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Abstract: The early work on neuropeptide-monoamine receptor-receptor interactions in the Central Nervous System 

gave the first indications of the existence of G protein-coupled receptors (GPCRs) heteroreceptor complexes and the 
GPCR field began to expand from monomers into heteromers and higher order heteromers, including also GPCR-ion 
channel, Receptor Tyrosine Kinases (RTK)-GPCR and Receptor activity-modifying proteins-GPCR heteroreceptor 

complexes. The existence of heteroreceptor complexes with allosteric receptor-receptor interactions increases the 
diversity of receptor function including recognition, trafficking and signalling. We have proposed the molecular 
phenomenon of receptor-receptor interactions as a good way to understand of how brain function can increase through 

molecular integration of signals. An alteration in specific receptor-receptor interactions or their balance/equilibrium (with 
the corresponding monomers-homomers) are indeed considered to have a role in the pathogenic mechanisms that lead 
to various diseases, including drug addiction, depression, Parkinson's disease and schizophrenia. Therefore, targeting 

protomer-protomer interactions in heteroreceptor complexes or the balance with their corresponding homoreceptor 
complexes in discrete brain regions may become an important field for developing novel drugs, including heterobivalent 
drugs and optimal types of combined treatments. Increasing our understanding of molecular integration of signals via 

allosteric receptor-receptor interactions in the heteroreceptor complexes will have a major impact on the molecular 
medicine, leading to novel strategies for drug discovery and treatment of diseases. 

Keywords: G protein-coupled receptors, Dimerization, Oligomerization, Homdimer, Heterodimer, Homoreceptor 

complexes, Heteroreceptor complexes, Receptor-receptor interaction, Networks, Dopamine receptor, Serotonin 

receptor. 

INTRODUCTION 

The modulation of the binding characteristics, 

especially the affinity, of the monoamine receptors in a 

receptor subtype specific way by neuropeptides was 

tested in 1980-1981 and it opened the door to 

hypothesized the existence of an intramembrane 

receptor-receptor interactions phenomenon [1-10]. 

Thus, it was postulated that direct interactions may 

exist in addition to indirect actions via receptor 

phosphorylation, changes in the membrane potential or 

the involvement of adapter proteins [11-15]. Later on in 

1998-1999, it was demonstrated that two non-

functional GPCR receptors, GABAB1 and GABAB2 

protomers, can assemble in a signalling heterodimer at 

the cell surface, confirming definitely the phenomenon 
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of GPCR heteromerization [16, 17]. In addition, 

biophysical approaches (i.e. Fluorescence and 

Bioluminescence Resonance Energy Transfer 

methods, FRET and BRET respectively) provided the 

evidence needed to demonstrate the existence of 

GPCR heteroreceptor complexes in living cells [18-23]. 

In recent decades, a series of relevant contributions 

have demonstrated the importance of 

heterodimerization processes within the GPCR 

superfamily [18-20, 24-41].  

We have suggested that allosteric mechanisms, 

which make possible the integrative intermolecular 

activity, take place via the interface interaction in the 

homoreceptor or heteroreceptor complexes. As to the 

protomers interface we have observed a high energy 

strength double arginine-phosphate electrostatic 

interaction in the adenosine A2AR-dopamine D2R 

heteroreceptor complexes representing a hot spot in 

the protomer interface [41, 42]. The allosteric 
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mechanisms in the heteroreceptor complexes open up 

the door for a marked rise of the diversity of the 

GPCRs, e.g, their recognition, trafficking and signalling 

[20, 21, 39, 40, 43-48]. This is possible through 

modulation of the orthosteric/allosteric binding sites of 

the adjacent protomer, its G protein activation, its 

selectivity for scaffold protein recruitment and among 

others switching from G proteins to -arrestin 2 [43, 46, 

49-55]. The concept of moonlighting protein is 

employed to describe "multifunctional proteins in which 

several functions can be found in a single strand of 

amino acids unrelated to splicing, posttranslational 

changes etc" [56-58]. Moonlighting of GPCR 

heteroreceptor complexes may be brought about by the 

allosteric receptor-receptor interactions changing the 

function of the protomers of the heteroreceptor 

complexes [55, 59, 60]. The current state of the art in 

the brain dopamine D2 like, adenosine A2AR and 

serotonin 5-HT1AR heteroreceptor complexes will be 

described as well as some relevant methods/- 

techniques that could allow also the understanding of 

the balance between corresponding homo-and 

heteroreceptor complexes [61-63].  

THE OVERALL ARCHITECTURE OF THE GPCR-
GPCR HETERORECEPTOR COMPLEXES 

The entire number of demonstrated GPCR 

heteroreceptor complexes was linked together and 

represented as a GPCR heterodimer network (GPCR-

HetNet: http: //www.gpcr-hetnet.com/ [64]. In this study 

static/non-dynamical human GPCR data were manually 

collected with a total of 187 different nodes/protomers 

(until August 2014) derived from 537 GPCR-GPCR 

edges/interactions studies in databases and literature. 

These data were then integrated into a scale graph, 

which was named the GPCR heterodimer network 

(GPCR-HetNet), where the nodes are the 

heteroreceptor complexes protomers and the edges 

are the relationships or interactions between them. The 

analysis of the GPCR-HetNet indicate a scale free 

model in which only a few protomers dominate the 

connectivity and sustain the network together. Two hub 

criteria show that the growth hormone secretagogue 

receptor type 1, dopamine D2 receptor, the mu-type 

opioid receptor, the beta-2 adrenergic receptor, the 

secretin receptor, Cannabinoid receptor 1 and the 

delta-type opioid receptor are the hubs in the network. 

Other very well connected protomers are also observed 

and identified in this work, as well as the potential of 

existence of novel receptor-receptor interactions or the 

formation of higher order heteroreceptor complexes. In 

this study the overall architecture of the GPCR-GPCR 

heteroreceptor complexes is for the first time 

presented, which provides important insight into 

receptor-receptor interaction connectivity, topology and 

organization. And may contribute to a better 

understanding of the complexity of GPCR 

heteroreceptor systems [64]. 

Although in this work the homomer information was 

excluded, we have emphasized the facts that a high 

percent of the total protomers described exists as 

homomers. [64]. In lines with this evidence, it must be 

point out that by means of fluorescence correlation 

spectroscopy it has been demonstrated that biogenic 

amine receptors, freely diffusing within the plasma 

membrane, are predominantly homodimers and not 

monomers [65].  

The study of receptor-receptor interaction 

connectivity (intrafamily and interfamily) has also 

shown a significant prevalence of intrafamily versus 

interfamily connections [64]. We have claimed that one 

mechanism which could explain the marked dominance 

of intrafamily versus interfamily connections could be a 

favourable coevolution of the receptor-receptor 

interface interaction inside each subfamily. One 

characteristic of GPCRs subfamilies is the high 

sequence homologies/similarities of its member 

receptors and their reduced sequence homologies with 

other GPCR subfamilies [66]. For instance, Class B 

superfamily (Secretin-like), is suggested to have 

emerged from a single ancestral gene via gene 

duplication [67, 68]. As a result it shows a high 

sequence homology between its members [68]. 

Furthermore, it was demonstrated that homologues 

receptors belonging to the same subfamily can share 

similar interaction interfaces where their exposed 

residues can be either intermixed or run in parallel to 

one another [69]. Also, domain swapping phenomena 

can occur via their conserved domains/motifs, as have 

been shown for some GPCR heteroreceptor complexes 

[29, 30, 70]. Another reason could be the particular cell 

and tissue expression pattern of some GPCR [43, 47, 

71-75]. Some receptor classes, for instance TAS2R 

bitter taste receptors, are expressed in more restricted 

types of cells, tissues or organ than other receptors 

that are more widely expressed. Therefore, their 

members have a lower chance of encounters and 

interactions. Furthermore, a need for more 

experimental data who focus on the study of GPCR 

interfamily heteroreceptor complexes should be 

considered. So far, only a few groups have focused 

their efforts on the study of the specificity of GPCR 
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heteromer interactions, and we expect in a near future 

a more wide-spread existence of cross-family 

heterodimerization or a definite experimental 

confirmation of a lower number of inter family 

interactions, as shown in the analysis of GPCR-HetNet 

(http: //www.gpcr-hetnet.com/). 

It must be highlighted that the GPCR HetNet is so 

far the first and the only work that took into 

consideration not only a topological and architectural 

perspective of GPCR receptor-receptor interactions, 

but also the relevance of the specificities of the GPCR 

heteroreceptor complexes. In this database is 

presented in addition to the GPCR-GPCR interactions, 

that have been demonstrated experimentally by means 

of biophysical (BRET, FRET, FCCS) and biochemical 

(coimmunoprecipitation, in situ Proximity Ligation 

Assay (in situ PLA), and radioligand binding) methods, 

also their specificities and promiscuity. We have 

developed two networks, one represents the so called 

"positive receptor-receptor interaction" or GPCR 

HetNet and another one the GPCR Non-HetNet (see 

as well, http: //www.gpcr-hetnet.com/), which 

represents the experimentally demonstrated non-

interacting GPCR protomers. Relevant facts could be 

extrapolated from the comparison between both 

networks, like for example, the interaction pattern of the 

alpha-1D-adrenergic receptor, which shows a low level 

of connectivity in the HetNet but a high level of non-

interactions in the Non-HetNet.  

DOPAMINE D2-LIKE AND ADENOSINE A2A 
HETERORECEPTOR COMPLEXES 

There exists evidence for the presence of A2AR-

D2R heteroreceptor complexes not only in cell lines 

[41, 42, 63] but also in the rat striatum using the in situ 

PLA [71, 76] as well as indications for the existence of 

striatal A2AR-D3R and A2AR-D4R heteroreceptor 

complexes. Antagonistic A2AR-D2R interactions exist 

in the striatal A2AR-D2R heteroreceptor complexes 

reducing D2R recognition and signalling which has led 

to a novel understanding of the molecular bases behind 

the pathophysiology of drug addiction, Parkinson's 

diseases (PD) and L-DOPA-induced dyskinesias of 

high relevance for their treatments [52, 55, 63, 77-79]. 

Based on this, A2AR antagonists are being proposed in 

the symptomatic treatment of PD [52]. In line with these 

results A2AR agonists have been shown to have 

atypical antipsychotic actions and to possess anti-

cocaine actions in development and reinstatement of 

cocaine self-administration [77]. Also antagonistic 

CB1R-D2R interactions likely exist in striatal CB1R-

D2R heteromers leading to a reduced D2R signalling 

and counteraction of D2R-induced hyperlocomotion 

[80, 81]. Higher order heteromers may also be found 

since there are indications for the presence of striatal 

A2AR-CB1R-D2R trimers and A2AR-D2R-mGlu5R 

trimers with integrative receptor-receptor interactions 

modulating the activity of the striato-pallidal GABA 

neurons [82, 83]. In the latter trimer the A2AR and 

mGlu5R synergize to counteract the D2R signalling to 

allow firing of the striato-pallidal GABA neurons without 

being restrained by the inhibitory D2R signalling. In this 

way these receptors can potentially override a 

pathologically increased D2R signalling present in 

schizophrenia. In the former trimer the antagonistic 

CB1R-D2R interaction activated by endocannabinoids 

removes the D2 brake on the A2AR signalling to the 

adenylyl cyclase contributing to a markedly increased 

activity of the striato-pallidal GABA neurons [81]. The 

A2AR-CB1R-D2R trimer may function mainly as an 

inhibitory feedback mechanism to reduce an 

exaggerated and prolonged activation of D2R removing 

an excessive silencing of the striato-pallidal GABA 

neurons. Thus, these two types of GPCR trimers are 

also potential novel drug targets for treatment of PD, 

schizophrenia and cocaine addiction. 

SEROTONIN 5-HT1A HETERORECEPTOR COM- 
PLEXES 

As to the 5-HT1AR heteroreceptor complexes 

evidence exists that Galanin receptor1 (GalR1) 

modulates 5-HT1AR signalling via heterodimerization 

in cellular models [21]. These results amplify the 

indications that there exist brain GalR1-5-HT1AR 

heteromers in which the previously observed 

antagonistic galaninR-5-HT1A receptor-receptor 

interactions in the limbic system take place [84]. 

Targeting different types GalR-5-HT1AR heteromers 

may be a novel therapeutic strategy for treatment of 

depression [53, 72, 84]. Targeting the recently 

discovered FGFR1-5-HT1AR heteroreceptor 

complexes of the hippocampus may be another 

therapeutic approach in depression in view of their 

enhancement of hippocampal plasticity [75, 85]. 

Combined acute and repeated intracerebrocentricular 

treatment with FGF2 and 8-OH-DPAT have shown 

evidence as significant antidepressant in the forced 

swim test [75]. These heteroreceptor complexes were 

also observed in midbrain 5-HT neurons of the rat [73]. 

The 5-HT1A autoreceptor protomer upon agonist 

activation produced an allosteric enhancement of the 

FGFR1 signaling in the midbrain raphe 5-HT nerve 

cells leading to increases in their neuroplasticity and 
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trophism. Thus, the 5-HT1A autoreceptor in this 

heteroreceptor complex can also have a trophic role of 

importance for depression and its treatment in addition 

to its key role in reducing the firing of the ascending 

midbrain 5-HT neurons. 

New findings have shown that combine treatment 

with 8-OH-DPAT and FGF2 but not treatment with the 

5-HT1A agonist alone significantly increases the 

BRETmax values and markedly reduces the BRET50 

values on the 5HT1A homodimerization in cellular 

models co-expressing 5-HT1A and FGFR1 [86]. FGF2 

produces a rapid rise in FGFR1 homodimerization 

which, to certain extent, declined over a 10 min period. 

Combine treatment with 8-OH-DPAT blocked this 

decline in FGFR1 homodimerization. Also, it was 

observed that FGF2 only produced a small rise in the 

BRET
2
 signal from the 5-HT1A- -arrestin2 complex 

which was additive to the significant effect of 8-OH-

DPAT alone. All together, these results have shown a 

dynamic modulation of the allosteric receptor-receptor 

interactions in the FGFR1-5-HT1A heteroreceptor 

complexes with regard to their impact on 5-HT1AR and 

FGFR1 homodimerization [86]. 

METHODS FOR STUDYING GPCR RECEPTOR-
RECEPTOR INTERACTIONS  

In the last years, interactions involving GPCRs were 

demonstrated through diverse biophysical (FRET, 

BRET, BiFC) and biochemical or microscopy-based 

procedures (e.g. coimmunolocalization, coimmuno- 

precipitation, radioligand binding, co-internalization 

analysis) including methods that assess receptor-

receptor interactions [22, 23, 85, 87, 88]. Each 

methods or tools employed has gave a precise and 

valuable information which has been considered with 

caution to avoid undesirable drawbacks. Some 

controversy regarding some approaches have also 

emerged [89, 90]. Nevertheless, when these methods 

are properly assessed it is possible to demonstrate 

elegantly the direct interactions between GPCRs and 

as well as their dynamics. [91-93]. 

Novel technologies to study receptor heteroreceptor 

complexes and their receptor-receptor interactions 

have recently been developed such as real-time FRET 

experiments in living cells [94], dual-colour 

fluorescence cross-correlation spectroscopy (FCCS) 

[65] and mass spectrometry of phosphorylation 

fingerprints from receptor protomers of receptor 

heteromer and homomers [95]. A new dimension in the 

GPCR heteromer field was also introduced in 2010 by 

the evidence obtained, in cellular models first [48] and 

in brain tissue later [43, 46, 47, 72-76, 85], of the 

existence of GPCR heteroreceptor complexes by 

means of the in situ PLA. This method offers the 

advantages of the analysis of any receptor-receptor 

interactions for which suitable antibodies are available 

without using genetic constructs. As with any method 

there are limitations, for instance, in situ PLA could only 

be used in ex vivo fixed material. The method strongly 

relies on the quality of the antibodies used, and we 

must take into account parameters such as antibody 

concentration, epitopes targeted by the antibodies, 

fixation, antigen-retrieval, blocking conditions, etc. 

ON THE UNDERSTANDING OF THE BALANCE 
BETWEEN THE HOMO-AND HETERORECEPTOR 
COMPLEXES IN THE BRAIN 

Until now, most experimental work was focused on 

the study of GPCR receptor-receptor interactions as a 

phenomenon of binary interactions. In other words, it 

was only focused on the understanding of face-to-face 

protomer-protomer interactions and their allosteric 

receptor-receptor modulation and functional 

specificities (See www.gpcr-hetnet.com [64] for a 

complete list of all binary pairs of GPCR-GPCR 

interactions described so far). However, the 

phenomenon of GPCR oligomerization is a more 

complex and dynamic process, which involve many 

more parameters than the classical analysis of the 

interactions of the two involved protomers [86]. One 

emerging concept is that direct physical receptor-

receptor interactions in heteroreceptor complexes or 

altered balance with their homoreceptor complexes 

population can contribute to brain disease progression 

inter alias PD, depression, Schizophrenia, Alzheimer 

and addiction [61, 79]. When discussing the role of 

GPCR heteroreceptor complexes, it is of substantial 

interest to understand the balance/equilibrium between 

the corresponding homo- and heteroreceptor 

complexes in the plasma membrane of the cell (Figure 

1). It should be important to also consider a disruption 

or shift of the balance between corresponding receptor 

homomers and heteromer populations as a mechanism 

for disease development which therefore also 

represents a pharmacological target. 

 We have suggested that the introduction of in situ PLA 
(Figure 1) in combination with western blot, radioligand 
binding experiments and co-immunoprocipitation could 
open a new window to the understanding of the 
importance of the balance of the corresponding homo-
and heteroreceptor complexes [85]. The analysis of 
animal/human brain material with in situ PLA can 
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reveal if the relative abundance of specific homo-and 
heteroreceptor complexes in discrete brain regions is 
altered in brain diseases or under certain drug 
treatments, for instance, chronic L-dopa treatment in 
PD [61, 79].  

In this analysis, it is important also to determine the 

ratio between heteromers versus total number of the 

two participating receptor populations, using in addition 

to Western blots, receptor autoradiography and 

biochemical binding methods. The two latter methods 

show the densities and affinities of the two functional 

receptor populations. The relationship between these 

parameters will help to normalize the heteromer values 

for comparison between groups in addition to 

evaluating the potential changes in the total number of 

the two receptor populations [85].  

Certainly, we cannot compare or determine directly 

a balance between the homo- and heteroreceptor 

complexes populations in the same tissue using the in 

situ PLA approach, because of a technical limitation of 

the procedure itself. But the method could help us 

determine each population independently and compare 

their relative expression levels after an appropriate 

numerical analysis. Furthermore, it should help 

understand the effects that could be induced by 

agonist/antagonist treatments on the regulation of 

these homo-/heteroreceptor complexes in order to 

understand their potential roles as drug targets or as 

markers of brain disease progression. 
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Figure 1: On the understanding of the balance/equilibrium between GPCR homo- and heteroreceptor complexes population in 

the neuron membrane in the brain. (Top right) Schematic representation of the balance between different populations of homo 
and hetero-receptor complexes in a portion of the membrane cell. (Bottom) The panel represent an example of in situ PLA 
experiment performed in rat hippocampal free-floating sections using primary antibodies of different species directed to 
adenosine A2A and A2B receptors. The detected A2A-A2B heteroreceptor complexes are seen as red clusters indicated by 
arrows in each panel. Specific A2A-A2B clusters are visualized within discrete regions of the pyramidal cell layer of the 
Ammon´s horn and the molecular cell layer of the dentate gyros (ventral leaflet). The complex was also observed throughout the 
cortex and in the piriforme layer but were almost absent in the molecular cell layer of the dentate gyros (dorsal leaflet). The 
analysis of animal/human brain material with in situ PLA can reveal if the relative abundance of specific homo- heteroreceptor 
complexes in discrete brain regions is altered in brain diseases or under certain drug treatments. 
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