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Abstract: The least-squares design of infinite impulse response all-pass filter can be formulated as to solve a system of 
linear equations without directly computing a matrix inversion. The set of linear equations associated matrix is further 
expressed as a Toeplitz-plus-Hankel matrix such that the optimal filter coefficients are efficiently solved by employing a 
robust Cholesky decomposition or the split Levinson technique. This paper proposes closed-form expressions for 

efficiently computing Toeplitz-plus-Hankel matrix based on trigonometric identities. The closed-form expressions of the 
Toeplitz-plus-Hankel matrix can be directly evaluated as the passband edges are specified without sampling the 
frequency band as that of the previous computing-efficiency algorithm. The proposed new and simpler closed-form 

expressions are indicated from simulation results to accurately improve the design performance as well as achieve 
computational efficiency. 
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1. INTRODUCTION 

Digital infinite impulse response (IIR) all-pass filters 

exhibit the characteristics of prescribed phase 

specifications can be preserved without changing 

magnitude response at all frequencies. These 

properties enable all-pass filters to find considerable 

attention in various signal processing applications such 

as notch filtering, group delay equalizer, phase 

equalization in communication systems, multi-channel 

filter banks, construction of wavelet filters, and 

denoising in ECG signal [1-6]. Much effort has been 

expended on designing all-pass filters based on the 

least-squares approximation [7-12] and minimax 

method [13-15]. The aforementioned approaches [7-15] 

are generally categorized by solving a set of linear 

equations, using a linear programming method, 

applying a second-order cone programming or utilizing 

a generalized exchange algorithm. 

Kidambi [9] presented an efficient and robust 

weighted least-square method to convert the 

minimization of nonlinear phase error of the all-pass 

filter into a quadratic form. The designed all-pass filters 

results in a least-squares or an equiripple phase error 

response by selecting a suitable weighting function. 

Therefore, the filter coefficients are obtained by solving 

a system of linear equations associated with a Toeplitz-

plus-Hankel matrix. Consequently, efficient approaches  
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such as the Cholesky decomposition or the split 

Levinson technique that requires only 
  

O N
2( )  

complexity [16] can solve this system of Toeplitz-plus-

Hankel associated linear equations. The proposed 

method in literature [9] is computationally more efficient 

than conventional method for solving the system of 

linear equations by directly computing a matrix 

inversion and multiplication which involves O N
3( )  

complexity. Su et al. [17, 18] further exploited trigo-

nometric identities and uniformly sampled the 

frequency band of interest to compute the sum of a 

series of Toeplitz-plus-Hankel matrix. The improved 

computing-efficient least-squares algorithm consequen-

tly yields the same performance as that of Kidambi’s 

method [9] while markedly reduces the computational 

requirements. 

In this paper, the discrete error phase response of 

the IIR all-pass filters in [9, 17, 18] is reformulated as 

an integral square error form [19]. Therefore, the all-

pass filter coefficients are obtained by solving a system 

of linear equations involves a simple and compact 

Toeplitz-plus-Hankel matrix. The elements of the 

Toeplitz-puls-Hankel matrix can be explicitly derived 

when the passband edge frequencies are specified 

based on trigonometric identities without sampling the 

band of interest like [17, 18]. The proposed closed-form 

technique is consequently indicated from simulation 

results to improve designed performance and preserve 

computational efficiency as compared to those of 

methods [17, 18]. 
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This remainder of the paper is organized as follows. 

In Section 2, the least-squares design of IIR all-pass 

filters is briefly reviewed. In Section 3, the closed-form 

expressions of the Toeplitz-plus-Hankel matrix using 

integrals are addressed in detail. In Section 4, the 

design examples are described to verify the 

advantages of the proposed method. Section 5 

concludes the paper. 

2. FORMULATION OF LEAST-SQUARES DESIGN 
OF IIR ALL-PASS FILTERS 

The frequency response of an IIR all-pass filter with 

N real-valued coefficients a
n
, n = 0, ,N 1 , is 

expressed as 

A e
j( ) =

a
N
+ a

N 1
e
j

+ + a
0
e
j N

a
0
+ a
1
e
j

+ + a
N
e
j N

= e
j N

a
n
e
j n
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N

a
n
e
j n
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        (1) 

The designed phase response of 
 
A e

j( )  can be 

written as 

   

( ) = N + 2 tan
1

a
n

n=0

N

sin n( )

a
n

n=0

N

cos n( )
.         (2) 

The objective of the IIR all-pass filter design 

involves in determining the filter coefficient a
n

 such 

that the error difference between the designed phase 

( )  and the desired phase 
 

d ( )  is minimized, that 

is,  

   

e( ) = d ( ) ( )

=
d ( ) + N 2 tan

1
a

n
sin n( )

n=1

N

1+ a
n

cos n( )
n=1

N
,
       (3) 

where 1
0
=a  is to avoid trivial filter coefficients. 

Minimizing the error difference in (3) evidently results in 
a highly nonlinear optimization and cannot ensure the 
convergence [9]. Kidambi [9] exploited a phase 
approximation by assuming that the designed phase 
response is extremely close to the desired phase, that 

is, 
 
( ) d ( )  to reduce the complicated design. 

Consequently, (2) and (3) are approximately expressed 
as [9, 17, 18]: 

    

tan
( ) + N

2
=

a
T
s( )

1+ a
T
c( )

sin
d ( )

cos
d ( )

,       (4) 

where 
  

d ( ) = d ( ) + N( ) 2  is an intermediate 

desired phase. The filter coefficients vector a  and 

trigonometric functions 
  
c( ),s( )  are defined as 

follows: 

   

a = a
1

a
2

a
N

T

,         (5) 

c( ) = cos cos 2( ) cos N( )
T

,       (6) 

    

s( ) = sin sin 2( ) sin N( )
T

.       (7) 

Clearly, the tangent function in (4) can be further 
approximated as a linear equation: 

   
a

T
sin

d ( ) c( ) cos
d ( ) s( ) sin

d ( ) .     (8) 

The objective function for solving the system of 
linear equations can be easily formulated as a least-
squares error form over the discrete frequency [9, 17, 
18] 

    

E = a
T
s
1 l( ) + sin

d l( )( ){ }
2

l=1

L

,        (9) 

where L is the number of frequency sampling points 

and 
    
s
1 l( ) = sin

d l( ) c
l( ) cos

d l( ) s
l( ) . 

Differentiating the objective function in (9) with respect 

to the filter coefficients and setting 

  

E

a
n

= 0  for 

   
n = 1,2, N  results in a system of linear equations 

 Qa = d , where 

   

Q = s
1 l( ) s

1

T

l( )
l=1

L

,        (10) 

    

d = s
1 l( )sin d l( )

l=1

L

.       (11) 

The system of linear equations  Qa = d  exists a 

unique solution 
  
a =Q

1
d  because Q is real, symmetric 

and positive-definite. The conventional least-squares 

method requires to compute   Q
1  which involves 

O N
3( )  complexity. However, matrix  Q  may be ill 
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conditioned when N  is large. Solving the system of 
linear equations can overcome the disadvantage and 
the matrix inversion is not strictly needed. 

3. CLOSED-FORM EXPRESSIONS OF THE 
TOEPLITZ-PLUS-HANKEL MATRIX 

Kidambi [9] has thoroughly demonstrated that the 
matrix Q can be further expanded as the sum of a 
series of Toeplitz-plus-Hankel matrix. For a N N  
Toeplitz-plus-Hankel matrix, only  N  and   2N 1  
distinct elements needed to be computed for the 
Toeplitz and Hankel matrix, respectively. Several 

iterative and efficient algorithms that involves 
  

O N
2( )  

complexity can solve the Toeplitz-plus-Hankel 
associated system of linear equations 

 
Qa = T+H( )a = d . 

In previous works [17, 18], the authors exploited 
trigonometric identities and sampled the frequency 
band of interest uniformly to derive the close-form 
expressions for the Toeplitz-plus-Hankel matrix. 
Consequently, the closed-form expressions result in 
the same performance as that of Kidambi’s method [9] 
while substantially reduces the computational 
complexity. The designed performance and 
computational complexity are compromised because 
the closed-form expressions are based on the sampling 
operation at the frequency band. 

The discrete square error in (9) can be modified as 
an integral form to further improve the designed 
performance without sampling the frequency band. The 
objective function is shown as: 

E = a
T
s
1 ( ) + sin d ( )( ){ }

2

d ,      (12) 

where  is the frequency band of interest. Performing 
the similar optimization procedure results in the sum of 
a series of the Toeplitz-plus-Hankel matrix in (10) to be 
compactly rewritten as: 

   

Q i, j( ) = sin
d ( ) i sin

d ( ) j d

=
1

2
cos i j( ) d cos i + j( ) 2

d ( ) d{ }
= T i, j( ) + H i, j( ).

  (13) 

Therefore, the closed-form expressions of the 
Toeplitz matrix can be readily classified for the case of 

i = j , 
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1

2
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p
1

p
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p
2

p
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2
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where 
  

p
1

, 
  

p
2

 are the passband edge frequencies of 

the IIR all-pass filter and 
  
=

p
2

p
1

. Similarly, for 

the case of 
 
i j , 
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where =
p
1

+
p
2

.  

However, the elements of Hankel matrix  H  and 

vector d  depend not only on the trigonometric function 

but also on the intermediate desired phase 
 

d ( ) . 

Considering for a Hilbert transformer with desired 

phase response 
  

d ( ) = N 2  is designed, the 

intermediate desired phase yields 
  

d ( ) = 4 . 

Therefore, the closed-form expressions for the Hankel 

matrix H  and vector d are similarly derived as: 
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The elements of the Toeplitz-plus-Hankel matrix are 
observed from these closed-form expressions to 

associate with the passband edges 
  

p
1

 and 
  

p
2

. Only 

the elements of the first row 
   
T 1, j( )  have to be 

evaluated for a Toeplitz matrix. However, the elements 

of the first row 
   
H 1, j( )  and the last row 

  
H N , j( )  have 

to be computed for a Hankel matrix. Applying the 
proposed closed-form expressions to evaluate the 
Toeplitz-plus-Hankel associated matrices can 
significantly reduce the computational complexity of the 
system of linear equations. Table 1 compares the 
computational requirements for calculating the matrices 
of 

  
Q, T, H  and  d  with conventional least-squares and 

efficient approaches. 

The required computational complexity for 
computing the Toeplitz-plus-Hankel associated 
matrices in the proposed method and [17, 18], Kidambi 
method [9], and least-squares approximation is notably 

 
O N( ) , 

  

O N
2( ) , and 

  

O N
3( ) , respectively. The 

proposed approach derives simple and compact 

closed-form expressions for calculating the Toeplitz-
plus-Hankel matrix based on minimizing the integral 
square error and exploiting trigonometric identity. In 
addition, the designed performance can be further 
improved without sampling the frequency band of 
interest. 

4. SIMULATION RESULTS 

MATLAB programming languages are used for 

designing the IIR all-pass filters that have the same 

specifications as those of method [18] to illustrate the 

performance of the proposed technique. The 

simulations are evaluated on IBM PC with Intel 

Pentium IV-2.40 and 2.41 GHz duo-core CPU and 1GB 

RAM. 

Example: Design of a Hilbert transformer: For an IIR 

all-pass filter with length 30=N , the desired phase 

response is given by 

d ( ) = N 2,
p
1

= 0.08
p
2

= 0.92 . (18) 

Table 1: Comparison of Computational Requirements for Associated Matrices 

Algorithm 

Operation 

CONVENTIONAL Kidambi [9] Su et al. [18] Proposed 

+ 
  
3L 1( ) N

2     

* 
3LN

2  
   

 
Q  

trig  
  2LN

2     

+ 
 

  
2L 1( ) N    3N    3N  

*  LN  6N  6N   T  

trig   LN  3N  2N  

+  
  
3L 1( ) 2N 1( )  

  
3 2N 1( )  

  
3 2N 1( )  

*  2L 2N 1( )  7 2N 1( )  7 2N 1( )   H  

trig   
  
L 2N 1( )  

  
3 2N 1( )  

  
2 2N 1( )  

+ 
  
2L 1( ) N  

  
2L 1( ) N    3N    3N  

* 2LN  2LN  5N  7N   d  

trig    2LN    2LN    3N    2N  

+ 
  3LN

2
N

2
+ 2LN N    10LN 3L 4N +1    12N 3    12N 3  

* 
  3LN

2
+ 2LN  

  
L 7N 3( )  25N 7

 
27N 7

 

Total 

trig 
  2LN

2
+ 2LN  

  
L 5N 1( )    12N 3    8N 2  

+: addition or subtraction operation, *: multiplication or division, trig: sine or cosine operation. In general,    L = 4N ~10N . 
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Using equations (14-17) and the specified passband 

edge frequencies can explicitly evaluate the closed-

form expressions of the Toeplitz-plus-Hankel matrix. 

Therefore, efficient algorithms such as the Cholesky 

decomposition or the split Levinson technique can be 

used to solve the system of linear equations. The 

designed phase, phase error and group delay error 

responses are shown in Figure 1. As seen in Figure 

1(a) and (b), the proposed approach using closed-form 

Toeplitz-plus-Hankel matrix nearly approximates the 

desired phase response and achieves smaller peak 

phase error than that of method [18], respectively. The 

designed group delay error response is shown in 

Figure 1 (c) to extremely close to that designed by the 

efficient method [18]. The designed results in terms of 

peak phase error (PPE), mean square phase error 

(MSPE), peak group delay error (PGDE), mean square 

group delay error (MSGDE), maximum pole radius 

(MPR) and CPU time are compared with different 

techniques. These evaluated values are defined as 

follows: 

    

PPE = max
d ( ) + N 2 tan

1
a

T
s( )

1+ a
T
c( )

,     (19) 

    

MSPE =
1

d ( ) + N 2 tan
1

a
T
s( )

1+ a
T
c( )

2

d ,(20) 

  

    (a)        (b) 

 

(c) 

Figure 1: An 30-th Hilbert transformer. (a) Phase response. (b) Phase error response. (c) Group delay error response. 
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PGDE = max
d

d ( )
d

+ N 2
d

d
tan

1
a

T
s( )

1+ a
T
c( )

,  (21) 

MSGDE =
1 d

d ( )
d

+ N 2
d

d
tan

1
a
T
s( )

1+ a
T
c( )

2

d
.  (22) 

The designed performance compared with the 
methods of least-squares, Kidambi [9], and Su et al. 
[18] is illustrated in Table 2. The maximum PPE and 
PGDE values theoretically occur at the band edges. 
The proposed method yields smaller error responses 
when the edge frequencies are excluded for 
comparison. The MSPE and MSGDE values are 
notably smaller than those of the other methods due to 
the integral square errors are minimized instead of the 
discrete summation of errors. Moreover, the MPR 
designed is 0.9217 which is located inside the unit 
circle. The designed IIR all-pass filter is consequently 
not only stable but also efficient to achieve excellent 
performance. In addition, the stability constraints of the 

IIR all-pass filter lies in the designed phase ( )  must 

be monotonically decreasing and satisfy 

  
( ) = 0( ) N  [10]. The designed phase response 

in the proposed approach is monotonically decreasing 
and the phase at =  is nearly close to 

 
( ) = 30 , as indicated in Figure 1(a). This 

constraint also confirms that the proposed closed-form 
expressions for calculating Toeplitz-plus-Hankel matrix 
can achieve stable IIR all-pass filters. 

A Hilbert transformer with 
   

p
1

= 0.08 , 
   

p
2

= 0.92 , 

and varying filter lengths from N = 32  to N = 144  are 
designed to illustrate the computational efficiency of the 
proposed technique. The frequency sampling points is 
set to   L = 10N  for least-squares approximation, 
methods of [9] and [18], whereas the sampling is 
unnecessary in the proposed method. The CPU time 
required for computing the optimal all-pass filter 

coefficients compared with different methods is shown 
in Figure 2. Evidently, the proposed closed-form 
Toeplitz-plus-Hankel matrix grows slowly in the CPU 
time and retains nearly in constant as the filter length 
increases. The computational efficiency is slightly 
superior to that of method [18]. However, the CPU 
design time of the least-squares method and the 
efficient method [9] increase rapidly when the filter 
length is long. Therefore, it is concluded that the 
proposed closed-form Toeplitz-plus-Hankel matrix has 
the superiority both in computational efficiency as well 
as design accuracy. 

 

Figure 2: Comparison of CPU time for a Hilbert transformer 

with varying filter lengths. 

5. CONCLUSION 

The least-squares design of IIR all-pass filters can 
be formulated by solving a system of linear equations 
associated with a Toeplitz-plus-Hankel matrix. Several 

algorithms that require 
  

O N
2( )  complexity can 

efficiently solve the system of linear equations. This 
paper presents closed-form expressions to simplify the 

Table 2: Designed Performance Compared With Different Methods. 

Algorithm Least-Squares Kidambi [9] Su et al. [18] Proposed 

PPE 
0.0033 

(0.0022) 

0.0033 

(0.0022) 

0.0033 

(0.0022) 

0.0039 

(0.0019) 

MSPE 4.713E-5 4.713E-5 4.713E-5 3.868E-5 

PGDE 
0.5544 

(0.2806) 

0.5544 

(0.2806) 

0.5544 

(0.2806) 

0.4621 

(0.2698) 

MSGDE 0.2550 0.2550 0.2550 0.1875 

MPR 0.9301 0.9301 0.9301 0.9217 

CPU time 0.1094 0.1094 0.0313 0.0313 

The bracket values in PPE and PGDE represent the peak errors at edge frequencies are excluded. 
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computation of the Toeplitz-plus-Hankel matrix by 
applying the trigonometric identities and minimizing the 
integral square errors. As a result, the proposed 
method not only improves the design accuracy but also 
reduces the computational requirements. 
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