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Abstract: Group sequential design is widely used in today’s phase II/III clinical trials where testing multiple endpoints is 
quite often performed. In such tests, a basic requirement is to control the family-wise error rate at a given nominal level. The 
design is determined by a set of testing statistic and stopping boundaries (rules). Existing methods compute the stopping 
boundaries use Normal approximations, which work well when the true underlying data distribution is approximately 
Normal, but with small sample sizes the Normal approximation may not be valid. In an attempt to overcome these 
difficulties, we propose a robust method to compute the stopping boundaries in which it is assumed only that the data 
distributions are symmetric about their means. The null and alternative distributions are then constructed via the 
empirical distribution as well as the stopping boundaries for the given nominal level. Powers for the test statistics are 
obtained by bootstrap simulation, which is always valid for any sample size, and correlations between test statistics are 
automatically taken care of. Simulation examples are given to illustrate the proposed method. 
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1. INTRODUCTION 

Conducting a clinical trial is an expensive and time-
consuming process. Consequently, there is value in 
stopping a phase II/III early if there is unambiguous 
evidence for or against the intervention’s efficacy or if 
unexpected conditions require modification to the 
design. In such cases a group sequential (GS) design 
may be used. The group sequential (or multi-stage) 
design was pioneered [22, 25] and further studied by 
many (e.g. [1, 2, 11, 12, 21, 30, 32]). After each stage 
of a GS design, interim analyses are conducted and 
compared against a predetermined stopping rule. If 
results are more extreme than the stopping rule for that 
stage, then the trial is terminated. It is common for GS 
designs to have multiple outcomes of interest, and so to 
incorporate multiple endpoints corresponding to the 
outcomes into their stopping rule. The stopping rule is 
therefore constructed as a stage and endpoint-
dependent boundary on the test statistics in order to 
limit the family-wise error rate (FWER) to a given level. 

Existing methods for constructing stopping rules rely 
on assumptions that are not robust for small sample 
sizes. In an attempt to overcome this difficulty, we 
propose a robust method to compute the stopping 
boundaries in the case of one-armed studies. The 
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extension to two or more arms and multiple endpoints is 
briefly discussed in the last section. The proposed 
method can be viewed as an exact test for continuous 
data, in which the critical boundaries are determined by 
the empirical distribution of the observed data, instead of 
asymptotic distribution.  

In Section 2 we describe the existing methods for 
constructing stopping rules for GS designs. Section 3 
provides the set-up and notation for the proposed 
method, which is introduced in section 4 for the 
treatment-only and treatment-placebo cases. Illustra- 
tive examples using the method are provided in section 
5 and a brief discussion is given in the final section. 

2. EXISTING METHODS 

Many existing methods (e.g. [3, 5, 11, 16, 23, 26, 
36, 37]) compute stopping boundaries using Normal 
distributions on the multiple test statistics. [17] Proposed a 
method to test hypothesis about the secondary boundary. 
All these methods are easy to implement and work well 
when the true underlying distribution is approximately 
Normal.  

In practice, there are two problems with the Normal 
approximation. The sample sizes in phase II/III clinical 
trials are sometimes small, under which the Normal 
approximations for the test statistics may not be valid 
even when joint Normality holds for the true distributions. 
Even if the Normal approximation is valid, the family-
wise error rate depends on unknown correlations among 
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these test statistics. In the latter case a correlation 
structure must be assumed. [29] investigated the 
behavior of stopping boundaries under normal 
distribution of the data and showed that for some 
boundaries the FWER are not controlled at the given 
nominal level. In fact, for many cases the actual 
significance level is smaller than the nominal level and 
the nominal level is achieved only if the primary and 
secondary points are in perfect positive correlation. The 
resulting boundaries used by methods assuming joint 
Normality are therefore generally conservative. 
Moreover, under joint Normality there are no 
closed form solutions for the stopping boundaries. 

Naively, the drawbacks of assuming joint Normality 
for small samples suggest that some sort of exact test 
may be a better approach. The exact test for 
contingency table data proposed by [6] is popular for 
small sample sizes. It has been extensively studied and 
extended to various types of discrete data (e.g. [4, 8, 9, 
19, 28, 35]). [19] provide a rather complete collection of 
results and recent developments in this area that 
includes an extension of discrete results to continuous 
data. For most continuous data problems, the data are 
either converted into ranks or discretized to use these 
methods, which leads to reduced efficiency as not all 
information is being used. In only a few methods are 
the original continuous data used in such tests, such 
as the Kolmogorov-Smirnov test. These methods 
obtain the p-value is obtained by Monte Carlo sampling 
from the empirical distribution. Unfortunately, these 
methods do not apply to the case of location 
parameters under the null and alternative hypothesis.  

Another way to implement null and alternative 
parameters for the stopping boundary into the empirical 
distribution is via empirical likelihood (e.g. [24, 27]). 
This method does not require any assumptions about 
the data distribution and is more robust, but the effect 
of the parameter implemented this way via empirical 
weights is not clear. Nor does this method lead to 
closed form construction of the distribution, and 
asymptotic approximation may not be valid given the 
sample sizes common for this problem. 

In our method, we attempt to overcome the 
weaknesses in existing methods described above. We 
do not convert the raw data into ranks or discretize them 
and only assume that the data distributions are symmetric 
about their location parameters. The null and alternative 
distributions will then be  constructed via the empirical 
distribution, and the stopping boundaries obtained by 

bootstrap sampling from the symmetric empirical 
distributions. This approach is valid for any sample size 
and, as correlations between test statistics are 
automatically taken care of, the given nominal level 
can be approximately achieved.  

3. SET-UP AND NOTATION FOR THE PROPOSED 
METHOD 

For concreteness, we focus on the case of a two-
stage GS design with primary and secondary 
endpoints. The general case of multi-stage designs with 
multiple endpoints is similar and will be briefly 
discussed. Let (x1,…,xn) be the responses of the primary 
endpoint; (y1,…,yn)be those for the secondary 
endpoints. Here x1,…,xn are i.i.d. with X, with E(X) =u1; 
y1,…,yn are i.i.d. with Y, with E(Y) = u2. The stage-one 
interim analysis is for the first n1 observations (typically 
n1 ≈ n/2, and for a k-stage trial, the sample size for each 
stage j is roughly nj≈ n/k). The goal is to test the 
hypotheses H1 :u1 = 0 vs u1 > 0 and H 2 :u2 = 0 vs u2 > 0 , 
The hypothesis H2 will be tested if and only if is 
rejected either at the first stage or at the second stage, 
i.e. the primary endpoint acts as the gatekeeper for the 
secondary endpoint. For this, standard test statistics 
for the primary and secondary endpoints at the two 
stages are constructed. For simplicity of exposition we 
assume they are of the form 

T1 = n1
1

n1! t ,1

xi
i=1

n1

" , T2 = n 1
n! t ,2

xi
i=1

n

" ,

S1 = n1
1

n1! s,1

yi ,
i=1

n1

" S2 = n 1
n! s,2

yi
i=1

n

"
 

where the ! '  s are the corresponding standard 
deviations.  

For this problem, the family-wise error rate (FWER) 
requirement is, for some pre-specified nominal level α, 

FWER = P Reject at least one true H j j = 1, 2( )( ) ! ".      (1) 

Let (c1, c2) and (d1, d2) be the stopping boundaries 
for (T1, T2) and (S1, S2), in the sense described below. 
The GS procedure is as follows: 

Stage 1. Take n1  observations x1, ..., xn1  from the 
primary endpoint and test H1  using T1 . If T1 ! c1  
continue to Stage 2. If T1 > c1 , reject H1  and take 
observations y1, ..., yn1  from the secondary endpoint 
and test H 2  by S1 . If S1 > d1 , reject H 2 ; otherwise 
accept H 2 . In either case terminate the trial. 
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Stage 2. Take additional observations xn1+1, ..., xn  
from the primary endpoint and test H1  by T2 . If 
T2 ! c2 ,  accept H1  and terminate the trial. If T2 > c2 , 
reject H1 and take additional observations yn1+1, ..., yn  
from the secondary endpoints and test H 2  by S2 . If 
S2 > d2 , reject H 2 ; otherwise accept H 2 . Terminate 
the trial. 

Now the problem amounts to the choice of the 
stopping boundaries c1, c2( )  and d1, d2( )  as described 

below. 

The Stopping Boundaries 

The critical boundaries c1, c2( )  and d1, d2( )  should 
be chosen to satisfy the FWER requirement (1). For 
this, the following two conditions (2) and (3) are to be 
satisfied. 

FWER1 = PH1 T1 > c1( ) + PH1 T1 ! c1, T2 > c2( ) ! ".        (2) 

FWER = PH 2 T1 > c1, S1 > d1( ) + PH 2 T1 ! c1, T2 > c2 , S2 > d2( ) ! ".
             (3) 

Any pair c1, c2( )  satisfying (2) is referred to as α-
level boundary for the primary endpoint. They may not 
be unique, i.e. there may be some other 

!c1, !c2( ) " c1, c2( )  and !c1, !c2( )  also satisfies (2). 

Condition (3) defines the joint boundaries c1, c2( )  and 
d1, d2( )  for the primary and secondary endpoints. 

Again, these boundaries are not unique and there are 
different commonly adopted ones. The O’Brien-Fleming 
boundary has the form c2 = ! c1 , while the Pocock 
boundary are c2 = c1 . More generally, we can use the 
error spending function of [13] to calculate the primary 
boundary. Let ! (·) be a non-decreasing function on [0, 
1] with ! (0) = 0 and !  (1) = ! , then c1, c2( )  can be 
calculated by 

PH1 T1 > c1( ) = ! n1
n

"
#$

%
&' , and PH1 T1 > c1( ) + P T1 ( c1, T2 > c2( ) = ! 1( ) = !.

 

4. THE PROPOSED METHOD 

We concentrate on the case of two stages with 
primary and secondary endpoints. The case of multiple 
stage with multiple endpoints will be similar and will be 
briefly described at the end of the article. Although the 
case of multiple secondary endpoints was discussed in 
[3, 26, 12] discussed the case of multiple primary 
endpoints with Bonferroni correction of the nominal level. 
These methods do not consider the FWER requirement. 

Let F1 .( )  be the distribution function of X, F2 .( )  be 

that of Y , and F ., .( )  be the joint distribution function 
of (X, Y ) . We construct the empirical distribution 
functions based on the observed data under 
assumption (A): the data distribution F ., .( )  is 

symmetric about u1, u2( ) . Given this assumption, we 
then obtain the empirical null and alternative 
distributions with which the stopping boundaries are 
derived. Calculation of statistical power follows in a 
straightforward manner. We note that assumption (A) 
implies the Fj .( )  are symmetric about u j j = 1, 2( ) . It is 
a reasonable assumption for this problem, and much 
more flexible than assuming joint Normality. More 
generally, we can implement the location parameter 
u1, u2( )  into the empirical distribution by empirical 

weights without any shape assumptions via the method 
of empirical likelihood. A drawback of this approach is 
that the empirical weights cannot be computed in 
closed form in general, and the effect of the parameters 
on the resulting empirical distribution is not directly 
visible. 

By assumption (A) we have 

F1 x( ) = 1! F1 2µ1 ! x ! 0( ) for all x,  

and P X,Y( ) ! x, y( )( ) = P X,Y( ) " 2µ1 # x, 2µ2 # y( )( ) for all x, y( ). Since  

P X,Y( ) ! 2µ1 " x, 2µ2 " y( )( ) = 1" P X,Y( ) < 2µ1 " x, 2µ2 " y( )( )  

!P X < 2µ1 ! x,Y " 2µ2 ! y( ) ! P X " 2µ1 ! x,Y < 2µ2 ! y( )  

= 1! P X,Y( ) < 2µ1 ! x, 2µ2 ! y( )( ) ! P X < 2µ1 ! x( ) ! P X,Y( ) < 2µ1 ! x, 2µ2 ! y( )( )( )  

! P Y < 2µ2 ! y( ) ! P X,Y( ) < 2µ1 ! x, 2µ2 ! y( )( )( )  
= 1! F1 2µ1 ! x ! 0( ) ! F2 2µ2 ! y ! 0( ) + F 2µ1 ! x ! 0, 2µ2 ! y ! 0( )  

Thus, under assumption (A) together with the above we 
have 

F x, y( ) = 1! F1 2µ1 ! x ! 0( ) ! F2 2µ2 ! y ! 0( ) +
F 2µ1 ! x ! 0, 2µ2 ! y ! 0( ) for all x, y( )

 

Let F1,n  (·) be the empirical distribution function of F1  
(·) based on the data x1, ..., xn ,F2,n  (·) be that of F2  (·) 
based on the data y1, ..., yn , and Fn  (·, ·) be the 
empirical distribution function of F  (·, ·) based on the 
data x1, y1( ), ...., xn , yn( ) . Then under assumption (A), for 

given µ1 , the empirical estimate F̂1,n ! | µ1( )  of F1, F  
based on the data x1, ..., xn  is (c.f. [10, 13]). 
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F̂1,n x / µ1( ) = 1
2
F1, n x( ) +1! F1, n 2µ2 ! x ! 0( )( ).  

In fact, F̂1,n ! | µ1( )  is just the uniform distribution over 
the 2n points {x1, ..., xn , 2µ1 ! x1, ..., 2µ1 ! xn} . Similarly, 
for given µ1, µ2( ) , under assumption (A), the empirical 

estimate F̂1 !, ! | µ1, µ2( )  of F !, !( )  based on the data 

x1, y1( ), ...., xn , yn( )  is 

F̂n x, y | µ1, µ2( ) = 1
2
(Fn x, y( ) +1! F1, n 2µ1 ! x ! 0( )

!F2, n 2µ2 ! y ! 0( ) + Fn 2µ1 ! x ! 0, 2µ2 ! y ! 0( ))  

and F̂n !, ! | µ1, µ2( )  is just the uniform distribution over the 
2n points { x1, y1( ), ..., xn , yn( ), 2µ1 ! x1, 2µ2 ! y1( ), ...,  
2µ1 ! xn , 2µ2 ! yn( )}.  

Below we compute the stopping boundaries c1, c2( )  

= cn1,1, cn,2( )  and d1,d2( )  = dn1,1,dn,2( )  under the 

empirical distributions F̂1, n1 ! | 0( )  and F̂n !, ! | 0, 0( ) , by 
bootstrap simulation described below. Let N be the total 
number of bootstrap samples (typically, N ≥ 10, 000), and 
we choose the error spending function as 
! n1 / n( ) = !n1 / n . 

Choice of c1 = cn1,1 . Draw m bootstrap samples 

x1
k( ) , ..., xn1

k( )  from F̂1,n1 ! | 0( ) k = 1,...,N( )  under H1 , i.e. 
with µ1 = 0 . For each sample k, compute the statistics 

T1
k( ) k = 1,...,N( ) , and set cn1,1  be the solution of the 

equation 

PH1 T1 > c1( ) = ! n1
n

"
#$

%
&'  

Then cn1,1  is the 1!" n1
n

#
$%

&
'(

#
$%

&
'(

-th upper sample 

quantile of T1
1( ) , ...,T1

N( ) , which is the empirical 

1!" n1
n

#
$%

&
'(

#
$%

&
'(

-th upper quantile of T1  under the null 

hypothesis H1 . 

Choice of c2 = cn,2 . For c1  given in the above 
relation, we solve c2  from the following equation, 
corresponding to expression (2), 

! = PH1 T1 > c1( ) + PH1 T1 " c1, T2 > c2( )  

= PH1 T1 > c1( ) + PH1 T2 > c2 |T1 ! c1( ) 1" PH1 T1 > c1( )( ) , 

or, with the notation “A:= B” means denote A as B, 

PH1 T2 > c2 |T1 ! c1( ) = " # PH1 T1 > c1( )
1# PH1 T1 > c1( ) =

" #" n1
n

$
%&

'
()

1#" n1
n

$
%&

'
()
:= " = "n,n1

"( )  

i.e., c2  is the 1!"( ) ! th  upper quantile of the 
conditional distribution PH1 T2 > c2 |T1 ! c1( ) . Since the 

event {T1 ! c1}  has probability 1!" n1 / n( ) , we draw 

N1 = N / 1!" n1 / n( )( )#$ %&  (note N1 ! m  in the above) 

bootstrap samples x1
k( ) , ..., xn

k( )  from 

F̂1,n ! | 0( ) k = 1, ...,N1( )  under H1, i.e. with µ1 = 0  so that 
there are about N samples which satisfy the condition 
T1

k( ) ! c1 , here T1
k( )  is computed from the first n1 

components of x1
k( ) , ..., xn

k( ) . Without confusion denote 

x1
k( ) , ..., xn

k( ) , for F̂1,n ! | 0( ) k = 1,...,N( )  be all such 
conditional samples Based on these N conditional 
samples, we compute T2

k( ) k = 1, ...,N( )  and set c2 to be 

the 1!"( ) ! th  sample upper quantile of T2
1( ) , ...,T2

N( ) . 

Choice of the Secondary Boundary 

[31] Show that if there is a group sequential 
procedure (GSP) which tests every intersection 
hypothesis at level α, then by the closure principle of 
[20], the FWER of the GSP is of level α. For two 
endpoints, with H1 and H2, there are only three 
intersections, H1 ∩ H2, H1 and H2, and a level α test for 
H1 ∩ H2 is also level α for H1 by the hierarchical testing 
of H1 and H2. However, given (c1, c2) there is no unique 
solution for (d1, d2) in equation (3). [11] studied the 
choice d1 = d2 = Zα, the upper (1−α)-th quantile of the N 
(0,1) distribution. [29] show that this choice does not 
control the FWER for all correlations between the two 
endpoints with given µ1. They also investigated three 
other configurations, (c1, c2) = (d1, d2), c1 > d1 and c2 < d2, 
and c1 < d1 and c2 > d2, and concluded in their 
Propositions 2-4 that the level α can be achieved for 
some choices of (µ1, µ2) only when the correlation 
between the primary and secondary endpoints is one. 
Their determination of (d1, d2) cannot be given in closed 
form, as they are the solution of a non-linear integration 
equation. 

We propose that it is more reasonable to choose d1 

= dn1,1 to match c1 for T1. Since  

PH1(T1 > c1) = α(n1/n), we choose d1 such that 

PH2 S1 > d1( ) = ! n1 / n( ).  
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Now, with (c1, c2, d1) given above, we set d2 = dn,2 as 
the solution in d2 of the following variant of equation (3) 

! = FWER = PH 2 T1 > c1, S1 > d1( ) + PH 2 T1 " c1, T2 > c2 , S2 > d2( ).
             (4) 

Remark. i) It is apparent that there is d2 to achieve 
(4) if and only if 

PH 2 T1 > c1, S1 > d1( ) + PH 2 T1 ! c1, T2 > c2( ) " #.        (5) 

This condition is not necessarily met for all data 
distributions, neither for the Normal approximation 
method. When PH2(T1 > c1, S1 > d1) + PH2(T1 ≤ c1,T2 > c2) = 
α, (4) is satisfied with d2 being the minimum point of 
support of S2; 

ii) When PH2(T1 > c1, S1 > d1) + PH2(T1 ≤ c1, T2 > c2) < α, 
equality in (4) cannot be achieved. We choose d2 such 
that 

PH2(S1 > d1) + PH2(S2 > d2) = α         (6) 

and the actual FWER will be computed via simulation. 

When condition (5) is satisfied, then 

! = PH2 T1 > c1, S1 > d1( ) +
PH2 S2 |> d2 |T1 " c1, T2 > c2( )PH2 T1 " c1, T2 > c2( )

 

or  

PH2 S2 > d2 |T1 ! c1, T2 > c2( ) = " # PH2 T1 > c1, S1 > d1( )
PH2 T1 ! c1, T2 > c2( ) := " = p1

p2
:= $2 ,  

i.e., d2 is the (1 − δ2)-th upper quantile of the conditional 
distribution PH2(S2 > d2|T1 ≤ c1, T2 > c2). To determine d2 

we need first to compute the quantities p1 and p2. 

Note that p1 = PH2 T1 > c1, S1 > d1 | µ1( )dQ µ1( )! ,  
where Q(·) is the distribution function of µ1. As Q(·) is 
unknown, we estimate it by Q̂n (!)  as below. For this, 

draw for x1
k( ) , ..., xn

k( )  from the original marginal empirical 
distribution F1,n(·) k = 1,..., N( ) , and compute 

µn
k( ) = n!1 xi

k( )
i=1

n"  k = 1,..., N( ) , Let Q̂n (!)  be the 

empirical distribution function from µn
1( ) , ..., µn

N( ) . Then, 

for k = 1,..., N , sample  µ1
k( ) ! Q̂n (!) , given this µ1

k( )  

sample 
 
x1

k( ) , y1
k( )( ), ..., xnk( ) , yn

k( )( ) ! F̂n !, ! | µ1
k( ) , 0( )  Compute 

T1
k( )  using the samples x1

k( ) , ..., xn1
k( ) k = 1,..., N( ) , 

compute S1
k( )  using the samples 

y1
k( ) , ..., yn1

k( ) k = 1,..., N( ) , and compute T2
k( )  using the 

samples x1
k( ) , ..., xn

k( ) k = 1,..., N( ) . Then p1 and p2 are 
well approximated by  

p̂1 =
1
N

I T1
k( ) > c1, S1

k( ) |> d1( )
k=1

N

! ,

p̂2 =
1
N

I T1
k( ) " c1, T1

k( ) > c2( )
k=1

N

! ,
 

where I(·,·) is the indicator function. Now with p̂1  and 

p̂2 , we set !̂2 = " # p̂1( ) / p̂2  as an estimate of !2 . 

Lastly, we set d2 as the 1! "̂2( ) -th upper quantile of the 

conditional distribution PH2 S2 > d2 |T1 ! c1, T2 > c2( ) . For 

this using the bootstrap samples above, compute S2
k( )  

using the data y1
k( ) , ..., yn

k( )( ) for k = 1,..., N . Set 

 
N
!

= I T1
k( ) ! c1, T2

k( ) > c2( )k=1

N" , and 

 
S
!

2

k( )
= S2

k( )I T1
k( ) ! c1, T2

k( ) > c2( ) ,and set d2 be the  

1! "̂2( ) -th upper sample quantile of the  N
!

 non-zero 

 S
!

2

k( )
’s. 

From the above procedures, we see that in our 
method the FWER can achieve the pre-specified 
nominal level !  for some data, regardless the 
dependence relationship between the primary and 
secondary endpoints. The actual proportion of data to 
achieve the nominal level depends on the set up of the 
data.  

Power. With given µ1 > 0  and/or µ2 > 0 , for given 
level ! , we compute the primary power 

!1 = !1 ", µ1( ) = Pµ1 T1 >| c1( ) + Pµ1 T1 # c1, T2 > c2( ),        (7) 

and the secondary power  

!2 = !2 ", µ2( ) = Pµ2 T1 > c1,S1 > d1( ) + Pµ2 T1 # c1, T2 > c2 , S2 > d2( ).   (8) 

To compute !1 ", µ1( ) , for k = 1,..., N , sample 

x1
k( ) , ..., nn

k( ) , from F̂1,n ! | µ1( ) , and compute T1
k( )  and T2

k( ) , 
and !1  is approximated by 

!̂1 = !̂1 ", µ1( ) = 1
N

I T1
k( ) > c1( ) + I T1 k( ) # c1, T2

k( ) > c2( )( )
k=1

N

$ .  

To compute !2 ", µ2( ) , for k = 1,..., N , sample 

 µ1
k( ) ! Q̂n , where Q̂n  is given in the computation of d2 ; 

then sample 
 
x1

k( ) , y1
k( )( ), ..., xnk( ) , yn

k( )( ) ! F̂n !, ! | µ1
k( ) ,µ2( ) , 
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and compute T1
k( ) , S1

k( ) , T2
k( )  and S2

k( )  and !2  is 
estimated by 

!̂2 = !̂2 ", µ2( ) = 1
N

I T1
k( ) > c1, S1

k( ) > d1( ) + I T1 k( ) # c1, T2
k( ) > c2 , S2

k( ) > d2( )( )
k=1

N

$ .  

The case of two-arm and multi-stage with multiple 
endpoints is similar and not shown to save space, but 
is available upon request from the corresponding 
author. 

5. SIMULATION STUDY  

We consider the case of two stage one-armed case. 
Recall OF stands for the [22] boundaries, PO for [25] 
boundaries. The notation OF1-PO2 stands for the 
combination of [22] primary boundaries and Pocock’s 
secondary boundaries; AH2 stands for the ad-hoc 
secondary boundaries. In the existing methods which 
use Normal approximations, the boundaries are fixed in 
advance and are independent of the observed data and 
study sample size. They depend on the correlation ρ 
between the primary and secondary endpoints, which 
is often unknown, and is often supplied by a guessed 
value. The boundaries also depend on the choice of 
which combination of methods are used.  

This may perform poorly with small sample sizes. 
For example, with α=0.05, n1=n, ρ=0.4, if OF1-PO2 
combination is used, then 
c1, c2 ,d1,d2( ) = 1.678 2, 1.678, 1.686, 1.686( ) ; with the 

OF1-AH2 combination, 

c1, c2 ,d1,d2( ) = 1.678 2, 1.678, 1.714, 1.645( ) ; When n1/n 

= 0.75, with α = 0.025, for Strategy 1 as in Tamhane  
et al. (2010) with (c1, c2, d1, d2) = (2.340, 2.012, 2.340, 
2.012); for Strategy 2, (c1, c2, d1, d2) = (2.340, 2.012, 2.040, 
2.258). 

Below we compute stopping boundaries with the 
proposed method. We give three examples. The first 
example is significant for both the primary and 
secondary endpoints; the second is non-significant for 
both endpoints; and the third is significant for the 
primary endpoint but not for the secondary endpoint. 
With each example we compute the boundaries for a 
range of sample sizes, and for each sample size we 
sample three sets of data. The exact FWER is given in 
all cases. In all the three examples we set the error 
spending function as α(n1/n) = αn1/n. 

Example 1. The total sample size is n, with first 
stage at n1.  xi , yi( ) ! 0.5!1 + 0.5!2 i = 1, ...n( ) , with φ1 be 
the normal density with mean (0,0) and covariance 
matrix (1,0.5;0.5,1), and φ2 is the Normal density with 
mean (1,1.6) and covariance matrix (1, −0.2,−0.2,1). i.e. 
the data is from a two-component normal mixture which 
is symmetric around (µ1,µ2) = (0.5,0.8), but is not 
normal. Thus this example has significant deviation 
from both H1 and H2, and T1, T2, S1 and S2 are not 
normal. 

The densities of the primary and secondary 
endpoints data of one sample draw from the above 
setting are plotted in Figure 1 below. Table 1 gives 
results (α = 0.05) of the boundaries computed from the 

 

Figure 1: Densities for primary (a) and secondary (b) endpoints: solid line – original data; dashed line – symmetrized data. 
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proposed method. As the results differ from different 
draws under the same setting, we display the results 
for different sample sizes, with three samples for each 
fixed sample sizes (n1, n). 

We see from Table 1 that, for the proposed method, 
these quantities are highly dependent on the observed 
data and the sample sizes. The estimates are therefore 
more reasonable when the sample sizes are not large 
and the data distribution deviates from the Normal. As 
the data are not Normal, the boundaries in Table 1 tend 
to be smaller than those given by Normal 
approximation. When the nominal level α is achieved, 
the corresponding d2 is small. In some cases the 
nominal level (α= 0.05) is not achieved, and the 
corresponding d2 is bigger. In these cases the 
boundaries are conservative, as the boundaries from 
Normal approximations. All these results rejected H1 

and H2 based on the simulated boundaries. 

Example 2. We sample 

 xi , yi( ) ! 0.5!1 + 0.5!2 i = 1,...n( ) , with !1  be the Normal 
density with mean (−0.6,−0.5) and covariance matrix 
(1,0.5;0.5,1), and !2  is the Normal density with mean 
(0.6, 0.5) and covariance matrix (1,−0.2,−0.2,1), i.e. The 
data is from a two-component Normal mixture which is 

symmetric around (µ1, µ2) = (0, 0). Thus this example 
has no deviation from both H1 and H2. In this example 
we set α = 0.025. The results are shown in Table 2. 

We see that for the first data with sample size (15, 
35) that, S2 = 1.328 > d2 = 0.557, and hence H2 is rejected. 
The other results are correctly accepted both H1 and 
H2. We see that in most of these cases, the FWER of 
0.025 is achieved, and in many cases the d2’s are small 
and hence the acceptance of H2 is quite stringent. 

Example 3. We sample 

 xi , yi( ) ! 0.5!1 + 0.5!2 i = 1, ...n( ) , with !1  be the Normal 
density with mean (0,−0.5) and covariance matrix  
(1, 0.5;0.5, 1), and !2  is the Normal density with mean 
(0.6, 0.5) and covariance matrix (1,−0.2,−0.2,1), i.e. the 
data is from a two-component Normal mixture, which is 
symmetric around (µ1,µ2) = (0.6,0). Thus, this example 
has no-true H1 and true H2. In this example we set  
α = 0.025. 

The results are shown in Table 3. 

Two incorrect conclusions were observed in these 
simulations. For the second set of data at sample size 
(10,20), both H1 and H2 are rejected due to large values 
of Tj and Sj, although in truth should only rejected H1. 

Table 1: Boundaries with Proposed Method for Simulated Data 

(! 1, !) "1 "2 #1 #2 $1 $2 %1 %2 &'()  

2.687 2.411 2.714 2.779 1.893 1.605 1.865 0.823 0.05 

0.288 1.044 1.265 2.602 1.198 1.354 1.471 0.317 0.05 (10, 20) 

1.665 1.416 1.531 2.439 1.496 1.416 1.531 0.994 0.05 

1.825 1.452 3.397 5.042 1.467 1.345 1.848 0.808 0.05 

1.573 2.345 1.437 3.395 1.499 1.396 1.484 1.025 0.05 (15, 35) 

0.809 2.551 1.543 2.650 1.500 1.428 1.596 0.903 0.05 

1.816 3.715 2.051 4.397 1.585 1.473 1.614 1.013 0.05 

1.571 3.521 4.293 5.442 1.554 1.483 1.787 0.558 0.05 (20 50) 

3.375 4.722 2.211 4.867 1.830 1.563 1.540 0.879 0.05 

3.237 4.902 6.777 7.159 1.665 1.466 2.034 0.368 0.05 

3.262 3.942 4.788 5.259 1.568 1.509 1.794 0.854 0.05 (40, 100) 

3.228 4.107 4.278 6.233 1.620 1.364 1.678 0.491 0.05 

6.472 9.029 8.150 12.975 1.616 1.412 1.689 1.539 0.02 

6.312 10.822 9.994 14.895 1.593 1.457 1.654 1.559 0.02 (200, 500) 

7.039 10.669 8.612 14.195 1.643 1.467 1.661 1.561 0.02 

8.379 12.163 13.041 19.419 1.505 1.460 1.607 1.610 0.025 

9.597 14.584 13.222 19.535 1.470 1.531 1.620 1.631 0.025 (500, 1000) 

10.350 14.170 13.250 19.255 1.540 1.531 1.582 1.590 0.025 
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For the first set of data with sample size (15,35), H1 is 
not rejected due to small value of T2, which is not 

correct. All the other cases reached the correct 
decisions. 

Table 2: Boundaries with Proposed Method for Simulated Data 

(! 1, !) "1 "2 #1 #2 $1 $2 %1 %2 &'()  

1.374 0.844 0.757 0.174 1.723 1.617 1.475 0.672 0.025 

-1.060 -0.639 -0.877 -0.503 1.573 1.461 1.521 -0.214 0.025 (10, 20) 

-0.100 -0.205 -1.500 -1.499 1.436 1.526 1.564 0.284 0.025 

0.234 -0.357 1.194 1.328 1.453 1.579 1.581 0.557 0.025 

1.164 1.657 0.437 -0.548 1.546 1.717 1.433 0.992 0.025 (15, 35) 

-1.503 -2.584 -0.732 -0.359 1.631 1.842 1.549 1.703 0.015 

-0.082 0.772 -0.879 -1.441 1.404 1.462 1.477 0.618 0.025 

-2.249 -2.496 -0.567 -0.641 1.955 1.615 1.628 1.428 0.01 (20 50) 

0.180 -0.729 -1.275 -0.226 1.496 1.511 1.639 0.045 0.025 

-0.553 0.284 0.991 0.302 1.507 1.471 1.612 0.302 0.025 

-1.282 -0.964 -1.270 -0.525 1.660 1.605 1.726 1.774 0.001 (40, 100) 

-0.590 -0.060 -0.625 -0.416 1.543 1.437 1.736 0.372 0.025 

-0.340 -0.100 -1.286 -1.475 1.586 1.544 1.714 0.341 0.025 

1.441 0.976 0.791 0.033 1.581 1.451 1.591 0.849 0.025 (200, 500) 

0.248 -0.139 -0.835 -1.271 1.650 1.514 1.652 0.358 0.025 

0.439 0.272 0.937 0.213 1.651 1.611 1.639 0.498 0.025 

-0.028 -1.059 -0.801 -0.686 1.596 1.527 1.582 -0.461 0.025 (500, 1000) 

0.248 0.633 -0.427 1.226 1.581 1.640 1.568 0.719 0.025 

 
Table 3: Boundaries with Proposed Method for Simulated Data 

(! 1, !) "1 "2 #1 #2 $1 $2 %1 %2 &'()  

0.829 2.004 0.317 -1.174 1.422 1.538 1.362 0.672 0.025 

1.429 2.797 2.634 3.136 1.694 1.757 2.098 1.562 0.025 (10, 20) 

1.256 1.820 1.250 1.045 1.785 1.689 1.459 0.957 0.025 

0.581 1.278 -1.400 -0.389 1.551 1.722 1.528 0.885 0.025 

0.843 1.794 -0.909 -0.350 1.626 1.573 1.574 0.987 0.025 (15, 35) 

4.1743 3.462 0.400 0.353 2.386 1.699 1.621 1.176 0.015 

2.291 2.105 -1.293 -1.149 1.822 1.507 1.585 1.258 0.025 

0.578 2.081 -0.869 -1.076 1.574 1.617 1.643 1.187 0.01 (20 50) 

0.365 2.047 -0.241 0.322 1.544 1.635 1.554 1.015 0.025 

3.131 3.783 -2.224 -1.758 1.749 1.446 1.615 0.822 0.025 

2.134 2.865 -0.418 -0.176 1.620 1.546 1.615 1.074 0.001 (40, 100) 

2.914 4.085 -0.360 -0.190 1.675 1.579 1.592 1.114 0.025 

2.890 6.172 1.067 0.961 1.641 1.560 1.682 1.447 0.010 

4.106 5.910 0.874 -0.286 1.633 1.576 1.688 1.551 0.010 (200, 500) 

2.882 5.047 -0.595 -2.702 1.676 1.553 1.633 0.276 0.025 

7.094 8.335 -0.407 -0.395 1.649 1.562 1.698 1.555 0.013 

6.617 9.673 0.622 0.697 1.641 1.678 1.538 1.594 0.013 (500, 1000) 

5.854 8.138 -0.715 -1.502 1.560 1.623 1.505 1.521 0.013 
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DISCUSSION 

We investigated a robust method for determining 
stopping boundaries subject to a family wise error rate 
requirement for testing primary and secondary 
endpoints in clinical trials with small sample sizes. We 
considered the one-arm and two-arm cases, but only 
reported the one-arm case here. Our method assumes 
the data follows a symmetric distribution about their 
location parameters, and makes no assumptions on the 
distributions of the test statistics, and hence is robust. 
Its performance contrasts with existing methods for 
determining the boundaries. These use Normal 
approximations for the test statistics, their stopping 
boundaries are determined in advance before 
observing the data, and do not achieve the FWER 
except for a few special cases. With the proposed 
method, these boundaries are determined according to 
the observed data, and FWER is achieved in many 
cases. The proposed method was illustrated with three 
simulation examples for the one-armed case. 

To relax the assumption of symmetric distribution of 
the data, it is possible to use the empirical likelihood 
method to implement the location parameter. This will 
improve robustness of the method further but at the 
cost of not giving a closed form for the corresponding 
construction of the weighted empirical distributions. 
This approach also relies on large sample 
approximations, which makes it unsuitable for our 
objective of providing a method for small sample size 
studies. 

The proposed method is mainly for continuous 
observations or discrete observations with relatively 
large number of possible values. The symmetry 
assumption is not necessary when both primary and 
secondary endpoints are discrete and have a small 
number of possible values. In this case, the small 
number of parameters are easily estimated by MLE, 
and exact inference can still be performed. For 
example, consider the case where primary and 
secondary endpoints are binary variables. Let 
p = P X = 1( ) = 1! P X = 0( ) and q = P Y = 1( ) = 1! P Y = 0( )

. In this case, the hypotheses are 
H1 : p = p0 vs !H1 : p > p0 and H 2 :q " q0 vs !H 2 :q > q0 , for 
some given p0  and q0 . The joint distribution of (X, Y) 
is characterized by the probabilities 
pij = P X = i,Y = j( ) i, j = 0,1( ) . The MLE 
p̂n1, p̂n , q̂n1, q̂n , p̂ij ,n1 and p̂ij ,n  at stages 1 and 2 are 

obtained in closed form, and 
T1 := xi ! Bino n1, p̂n1( )i=1

n1" , S1 := yi ! Bino n1, q̂n1( )i=1

n1"  

similarly for T2 and S2. Then stopping boundaries  
(c1, c2, d1, d2) as solutions of expressions (2) and (3) can 
be obtained via bootstrap simulations. In particular, c1 

and c1 are determined by (2), with c1 first determined by 
the error spending function as given before. We can 
determine d1 in the same way as c1. To determine d2 we 
need the joint distribution of (T1, S1) and (T1, T2, S2), 
which can be obtained via bootstrap simulation with the 
estimated parameters p̂ij ' s . 

The method can also be modified for the case 
where one of the endpoints is continuous and the other 
is discrete with a small number of possible values. For 
example, suppose the secondary endpoint is binary 
with q = P Y = 1( ) = 1! P Y = 0( ) . Let q̂n1 and q̂n  be the 
MLE of q  at stages 1 and 2. In this case, the 
hypotheses are H1 :µ = 0  and H 2 :q ! q0 . Let Fj ! | µ( )  
be the distribution function of X given 
Y = j j = 0,1( ) and Fj ! | µ( )  be the marginal distribution 
of X. We assume they are symmetric around µ , and 
the corresponding empirical distribution functions can 
be constructed. The boundaries (c1, c2, d1, d2) can be 
obtained via bootstrap by the way described in Section 
3.1 and above. 
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