in order to see how the distribution of students across majors changes

with the total level of uncertainty. In Table 3 below, we present the results.

Table 3 shows that the distribution of majors does indeed depend upon the level of θ. Evidently, in

8There are similar categories used in Carnevale et al. (2011). These categories are also used in our survey that follows.
9This value, following Shimer (2005), is 40% of the median wage or $14,000.
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the regime with no uncertainty, almost half of all students choose to major in engineering and another

third of students choose to major in either mathematics and computer science or in the physical sciences.

It is no coincidence that this is the case, as these majors have the highest average wages and because the

difficulty parameter is distributed uniformly across students. On the other end of the spectrum, when

students are faced with a large degree of uncertainty across all majors, many fewer students choose to

major in engineering, mathematics and computer science, or the physical sciences. In fact, less than 30%

of students choose to major in these majors. Instead, the students are more evenly distributed across all

majors, with a slight emphasis on education and health. To be clear, if a different difficulty distribution

was chosen, the same qualitative pattern would appear: uncertainty is a factor driving students out of

STEM majors.

Put another way, Table 3 shows that uncertainty might be a factor in the on-going shortage of STEM

majors. This shortage has been discussed in a number of places, including The President’s Council on

Jobs and Competitiveness (2011), Paglin and Ruffalo (1990), and Arcidiacono (2004). If we suppose

that today’s college students live in a world with high uncertainty, then fewer students choose to major

in engineering, math, and physical science than would in a different world in which students were better

informed about each major’s employment prospects and wages. Thus, model uncertainty could explain

the relative dearth of STEM majors, a possibility that to our knowledge has not been explored in the

education literature.

At this point, it is helpful to understand why uncertainty affects different majors differently. That

is, why would a smaller θ encourage people to major in non-STEM majors and discourage people from

majoring in STEM majors? To see the answer to this, first consider the extreme case where θ → ∞.

At this value, students fully understand the wage and unemployment differences across the majors. As

higher wages imply higher expected utility, the students naturally prefer the higher wage majors, for a

given level of difficulty. Since the STEM majors have the highest expected wages out of all the eleven

listed majors, many students choose to major in STEM. Next, consider a moderate value of θ, one that

implies that students face a limited degree of uncertainty about the majors. This uncertainty means that

students believe that the high wage outcomes are relatively less likely and the low wage outcomes are

relatively more likely than under the approximating model. This change reduces the expected wage of

the STEM majors by more than that of the non-STEM majors because all majors share the same value

for the low wage outcome while the STEM majors offer the largest high wage outcome. Consequently,

the previously marginal students shift out of the STEM majors and enter a non-STEM major, where the

specific choice of non-STEM major depends upon the particular wages and employment probabilities of

the other majors and the difficulty parameters. Finally, consider the other extreme case in which θ → 0.

This value implies that the students face an immense amount of uncertainty. In this extreme environment,
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students discount the possibility that they will be employed at all, regardless of their choice of major. As

a result, the students make their major choice based entirely on their difficulty parameters. As such, we

should see that the students are more evenly distributed across all the majors, a result seen in Table 3.

3.4 Model uncertainty and risk aversion

Briefly pausing from the main narrative, we would like to highlight that our discussion thus far has focused

on the impact of model uncertainty on students’ choice of college major. However, it is well-known that

there is a degree of similarity between risk aversion and model uncertainty; see Barillas et al. (2009) and

Hansen and Sargent (2007). Specifically, increasing a student’s risk aversion would have some of the same

impacts on the choice of major as increasing the student’s model uncertainty.

That being said, there are a number of salient differences between model uncertainty and risk aversion.

First, and most important, the motivations underlying the students’ choices are different in the two cases.

In this model uncertainty story, a student chooses a particular major because her uncertainty about the

true, major-specific wage distributions leads her to fear potentially harmful alternative wage distributions.

In a risk aversion setup, though, a student chooses a particular major, knowing the true wage distribution

for each major, but disliking the wage risk. Second, a student’s model uncertainty can vary by major,

while a student’s risk aversion is independent of the major. Third, a model centered around risk aversion

cannot account for differences in the information held by students that are major specific.

Finally, the distinction between model uncertainty and risk aversion is important because the policy

implications are vastly different. If students face model uncertainty, then their choices are distorted

relative to a rational expectations framework. That is, if students are presented with better information,

they would make different – and welfare-improving – choices. This distortion reveals the possibility that

certain policies could help raise the students’ welfare. If students are merely risk averse, though, their

choices would be optimal given their preferences. This implies that no policy could raise the students’

welfare.

4 Survey Description and Results

We have shown theoretically that greater uncertainty about a particular major’s wage distribution dis-

courages students from choosing that major. This occurs because, as uncertainty rises, the subjective

expected wage associated with that major falls. Further, after combining the theoretical model with wage

and employment data, we have found that greater uncertainty across all majors influences the distribution

of students across majors. In fact, we have shown that greater uncertainty across all majors seems to

dissuade students from majoring in STEM majors in favor of non-STEM majors.
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One testable prediction made by the theoretical model is that as a student’s uncertainty about a

particular major rises, her expected wage falls. To test this prediction, we have conducted a survey of

college freshmen. We describe that survey and its results below, including a look at the relationship

between familiarity and gender.

4.1 Survey Description

Our survey was administered to first-semester freshmen at three undergraduate institutions in the Worces-

ter, Massachusetts area: The College of the Holy Cross, Clark University, and Worcester Polytechnic

Institute (WPI). Holy Cross is an undergraduate-only liberal arts college without an in-house engineering

program.10 Clark is a university with both undergraduate and graduate schools. WPI is primarily an

engineering school, but also offers degrees in business and the arts and sciences. The entire freshman

class at each institution was solicited via email. Email communications included a link to the survey and

offered respondents a chance to win one of six $50 gift certificates. Follow-up participation requests were

sent periodically throughout the survey period. In total, 359 freshmen completed the survey. Of those

respondents, 173 were from Holy Cross (23 percent response rate), 114 were from Clark (19 percent), and

72 were from WPI (8 percent).11 The description of the results that follow will be based on a restricted

subset of these respondents. Specifically, a small number of respondents gave infeasible responses to key

questions and were thus eliminated from the calculations and analysis that follows.12

The survey has a number of questions, the most important of which asks the students to identify their

level of familiarity and expected average salaries in eleven different sets of majors.13 The sets of majors

are listed in Table 4, and the full text of the survey can be found in Appendix Section A. We assess an

individual’s familiarity with each set of majors in multiple ways. First, respondents are asked if a family

member or close acquaintance majored in or has a career related to each set of majors. Having a family

member or close acquaintance in that field would presumably increase the student’s level of familiarity with

that field. Next, respondents are asked directly to rate their familiarity with the employment prospects

and salaries of the major categories on a scale from one to seven. For these last two questions, respondents

10There is a program between Holy Cross and WPI that allows a Bachelor of Arts degree to be earned at Holy Cross and
a Masters of Science in Engineering degree to be earned at WPI.

11Our sample is mostly representative of the population based on the observables, which are the respondents’ gender, race,
college residential status, and financial aid status. It is representative for Holy Cross, while there are slightly less residential
students and students on financial aid in our sample at Clark. At WPI, there are slightly more females and slightly less
students on financial aid in our sample.

12Specifically, a number of respondents gave very low or very high values in response to questions about the average salaries
in major fields. We eliminated the responses of those that identified any major as having an average salary below $1,000 or
above $1,000,000.

13The theoretical model explores the implications of uncertainty, and yet we asked questions about a student’s familiarity
in the survey. The reason for this difference is that we felt that the students would better understand the meaning of “how
familiar are you” questions compared to “how uncertain are you” questions. It also seemed natural to us that familiarity
represents the inverse of uncertainty. In this way, we believe that our survey results test the mechanism and predictions of
our theoretical model.
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are instructed that a rating of 1 represents “not familiar” and that a rating of 7 represents “extremely

familiar.”

Table 5 presents the results from these familiarity questions for each set of majors for the full sample.

In that table, we list the means and standard deviations of the students’ responses to these familiarity

questions. Respondents were most likely to have a family member or close acquaintance who had majored

in the fields of business, education, engineering, and health. They were least likely to have a family member

or close acquaintance in the areas of the physical sciences, biology, psychology, and the social sciences.

Consistent with what one would assume, students reported being most familiar with both employment

prospects and wages in the same areas where they were most likely to report a close acquaintance or

family member. This finding can be seen in Table 6, which reports the correlation matrix for all three

familiarity variables. Given the particularly high correlation between the responses for the familiarity with

employment prospects and the familiarity with wages, we concentrate on using the students’ familiarity

of their future earnings in the analysis that follows. This focus does not qualitatively affect our results.

After students were asked about their familiarity with individual fields, they were then asked about

their expectations regarding major-specific average salaries. To get at the dependence of this average

salary on future schooling decisions, we decided to ask this question in two ways. First, we asked for

the average salary of a typical student who had majored in a particular major, taking into account all of

the possible career paths and educational possibilities available to the student. This question required

the student to mentally calculate an expected salary across possible career paths, educational attainment

levels, and tenure. Second, we asked for the average salary of a typical student who had majored in a

particular major, but did not go on to graduate school. This question required the student to calculate

an average across possible career paths and tenure levels. We have chosen to ask respondents about the

expected wages of the “typical” student rather than their own expected wage for two primary reasons.

First, the purpose of the survey was not to directly explain a particular student’s choice of major, but

simply establish the link between familiarity and wage expectations. Second, we wanted to isolate the

relationship between expected wages and familiarity, not an individual’s perception of their own aptitudes

or opportunities which could affect their expected wages.

Table 7 presents the mean and standard deviations of the student responses to both questions. When

asked about all graduates from each field of majors, including those who go on to receive advanced degrees,

the fields of engineering, law, business, and health receive the highest average salaries while education,

humanities, social sciences, and psychology have the lowest expected average salaries. The results are very

similar if the survey respondents are asked to limit their estimates to those who have only received an

undergraduate degree in the field and no advanced degrees. The predicted average earnings in this case

fall by about 20 percent for most majors. That said, the relative salaries of those in the fields of law and
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health fall compared to other fields, perhaps reflecting a belief that advanced degrees are more necessary

in these fields to fully capitalize on one’s undergraduate education.

In addition to asking demographic questions, we asked the students to rate the difficulty of the courses

(a rating of 1 represents “very easy” and a rating of 7 represents “almost impossible”) in each field of majors

and their likelihood of finding employment after graduation if they chose that major field. In Table 8,

we present a summary of these responses. Evidently, engineering and other sciences are perceived to be

more difficult and have higher employment prospects than other major fields of study.

4.2 Familiarity and Expected Wages

In this section, we explore the relationship between students’ familiarity and their expected wages. The

theoretical model above assumes that students are uncertainty averse. This assumption implies that

greater familiarity (and so, less uncertainty) raises the students’ subjective expected wages. This impli-

cation is testable using our survey results. If our theoretical model is to be trusted, we should expect to

find that students report higher expected salaries in fields where they report more familiarity.

To examine the relationship between uncertainty and expected wages, we run two regressions.14 In

the first regression, we use ordinary least squares to regress the log of the expected average salaries by

major on the students’ familiarity levels. As mentioned above, we use the students’ reported level of

familiarity with earnings to proxy for uncertainty. In addition, we include demographic characteristics

(gender, age, race), a proxy for family income (whether the respondent receives any federal financial aid),

and dummies for each major as independent variables. In the second regression, we use fixed effects to

control for any within-individual differences in expected wage levels or the scale used to rate familiarity.

We again include the dummies for each major as a control variable.

The results of the first regression appear in column [1] of Table 9. The key finding is that a one unit

increase in an individual’s self-evaluated level of familiarity (and thus a reduction of uncertainty) is related

to a 4.8 percent increase in the expected wage for any given major. The t-statistic of 11.52 indicates that

this result is statistically significant at the 1% level.

One may be concerned that different groups of individuals use systematically different ranking scales

when answering questions about familiarity. For example, the results in column [1] could be explained if

those with lower salary expectations for all majors give consistently lower ranks for their level of familiarity

with each major. To address this possibility, we have used a fixed effects model to produce the results

in column [2]. Though we do find a small drop in the coefficient on the familiarity term, the 4.0 percent

increase in the average wage reported for each unit increase in the familiarity rating is still significant at

14The results that follow are based on the survey respondents’ estimates of the average income of all graduates from a
major, not just those without advanced degrees. Using the respondents’ other estimates of average wages for those who do
not get an advanced degree are not qualitatively different and can be found in Appendix Table 1.
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the 1% level. In both specifications, our survey results strongly support the predictions of our theoretical

model.

We would also like to note that our empirical finding that expected wages are positively related to

familiarity is consistent with uncertainty aversion and robust control but not particularly consistent with

a Bayesian approach. This is because, in a Bayesian model, there would be no reason to believe that

students wage expectations would be systematically related to their familiarity, let alone positively related.

Intuitively, each students prior could either be lower or higher than the true wage distribution and so new

information would either increase or decrease her wage expectations, respectively. As there is no reason to

believe that students generally have priors that are lower than the true distribution, one would not expect

to see a systematic relation between wages and familiarity. Consequently, because we do find a systematic

and positive relationship between wages and familiarity, we believe that the data supports our choice of

robust control over a Bayesian approach.

4.3 Familiarity and Observables

Given the finding that greater familiarity with a particular major is linked to higher expected wages in a

major and the theoretical link between familiarity and major choice, we thought it would be interesting

to examine the relationship between students’ reported familiarity values and gender.15 If we do find

a relationship, it could help explain broad patterns of why we find certain jobs to be dominated by one

gender. So, in the rest of this section, we analyze whether there is a connection between gender and

familiarity.

Table 10 presents our initial test of this connection. Specifically, the first two columns of Table 10

reports the average value of the students’ familiarity with earnings, broken down by gender. The third

column then tests whether the two values are statistically different from each other. Males report a higher

familiarity score in the physical and social sciences. In addition, mathematics and computer science and

engineering were close to being significant at traditional levels. These results, though somewhat consistent

with the idea that more men enter math and the sciences than women, suffer from the possibility that

men, on average, report higher familiarity scores than women.

To mitigate this possibility, we report the number of standard deviations the familiarity score is from

each individual’s mean across all majors in the remaining columns of Table 10. To give an example of this,

suppose the average familiarity value reported by an individual was 3.5 and that her standard deviation

was 1. Then, if the reported familiarity level of this individual in law was 3, we give law a value of

-0.5 because it is half a standard deviation below her mean. Following this procedure for all individuals

15Appendix Section B uses the survey data to examine the possible direct link between familiarity and major choice. Due
to endogeneity concerns, the causal direction is difficult to ascertain and we therefore leave it to the interested reader to
explore this relationship in the Appendix.
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and all majors, we report the average deviations by gender in the columns 4 and 5 of Table 10. In the

sixth column, we again test for the difference between these values. We find that men report having

greater familiarity with the physical and social sciences, while women report having greater familiarity

with biology, health, and psychology. Other than for psychology, all of these differences are significant at

the 5 percent level or better. These results might help explain why men seem to gravitate towards the

physical and social sciences and why women seem to gravitate towards health related fields (Carnevale et

al. (2011) and American Association of Medical Colleges (2012)).

We have examined the same two types of tables focusing on race, but we have found little differences

between the racial groups. One likely explanation for this is that the three Massachusetts colleges and

universities tend to be predominately white. In fact, 81% of our survey respondents are white, while only

3% are black and 3% are Latino. In the future, we are interested in examining whether race is related to

familiarity by surveying a wider variety of schools.

5 Discussion and Conclusion

In the sections above, we have shown that uncertainty can influence students’ expectations of earnings and

choice of majors. In our simple theoretical model, we find that greater uncertainty within a particular

major pushes students away from that major and that greater uncertainty across all majors might push

students into non-STEM majors. We have also provided direct evidence from a survey that students

indeed respond to uncertainty in the manner predicted by our robust control model and not a Bayesian

model.

An interesting point about the impact of this uncertainty involves the potential feedback loop between

wages and the number of college majors in that field. Many presume that, if there is a shortage of

graduates in a particular field, then the wages associated with that major will rise; this, in turn, would be

expected to induce an influx of students into that major. However, this model suggests that the feedback

loop might be relatively insensitive. That is, even if there is a shortage of graduates in a field and wages

rise, many students might decide not to enter that major because of their uncertainty. At high levels of

uncertainty, the students discount the high wages, fearing that they would not be likely to achieve those

salaries. This then implies that, even though wages in the STEM majors are relatively high, a relatively

small number of students would enter that major.

A simple policy change might mitigate the deleterious effects of uncertainty: colleges and universities

should be more transparent about the future prospects of students in each major. This increased infor-

mation would allow students to choose majors knowing the actual wage and employment data, rather than

guarding against the future worst-case scenarios. In fact, this policy change is already being implemented
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by individual schools16, many states17, and is being considered at the national level.18 These initiatives,

by reducing student uncertainty, should help students make informed decisions about their college major,

a decision that has a large influence on their future employment opportunities. Also, if the theoretical

model is correct, these policies should induce more students to choose STEM majors.

16The University of Chicago and The University of Texas
17In Virginia, for example, The State Council of Higher Education for Virginia has begun to post online the median wage

by major and by school of Virginia graduates who are employed in Virginia. The Council also posts the percentage of
graduates who are employed in Virginia and a measure of the graduates’ wage dispersion by major. This initiative towards
greater transparency is being replicated to varying degrees in Arkansas, Tennessee, Texas, Colorado, and Nevada (Marcus,
2013).

18“The Student Right to Know Before You Go” bill being proposed in Congress

19



Appendices

A Survey

Survey Title: Survey Regarding Majors

Administration: Internet via Survey Monkey

Rules: Forced responses to all questions prior to demographics section.

Incentive: Completion of the survey enters the respondent into a drawing to win one of six $50 gift cards.

Text of Survey:

Page 1:

Thank your for taking the time to complete this survey. The purpose of this study is to ascertain aspects

of major choice through the following survey. As a thank you for participating you will be entered into a

random drawing to win one of six $50 Amazon gift cards. E-mail addresses will be used to contact drawing

winners.

Please remember participation in this study is entirely voluntary, and you may terminate your participa-

tion at any time. Your responses will only be identified by code number. Any mapping of names to e-mail

addresses will be stored offline and destroyed after the completion of the project. Any questions about

this survey and project may be direct to Dr. Anil Nathan (508-793-2680, anathan@holycross.edu).

Page 2:

1. For each of the categories below, please indicate whether you have a close family member or acquain-

tance that majored in or works in that field?

Response: Yes or No for each field listed in Table 4

Page 3:

2. For each of the categories below, please indicate your level of familiarity with that field’s employment

prospects?

Response: 1 - not familiar 2 3 4 5 6 7 - extremely familiar

Page 4:
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3. For each of the categories below, please indicate your level of familiarity with that field’s potential

salaries?

Response: 1 - not familiar 2 3 4 5 6 7 - extremely familiar

Page 5:

4. For each of the categories below, how difficult do you believe the classes in that undergraduate field to

be?

Response: 1 - very easy 2 3 4 5 6 7 - almost impossible

Page 6:

5. For each of the categories listed below, imagine that you have graduated from college with this as your

major. How likely are you to find employment?

Response: 1 - very unlikely 2 3 4 5 6 7 - very likely

Page 7:

6. For each of the categories below, what is the average salary for a typical person with an undergraduate

degree in that field? In coming up with your answer, please consider all of the possible career paths that

one could take after graduation, including those that require a graduate degree.

Response: Free numeric response

7. For each of the categories below, what is the average salary for a typical person with ONLY an under-

graduate degree in that field? In coming up with your answer, please consider all of the possible career

paths that one could take after graduation?

Response: Free numeric response

Page 8:

8. Have you declared a major?

Response: Yes or No
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9. In which of the following fields is your major? If you have not yet declared a major, in which field

would you choose a major if you were forced to make a choice today?

Response: One of the fields listed in Table 4

Page 8:

10. What is your gender?

Response: Male, Female, or Prefer not to answer

11. What is your age?

Response: Free numeric response

12. Which of the following best fits how you would describe yourself?

Response: White, Black, Latino, Asian, or Other

Page 9:

13. Do you currently receive any form of federal financial aid (such as a Pell Grant, Subsidized Stafford

Loan, or a Perkins Loan)?

Response: Yes or No

14. Are you a U.S. resident? Response: Yes or No

Page 10:

15. Thank you for completing the survey! Please provide the email address that we should use to contact

you should you win our prize drawing.

B Familiarity and Major Choice

In Section 4, we examined whether the model’s mechanism – namely, that familiarity is positively related

to expected salaries – was relevant in an educational setting. We found strong evidence in support of that

mechanism. In this section, we explore whether greater uncertainty (less familiarity) is correlated with a
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lower likelihood that a student will enroll in that major, as predicted by the theoretical model.

Appendix Table 2 presents the students’ reported levels of earnings familiarity for their own major (or

announced intended major) and compares that level with the familiarity score of all other majors. On

average, respondents gave their intended major a familiarity rating of 4.6 out of 7 and all other majors

a 3.4 rating. Thinking about the ratings in terms of rank order of familiarity based on these ratings, the

respondents gave their intended major between the second and third highest ranking (average of 2.7) of

the eleven major fields. Appendix Table 2 also presents this data by each major field that a respondent

may have chosen. Though some fields have very few intended majors, most have at least 20 intended

majors. With every major field, students’ familiarity with their intended major averaged in the top half

of their ratings and six fields had average rankings between one and two.

The average reported value of a major’s perceived difficulty and employment prospects of each field of

majors are also presented in Appendix Table 2. Though respondents tend to rate their intended major

as more difficult and to have better employment prospects than more than half of the other majors, the

values are much closer to the middle than their familiarity rankings. This suggests that there may be a

clearer relationship between familiarity and major choice than other dimensions that contribute to the

choice of major.19

Next we attempt to test the relationship between familiarity and intended choice of major. The

coefficients in Appendix Table 3 are the mean marginal effects (MMEs) from a probit analysis predicting

the probability that a particular major is chosen as a respondent’s intended major.20 The explanatory

variable of interest is earnings familiarity, but we also include the respondents’ major-specific reports of

difficulty levels and the likelihood of employment following graduation as independent variables. Dummy

variables for each major field are included in the probit analysis to account for any general trends in major

choice.

Column [1] of Appendix Table 3 presents the MMEs if the values for earnings familiarity, difficulty of

courses, and job prospects following graduation are used. The results show that a one unit increase in

a respondent’s familiarity rating increases the likelihood that they will choose a major by 2.5 percentage

points. This finding is significant at the one percent level. The results suggest that familiarity is a more

important predictor of major choice than the difficulty of the course work (0.6 percentage points per unit

change and not significant at traditional levels) and on par with a one unit change in the rating for job

prospects following graduation (2.3 percentage points per unit).

Rather than simply use the reported values of familiarity which do not provide any information on a

19We will address the possibility of an endogenous relationship between our familiarity measure and the choice of major
below.

20Mean marginal effects present the average change in probabilities of a one unit change in a covariate based on the probit
coefficients. The average is taken across all observations with all other variables valued at their reported value, not their
mean value as would be used if calculating “marginal effects at the mean.”
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student’s view of where one major field stands relative to others, a better approach would be to rank the

fields of study based on these ratings. Specifically, we include the relative rankings of familiarity, difficulty,

and employment prospects as explanatory variables and re-run the probit regression. The results from this

specification can be found in Column [2] of Appendix Table 3. The MMEs for all categories have changed

signs as the impact examined has changed from an increase in the familiarity, difficulty, or employment

prospects to the drop of the ranking of those values by one unit. We see that a one unit drop in the

rank of the familiarity with potential earnings (say from 1st to 2nd or 4th to 5th highest familiarity) is

associated with a 1.8 percentage point decline in the probability of majoring in a particular field. This

result continues to be significant at the 1% level.

One potential concern about these last tests is that the measure of familiarity used in columns [1] and

[2] may be endogenous to the choice of major or intended major. Specifically, a student may only become

familiar with the earnings of a particular major after having chosen that major. To address this concern,

columns [3] and [4] of Appendix Table 3 present the results of a similar analysis where familiarity is based

on the survey question that asks respondents if they have family or a close acquaintance in a particular

major field. Though one’s familiarity rating may improve as they learn more about an intended major, it is

less likely that their choice could have influenced their family members or close acquaintances. Consistent

with our earlier results, we see that a respondent who has a family member or close acquaintance in a field

is 5.7% to 6.1% more likely to major in (or report that they intend to major in) that field. The qualitative

results for difficulty and employment prospects remain similar to those from the previous specification:

difficulty remains largely unrelated (either statistically or economically, or both) to major choice, while an

improvement in employment prospects is positively related to major choice.
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Table 1: Assumed Wage Distribution for Each Type of Major

Income at the Income at the Income at the Unemployment
75th percentile median 25th percentile income

Biology $117,000 $65,000 $38,000 $14,000

Business $96,000 $60,000 $36,000 $14,000

Education $64,000 $47,000 $32,000 $14,000

Engineering $120,000 $85,000 $55,000 $14,000

Health $90,000 $62,000 $43,000 $14,000

Humanities $75,000 $47,500 $27,000 $14,000

Law and public policy $76,000 $50,000 $30,000 $14,000

Mathematics and computer science $106,000 $75,000 $46,000 $14,000

Physical science $118,500 $72,000 $40,000 $14,000

Psychology $72,000 $48,000 $30,000 $14,000

Social science $60,000 $35,000 $14,000 $14,000
Source: American Community Survey and unemployment income estimate based on Shimer (2005)

Table 2: Assumed Probability Distribution Over Wages for Each Type of Major

Probability:

75th percentile Median 25th percentile Unemployed

Biology 0.2435 0.4870 0.2435 0.0259

Business 0.2398 0.4796 0.2398 0.0408

Education 0.2448 0.4896 0.2448 0.0207

Engineering 0.2420 0.4839 0.2420 0.0321

Health 0.2447 0.4895 0.2447 0.0211

Humanities 0.2399 0.4798 0.2399 0.0404

Law and public policy 0.2374 0.4747 0.2374 0.0506

Mathematics and computer science 0.2404 0.4808 0.2404 0.0385

Physical science 0.2427 0.4854 0.2427 0.0291

Psychology 0.2399 0.4798 0.2399 0.0404

Social science 0.2398 0.4795 0.2398 0.0409
Source: American Community Survey

29



Table 3: Percentage of Students Choosing Each Major for Different Levels of θ

No uncertainty Little uncertainty More uncertainty High uncertainty

(θ →∞) (θ = 1) (θ = 1
2
) (θ = 1

10
)

Biology 9.48% 7.98% 10.2% 12.97%

Business 2.07% 2% 2.65% 4.96%

Education 0.03% 0.13% 1.07% 17.89%

Engineering 46.65% 46.47% 35.54% 9.41%

Health 4.85% 9.44% 21.33% 15.23%

Humanities 0.01% 0.01% 0.05% 5.82%

Law and public policy 0.05% 0.11% 0.2% 3.61%

Mathematics and computer science 18.7% 17.4% 12.09% 8%

Physical science 15.71% 14.65 14.32% 11.04%

Psychology 0.02% 0.1% 0.31% 6.83%

Social science 2.43% 1.7% 2.26% 4.23%

Table 4: List of Major Categories

Major area Examples given to respondents (if any)

Biology and life science Biology, Ecology, and Environmental Science

Business Finance, Management, and Marketing

Education

Engineering Architecture and Mechanical Engineering

Health Health Administration, Nursing, and Public Health

Humanities and arts English, History, Languages, and Philosophy

Law and public policy Pre-law and Public Administration

Mathematics and computer science

Physical sciences Chemistry, Geology, and Physics

Psychology and social work

Social sciences Economics, Political Science, and Sociology
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Table 5: Respondents’ Familiarity with Majors

Family or Close Familiarity with Familiarity with
Acquaintances Earnings Employment Prospects

Fields Mean S.D. Mean S.D. Mean S.D.

Biology 0.31 0.46 3.70 1.89 3.18 1.90
Business 0.64 0.48 3.99 1.69 3.92 1.85
Education 0.54 0.50 4.64 1.70 4.50 1.77
Engineering 0.43 0.50 4.09 1.87 4.33 1.96
Health 0.50 0.50 4.46 1.79 4.17 1.93
Humanities 0.38 0.49 3.42 1.58 2.82 1.60
Law 0.34 0.47 3.88 1.76 3.88 1.85
Math 0.34 0.48 3.66 1.68 3.21 1.82
Physical Sciences 0.27 0.44 3.55 1.71 2.90 1.73
Psychology 0.31 0.47 3.81 1.74 3.15 1.70
Social Sciences 0.32 0.47 3.44 1.65 2.85 1.63

Values
0 = No, 1=Not Familiar, 1=Not Familiar,
1= Yes 7=Extremely Familiar 7=Extremely Familiar

Note: Summary statistics based on survey responses by college freshmen.

Table 6: Correlation between Familiarity Measures

Family or Close Familiarity with Familiarity with
Acquaintance Earnings Employment Prospects

Family or Close Acquaintance 1

Familiarity with Earnings 0.249 1

Familiarity with Employment Prospects 0.267 0.550 1

Table 7: Respondents’ Average Salary Beliefs by Field

All graduates All graduates
in this field without advanced

degrees

Mean S.D. Mean S.D.

Biology 73790 55613 54516 31300
Business 80934 47923 58944 28148
Education 46973 22958 38196 16711
Engineering 86397 42329 64975 33708
Health 76740 50976 54143 25450
Humanities 46673 25351 38186 19111
Law 85501 45842 56180 25028
Math 75720 51617 57825 34275
Physical Sciences 71789 51956 52532 21575
Psychology 54541 27708 43886 33717
Social Sciences 61582 43434 46210 22347

Note: Summary stats based on survey responses by college freshmen.
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Table 8: Respondents’ View of Majors

Difficulty of Expected Employment
Courses Prospects

Fields Mean S.D. Mean S.D.

Biology 4.96 1.09 4.74 1.44
Business 3.96 1.09 5.14 1.29
Education 3.22 1.05 4.20 1.40
Engineering 5.56 1.05 5.62 1.37
Health 4.84 1.27 5.41 1.34
Humanities 3.43 1.30 2.86 1.33
Law 4.96 1.09 4.60 1.32
Math 5.34 1.11 5.27 1.33
Physical Sciences 5.33 1.18 4.57 1.35
Psychology 3.50 1.24 3.92 1.32
Social Sciences 3.81 1.26 3.86 1.31

Values
1=Very Easy, 1=Very Unlikely,

7=Almost Impossible 7=Very Likely

Note: Summary statistics based on survey responses by college freshmen.
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Table 9: Average Salaries by Field and the Effect of Uncertainty

[1] [2]
OLS OLS with Fixed Effects

Familiarity with potential 0.048*** 0.040***
earnings (1 to 7) [11.517] [11.075]

Gender 0.042***
[2.745]

Age -0.027***
[-2.745]

Race: Black -0.041
[-0.968]

Race: Asian -0.073***
[-2.802]

Race: Latino 0.017
[0.305]

Race: Other 0.001
[0.024]

Receives financial aid -0.078***
[-5.017]

Field: Biology 0.162*** 0.165***
[4.623] [7.479]

Field: Business 0.235*** 0.244***
[6.665] [10.919]

Field: Education -0.302*** -0.289***
[-8.455] [-12.661]

Field: Engineering 0.314*** 0.326***
[8.823] [14.387]

Field: Health 0.156*** 0.167***
[4.410] [7.419]

Field: Humanities -0.254*** -0.254***
[-7.247] [-11.553]

Field: Law 0.303*** 0.311***
[8.582] [13.949]

Field: Mathematics 0.198*** 0.201***
[5.655] [9.130]

Field: Physical Sciences 0.156*** 0.157***
[4.461] [7.128]

Field: Psychology -0.107*** -0.105***
[-3.061] [-4.763]

Constant 11.296*** 10.782***
[61.324] [578.178]

R2 0.214 0.395
Observations 3,641 3,641

t-statistics in parenthesis. * p<0.1; ** p<0.05; *** p<0.01.

Note 1: Dependent variable is log estimated average salary. Excluded field is social sciences.

Note 2: Results are based on data from survey responses by college freshmen.
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Table 10: Familiarity Differences by Gender

Reported Values Deviations
Male Female t-stat Male Female t-stat

Biology 3.08 3.26 0.87 -0.38 -0.13 2.33**
Business 4.03 3.81 -1.11 0.31 0.20 -1.08
Education 4.60 4.45 -0.79 0.78 0.79 0.14
Engineering 4.48 4.20 -1.31 0.62 0.51 -1.08
Health 4.08 4.26 0.89 0.30 0.55 2.52**
Humanities 2.78 2.87 0.52 -0.60 -0.49 1.17
Law 3.88 3.89 0.04 0.19 0.30 1.10
Math 3.41 3.09 -1.60 -0.16 -0.27 -1.15
Physical Sciences 3.19 2.70 -2.56** -0.30 -0.59 -3.48***
Psychology 3.06 3.23 0.89 -0.38 -0.22 1.68*
Social Sciences 3.10 2.66 -2.47** -0.38 -0.64 -2.97***

Obs 145 193 130 173

* p<0.1; ** p<0.05; *** p<0.01.

Note 1: Deviations based on individual means and standard deviations of familiarity responses to all majors.

Those with no deviations in their responses across major are not included in the “Deviations” section above.

Note 2: Summary statistics based on survey responses by college freshmen.

34



Appendix Table 1: Average Salaries by Field and the Effect of Uncertainty if Limited to No Advanced
Degrees

[1] [2]
OLS OLS with Fixed Effects

Familiarity with potential 0.044*** 0.036***
earnings (1 to 7) [10.517] [10.195]

Gender 0.070***
[4.623]

Age -0.029***
[-2.893]

Race: Black -0.088**
[-2.103]

Race: Asian 0.001
[0.035]

Race: Latino -0.151***
[-2.679]

Race: Other 0.044
[1.091]

Receives financial aid -0.066***
[-4.233]

Field: Biology 0.144*** 0.146***
[4.109] [6.830]

Field: Business 0.195*** 0.204***
[5.555] [9.395]

Field: Education -0.250*** -0.237***
[-7.019] [-10.683]

Field: Engineering 0.270*** 0.281***
[7.604] [12.786]

Field: Health 0.091*** 0.102***
[2.587] [4.658]

Field: Humanities -0.213*** -0.213***
[-6.095] [-9.966]

Field: Law 0.154*** 0.162***
[4.379] [7.482]

Field: Mathematics 0.201*** 0.204***
[5.749] [9.516]

Field: Physical Sciences 0.141*** 0.142***
[4.045] [6.630]

Field: Psychology -0.093*** -0.090***
[-2.655] [-4.223]

Constant 11.057*** 10.542***
[60.259] [581.985]

R2 0.161 0.315
Observations 3,641 3,641

t-statistics in parenthesis. * p<0.1; ** p<0.05; *** p<0.01.

Note 1: Dependent variable is log estimated average salary for individuals

with no advanced degrees. Excluded field is social sciences.

Note 2: Results are based on data from survey responses by college freshmen.
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Appendix Table 2: Summary Statistics by Choice of Major or Intended Major

Familiarity with earnings Difficulty Job
of Courses Prospects

Own All other Rank of Rank of Rank of Number of
Major majors Own Major Own Major Own Major Majors

All Fields 4.55 3.44 2.71 4.11 3.60 340

Biology 4.96 3.94 2.60 2.94 2.49 47

Business 4.57 2.93 1.54 5.46 2.68 28

Education 5.00 2.60 1.00 7.50 3.00 2

Engineering 5.94 3.10 1.10 1.92 1.12 52

Health 5.86 3.69 1.61 2.54 1.86 28

Humanities 3.03 3.27 4.69 6.31 7.97 32

Law 5.29 3.43 1.14 2.86 3.00 7

Math 4.11 2.86 2.05 2.68 2.16 19

Psychology 4.42 4.22 4.08 2.38 3.27 26

Physical Sciences 4.33 3.42 2.85 6.28 4.79 39

Social Sciences 3.43 3.42 3.97 5.67 5.45 60
Note 1: Ratings are on a scale of 1 to 7 and ranks 1 to 11.

Note 2: Summary statistics based on survey responses by college freshmen.
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Appendix Table 3: Measuring the Impact of Familiarity on the Probability of Choosing a Major

[1] [2] [3] [4]
Familiarity with Family or Close

Earnings Acquaintance in Field

Rating Rank Rating Rank

Familiarity with potential 0.025***
earnings (1 to 7) [9.478]

Rank of familiarity with potential -0.018***
earnings (1 to 11) [-9.677]

Family or Close Acquaintance 0.057*** 0.061***
in Field [5.734] [6.066]

Difficulty of courses 0.006 0.006
(1 to 7) [1.431] [1.560]

Rank of difficulty in -0.002 -0.004**
courses (1 to 11) [-1.236] [-2.030]

Likelihood of employment if 0.023*** 0.032***
major in field (1 to 7) [6.007] [8.575]

Rank of likelihood of employment -0.011*** -0.014***
if major in field (1 to 11) [-5.785] [-7.869]

Observations 3,740 3,740 3,740 3,740

t-statistics in parenthesis. * p<0.1; ** p<0.05; *** p<0.01.

Note 1: Coefficients presented are the mean marginal effects of a probit where the dependent variable

is whether a respondent intends to major in the field they are evaluating. Field indicator variables

are included in all specifications.

Note 2: Analysis results are based on data from survey responses by college freshmen.
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