
18 International Journal of Cardiology and Lipidology Research, 2014, 1, 18-32  

 
 E-ISSN: 2410-2822/14  © 2014 Cosmos Scholars Publishing House 

Neuroendocrine Mediators, Food Intake and Obesity: A Narrative 
Review. 

Angelo Michele Carella1,*, Matteo Conte1, Armando Melfitano1, Ernestina Ponziano2 and 
Angelo Benvenuto1 

1
Internal Medicine Department, "T. Masselli-Mascia" Hospital - San Severo (Foggia), Italy 

2
Department of Clinical Phatology II Laboratory of Analysis, “OO.RR.” Hospital - Foggia, Italy 

Abstract: Obesity is a chronic multifactorial disease caused by imbalance between caloric intake and energy 
expenditure. The Neuroendocrine system is one of the main factors regulating energy intake in humans. The 
Neuroendocrine system is made up of cells able to synthesize and secrete amines, peptides, growth factors and 
biological mediators, known as neurohormones, which modulate various biological functions by interacting with the 
nervous and immune system. In the central nervous system, neurosecretory elements are mainly located in the 
hypothalamus which is the anatomical site of the hunger (lateral nucleus) and satiety (ventromedial nucleus) centers; 
thus it plays a key role in chemical coding of food intake. Dopamine, Noradrenaline and Serotonin are historically 
considered key points in the regulation of feeding behavior. However, other neurohormones have been identified; these 
substances, also synthesized in peripheral tissues (especially adipose tissue and digestive tract), influence food intake. 
Some of these hormones have orexigenic activity; conversely, other substances have anorexigenic activity. A constant 
balance between orexigenic and anorexigenic neurohormones is essential to ensure a smooth feeding behavior, 
whereas a subtle and progressive disruption of neurochemical transmission is sufficient to induce hyperphagia or 
anorexia. Several factors affect the synthesis and release of neuropeptides: genetic, hormonal, psychological, 
environmental, receptorial, type of feeding and meal frequency. In the recent past some drugs, as Sibutramine and 
Rimonabant, modulating the activity of several neuroendocrine mediators (Serotonin, Noradrenaline, 
Endocannabinoids), have proven to be effective in reducing weight excess, even if they were withdrawn because of 
serious side effects. Recently, promising results in this way have been obtained with Glucagon like Peptide-1 analogs, 
showing significant efficacy in counteracting weight excess without side effects. Further knowledge developments on 
these complex neuroendocrine circuits and their hypothalamic interactions in food intake regulation could open new 
frontiers for effective pharmacological therapeutic approach to Obesity and other nutritional disorders. 
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INTRODUCTION 

Obesity is a multifactorial chronic disease which 

reduces life expectancy and greatly increases health 

care spending, as it constitutes a serious 

cardiovascular risk factor by increasing morbidity and 

mortality [1, 2]. Obesity results from a prolonged 

imbalance between caloric intake and energy 

expenditure; so that body fat mass increases if a 

deregulation of energy balance occurs [2]. Appetite and 

energy balance are regulated by several 

neurochemical circuits and the Neuroendocrine system 

(NES) is one of the main factors which regulates caloric 

intake in humans. NES is made up of cells which 

synthesize and secrete amines, peptides, growth 

factors and biological mediators, so called 

neurohormones, which modulate various biological 

functions by interacting with the nervous and immune 

system. In the central nervous system (CNS), 

neurosecretory elements are mainly located in the 

hypothalamus, which is the anatomical site of the  
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hunger and satiety centers located in the lateral area 

(LHA) and in ventromedial nucleus (VMN), 

respectively; thus the hypothalamus plays a key role in 

chemical coding of food intake. 

Most studies about the role of neuromediators in the 

control of food intake were carried out at the end of the 

last century; these studies have allowed to shed light 

on many pathogenetic aspects of Obesity and have 

provided data for developing potential drug treatments. 

In the CNS Dopamine (DA), Noradrenaline (NA) and 

Serotonin (5-HT) are historically considered key points 

in the regulation of feeding behavior. However, in the 

last years many other neurohormones were identified; 

these substances, also synthesized in peripheral 

tissues, influence food intake and energy balance [3]. 

Some of these substances have orexigenic activity; 

conversely, other substances have anorexigenic 

activity. Adipose tissue, gastrointestinal tract, and 

pancreas are the main sources of these peripheral 

signals. The peripheral control of food intake includes 

afferent vagal nerves activated by distension of the 

gastrointestinal tract and by various gut hormones 

stimulating or inhibiting food intake. In the brainstem, 

the Nucleus of tractus solitarius (NTS) receives 
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viscerosensory information and it serves as gateway 

for neural signals from the gastrointestinal tract to the 

hypothalamic centers [4]. The adipose tissue, the 

largest energy storage compartment, in the recent past 

has acquired the dignity of endocrine organ, because it 

was discovered to synthesize and release molecules, 

known as adipokines, which play endocrine, autocrine 

or paracrine roles [5].  

A constant balance between orexigenic and 

anorexigenic neurohormones is essential to ensure a 

smooth feeding behavior, whereas a subtle and 

progressive disruption of neurochemical transmission is 

sufficient to induce hyperphagia or anorexia. Several 

factors influence the synthesis and release of 

neuropeptides: genetic, hormonal, psychological, 

environmental, receptorial, type of feeding and meal 

frequency. [3] 

This work reviews the most insights about the 

complex and redundant molecular mechanisms which 

regulate food intake, focusing on the most encouraging 

perspectives for the treatment of obesity. 

HYPOTHALAMIC NEUROHORMONES MODULA- 
TING FOOD INTAKE 

Several studies have identified in the hypothalamus 

neuronal sites responsible for the synthesis and 

release of orexigenic and anorexigenic 

neurotransmitters and their receptors. These 

hypothalamic neurons are able to produce more 

neurotransmitters and they are connected by a wide 

network of neuronal pathways. This intricate brain 

network integrates and releases orexigenic and 

anorexigenic signals, resulting in a complex circuit, the 

Appetite Regulation Network, which adjusts eating 

behavior [6-8]. In addition to the VMN, site of the 

satiety center, and in addition to the LHA, the 

integration center for olfactory, visual, digestive and 

metabolic information promoting food intake, other 

hypothalamic areas, such as the paraventricular 

nucleus (PVN), dorsomedial nucleus (DMN) and 

arcuate nucleus (ARC) are charged of monitoring food 

intake. Historically, classical neurotransmitters which 

play a role in modulating eating behavior and energy 

homeostasis are Dopamine (DA), Noradrenaline (NA) 

and Serotonin (5-HT) [9].  

Several evidences have confirmed that DA release 

in specific hypothalamic regions, such as the LHA, 

encourages food intake [10-12]. In contrast, several 

experimental studies have shown the anorexigenic 

activity of 5-HT; this effect is mediated by serotonin 

receptors located in the VMN and it appears to be 

selective for carbohydrate-containing foods. Moreover, 

5-HT would responsible for reducing the amount and 

frequency of food eaten [13, 14]. The noradrenergic 

system is involved in the appetite regulation through a 

dual mechanism: the activation of 1-receptors inhibits 

food intake while the activation of presynaptic 2-

receptors causes opposite effect on nutrition [15]. A 

significant number of 1- and 2-adrenergic receptors 

were observed in the PVN and several experimental 

studies have shown that the two classes of receptors 

often act in antagonism [16,17]: NA release from 

presynaptic terminals stimulates food intake probably 

by activation of 2-receptors [18] while 1-receptor 

stimulation by agonists, such as Phenylpropanolamine 

and Amifedrina, causes a dose-dependent inhibition of 

food search; this effect is totally blocked by 

pretreatment with a1-receptor antagonists, such as 

Prazosin and Benoxathian [19]. In addition, it has been 

shown that activation of 1-adrenergic receptors in the 

VMN generates postsynaptic excitatory potentials while 

2-receptor stimulation produces inhibitory potentials. 

It's very likely that, at baseline, the anorexigenic effect 

of NA mediated by 1-receptors may be predominant 

[16, 20, 21]. 

Based on this knowledge, Researchers have 

directed their efforts towards the synthesis of drugs 

able to counteract body weight gain by reducing food 

intake. In the past years, many medications able to 

reduce appetite and food intake, by acting on 

noradrenergic and serotoninergic systems, have been 

introduced and approved by the United States Food 

and Drug Administration. However, most of them such 

as Phentermine [22], Fenfluramine and its d-isomer 

Dexfenfluramine [23], were subsequently withdrawn 

due to serious cardiovascular adverse effects. Most 

recently, Sibutramine, an inhibitor of serotonin and 

norepinephrine reuptake [24], was withdrawn on the 

same grounds. 

There are several evidences supporting the role of 

brain Histamine in food intake regulation. Histamine 

neurons, localized in the hypothalamic 

tuberomammillary nucleus (TMN), project to numerous 

brain regions. Histamine is a neurotransmitter able to 

inhibit appetite by interacting with H1- and H3-

receptors in the VMN and PVN [25-29]. Some studies 

in rats have shown that treatments increasing the 

availability of brain Histamine, or drugs which activate 

H1-receptors in the CNS, suppress food intake [30-32]; 

conversely, the treatment with H1-receptor antagonists 
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or the administration of Histidine decarboxylase 

inhibitors which decreases the brain levels of 

Histamine, increase food consumption and body weight 

[27, 33]. Experimental observations in rodents seem to 

agree that H3-receptors blockade in the hypothalamus 

is beneficial for decreasing food intake and body weight 

[34,35], whereas H3-receptor agonists enhance 

feeding in rats [36]. H3-receptor antagonists increase 

Histamine release from the hypothalamus [37] because 

H3-receptors are presynaptic autoreceptors which 

inhibit Histamine synthesis and release; moreover, they 

also inhibit other neurotransmitters which control food 

intake, such as 5-HT, DA and NA.  

More recently, many other neurohormones 

synthesized in the CNS and able to influence food 

intake, have been identified; of these, Neuropeptide Y 

(NPY) and  -Melanocyte Stimulating Hormone ( -

MSH) seem to be more involved in appetite control.  

Orexigenic signals 

NPY is widespread within the CNS, where it plays 

important effects on appetite stimulation, water intake 

and mood. NPY-producing neurons are located in 

different brain areas; in particular, food intake would be 

controlled by two neuronal subpopulations: the nerve 

cells of the brainstem and the hypothalamic neurons of 

the ARC which project afferents to the DMN, PVN and 

LHA [8, 38]. NPY represents the best known orexigenic 

agent: the administration of this peptide in different 

hypothalamic areas [39] and in the fourth cerebral 

ventricle causes a strong appetite stimulation [40] and 

reduces the energy consumption [41]; furthermore, 

chronic administrations of NPY cause hyperphagia and 

obesity [42,43]. The orexigenic action of NPY seems 

linked to the activation of two receptor subtypes, Y1 

and Y5 [44]. NPY synthesis and release have a 

circadian pattern [45] and NPY release is influenced by 

5-HT which seems to play an inhibitory role on NPY 

[9,46]. Moreover, gonadal hormones, glucocorticoids, 

insulin and some cytokines have modulatory effects on 

NPY synthesis and release [47-50].  

In several studies, a 19-amino acids cyclic 

neuropeptide, the Melanin-Concentrating Hormone 

(MCH), has proven potential orexigenic effects, less 

mighty and prolonged than NPY [51,52]. However, 

there are contrasting data about the involvement of this 

hypothalamic neuropeptide in the appetite regulation 

[53], although the evidences on its orexigenic effect 

[54, 55] seem to prevail on its anorexigenic activity [56, 

57].  

Two other appetite-stimulating neuropeptides, 

Orexin-A and Orexin-B, are synthesized in the LHA 

neurons and act on two receptors, OXR1 and OXR2. 

Orexin-producing neurons project to NPY-containing 

neurons in the ARC; NPY neurons express OXR1-

receptors and receive excitatory signals. Orexins have 

lower orexigenic effects than NPY and their activity 

may be due, at least in part, to stimulation of NPY 

neurons [58, 59]. Orexin-containing neurones 

intermingle partially with histaminergic neurons in the 

posterior hypothalamus. Orexin-A perfusion into rat 

stimulates food intake [60] and this effect seems to 

involve pathways mediated by Histamine H1-receptors. 

Finally, in vitro studies have shown that Orexins inhibit 

5-HT release in the hypothalamus [61]. 

According to some evidence, endogenous 

Cannabinoids such as Anandamide and 2-

arachidonoyl-glycerol (2-AG), by interacting with their 

type-1 receptor (CB1), facilitate food intake and reduce 

energy expenditure [62]. Moreover, in mice (CB1 -/-) 

with a disrupted CB1 gene [63, 64] and in rodents 

treated with CB1 antagonists, the lack of CB1-

receptors induces anorexigenic effects [65]. CB1-

receptors are widely distributed in the hypothalamus 

and the Endocannabinoid system seems to affect the 

secretion of other peptides involved in feeding behavior 

[66, 67]. In particular, an interaction between 

Endocannabinoid system and NPY has been shown in 

rats: two CB1 agonists, CP55, 940 and Anandamide, 

are able to significantly increase NPY release in the 

hypothalamus [68]. In the recent past, the CB1 

antagonist Rimonabant has been used for drug therapy 

of obesity; unfortunately, few years later it was 

withdrawn due to uncontrollable psychiatric adverse 

effects. [69]. 

Anorexigenic Signals 

The orexigenic action of NPY is counteracted by the 

anorexigenic effect of -MSH, also known as -

Melanocortin, a peptide widely distributed in the 

hypothalamus which derives from Proopiomelanocortin 

(POMC), a 267-amino acids polypeptide hormone 

precursor [70]. Five -MSH receptor subtypes have 

been identified and only two receptors, MC3 and MC4, 

are also expressed in the hypothalamus: MC3-

receptors are located in the limbic system and ARC, 

whereas MC4-receptors are spread throughout 

hypothalamus, predominantly in the PVN and LHA [71]. 

The activation of POMC neurons, which express insulin 

and serotonin receptors, promotes -MSH secretion 

[72]. In addition, POMC neurons interact with NPY 
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system: in the ARC, axons responsible for NPY release 

project toward POMC neurons, inhibiting their activity 

by -aminobutyric acid (GABA) release, the main 

inhibitory neurotransmitter of the CNS [73]. The 

dualism between these neuropeptidic systems is also 

expressed by complete suppression of NPY orexigenic 

effect after administration of -MSH agonists [73].  

A protein able to influence the anorexigenic activity 

of -MSH is the Agouti protein, primarily identified in 

the Agouti lethal yellow (Ay/a), a murine strain which 

represents a model of genetically determined obesity 

[74]. Agouti Signaling Protein (ASP), expression of 

gene mutation, acts as an antagonist of MC4-receptor 

by increasing food intake and body weight; moreover 

this protein induces chronic hyperglycemia [75]. 

Recently, a new gene, the Agouti Related Transcript 

(ART), has been identified in the hypothalamus; it 

presents high homology to Agouti gene and encodes 

for a protein Agouti related, the Agouti Related Peptide 

(AgRP). AgRP is a potent and selective antagonist of 

MC3 and MC4 receptors [76,77] and evidences that 

neurons located in the ARC, where NPY and 

ART/AgRP are co-expressed [78], as well as evidences 

that NPY and AgRP are co-released in the PVN, 

suggest that AgRP may help to block the anorexigenic 

effect of  –MSH [9].  

In addition to -MSH, POMC also generates ß-

endorphin, an opioid peptide released from the ARC 

neurons projecting in the VMN, DMN and PVN [79,80]. 

Microinjections of ß-endorphin stimulate food intake by 

activation of μ-opioid receptors [6, 8, 81]. Other opioid 

peptides, such as Dynorphin A, Methionine-Enkephalin 

and Leucine-Enkephalin, widely secreted in the 

hypothalamus, induce food intake by activation of - 

and -receptors [6, 82-84]. The orexigenic effect of 

endogenous opioids is less sustained and pronounced 

than NPY activity [83]; anatomical studies have shown 

the existence of synapses between axon terminals of 

NPY neurons and dendrites and soma of ß-endorphin 

neurons. Therefore, it has been hypothesized that NPY 

could increase food intake directly, or by favoring ß-

endorphin release [85].  

Another neuropeptide strictly related to the 

melanocortin system for the purposes of anorexigenic 

effect is the Cocaine - and Amphetamine-Regulated 

Transcript (CART). This peptide originally takes name 

from the isolation of messenger RNA produced by 

striatal neurons of rats, after treatment with 

psychostimulant drugs, such as Cocaine and 

Amphetamine [86,]. Later studies have shown the 

fragmentation of CART in several shorter peptides in 

the hypothalamic-pituitary axis and in the adrenal 

gland. These findings lead to the hypothesis that CART 

fragments play various biological functions in the 

nervous and endocrine system [86, 87]. CART-

producing neurons were found in the hypothalamus 

and limbic system; in particular in the ARC, CART 

neurons also express POMC [88]. CART peptide is an 

important anorexigenic signal: the intraventricular 

administration of this neuropeptide inhibits food intake; 

moreover, CART completely blocks the anorexigenic 

effect of NPY [9, 88, 89].  

Corticotropin-Releasing Hormone (CRH) also exerts 

inhibitory effect on food intake [6,90,91]; this 

neuropeptide secreted by hypothalamic neurons in the 

pituitary portal circulation is known to stimulate the 

release of Adrenocorticotropin hormone (ACTH) from 

the adenohypophysis [92]. CRH-producing neurons are 

mainly located in the PVN and they project up to the 

extreme zone of the median area [93]. CRH release is 

regulated by a circadian rhythm linked to the sleep-

wake cycle and its secretory spikes are in response to 

particular stress [94]. CRH microinjections in different 

hypothalamic areas have identified the sites 

responsible for anorexigenic action of CRH, probably 

mediated by two receptor subtypes, CRH-R1 and CRH-

R2 [95]. CRH neurons interact with other neuronal 

systems involved in the appetite regulation; in fact, 

these neurons express Y5- and MC4-R-receptors in the 

hypothalamus [96, 97]. Therefore, it was suggested a 

link between CRH, NPY and melanocortin system: 

CRH acts in the PVN by inhibiting the orexigenic action 

of NPY [95]; conversely, CRH production is stimulated 

by central administration of melanocortin agonists, 

while the antagonists inhibit this effect. Some studies 

have found other peptides produced by hypothalamic 

neurons such as Urocortine, belonging to the same 

family of CRH and with a primary structure partly 

homologous [98]; this peptide has a high binding 

affinity for CHR-R1- and CHR-R2-receptors [99].  

PERIPHERAL OREXIGENIC NEUROHORMONES 

Several neurohormones, synthesized in the 

peripheral tissues, particularly in the adipose tissue and 

digestive tract, influence food intake; some of these 

substances have orexigenic activity. Ghrelin is a 28-

amino acids polypeptide which exerts a strong effect on 

growth hormone (GH) release by acting directly on the 

pituitary gland. Although Ghrelin is more expressed in 

the stomach, it is also produced in the pancreas, 

kidney, immune cells, pituitary gland and ARC [100-
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104]. In the CNS Ghrelin receptors are expressed in 

the hippocampus and pituitary gland: this distribution 

suggests a possible role of Ghrelin in the hypothalamic 

mechanisms of appetite regulation [104]. It was shown 

that Ghrelin, when centrally administered, exerts a 

potent orexigenic effect slightly lower than NPY [105]. 

An important role in the modulation of Ghrelin 

orexigenic effect seems to be done by NPY and AgRP, 

since their messenger RNAs are overexpressed in the 

hypothalamus after chronic treatment with Ghrelin 

[106,107]. The simultaneous administration, at Y1-

receptor, of NPY antagonists and Ghrelin reduces the 

orexigenic effect of the hormone: these experimental 

evidences confirm the correlation between NPY and 

Ghrelin [103,108]. In turn, Ghrelin inhibits 

melanocortinic fibers probably by stimulating neurons 

of NPY/AgRP system [109]. In addition, there is 

evidence of a functional correlation between Ghrelin 

and Endocannabinoid system: Rimonabant, a CB1-

receptor antagonist, in the hypothalamus is able to 

inhibit the orexigenic response Ghrelin administration 

[67]; thus the orexigenic effect of Ghrelin could be 

mediated by endocannabinoid release in the PVN.  

Galanin (GAL) is a 29-amino acid peptide isolated in 

the small intestine and diffusely distributed in several 

sites, including the PVN, VMN and LHA [110]; 

intraventricular or hypothalamic injections of GAL 

stimulate food intake in rats already satiated [111-113]. 

There is a close anatomical and functional correlation 

between GAL-synthesizing neurons and other 

orexigenic signals in the brain of rats; in particular, 

neurons which produce NPY are in direct 

communication with those involved in GAL synthesis, 

especially in the ARC and PVN [114]: therefore we can 

hypothesize a synergistic effect of both peptides in the 

modulation of feeding behavior [8]. However, as 

demonstrated in several studies, the orexigenic effect 

of GAL is lower and shorter (30 minutes) compared to 

NPY. In addition, GAL-synthesizing neurons establish 

synaptic connections with ß-endorphin axon terminals 

in the ARC, so as to increase ß-endorfine release; on 

the other hand, pretreatment of rats with Naloxone, an 

opioid receptor antagonist, reduces GAL-induced food 

intake [111]. 

Peptide YY (PYY) is a gut hormone, belonging to 

the pancreatic polypeptides family, present in 

bloodstream in two main forms: PYY (1-36) and PYY 

(3-36) [115, 116]. PYY (1-36) is released after meal 

from intestinal L cells and exerts several 

gastrointestinal functions: it inhibits gastric acid 

secretion, pancreatic exocrine secretion and 

gastrointestinal motility; moreover it reduces 

mesenteric circulation [117-121]. Some studies have 

shown that PYY (1-36), although in low concentrations, 

is present in the CNS of mammals and it is able to 

cross the blood/brain barrier [117-119]. In particular, 

PYY (1-36)-containing neurons are located in 

hypothalamic areas and hindbrain [120] while its 

receptors are thickly distributed in the limbic system 

and thalamic nuclei [121-123]. This peptide has high 

structural homologies with NPY and several studies 

confirm that the orexigenic effect of PYY (1-36) is 

greater than NPY [124]. Although both peptides 

implement their hyperphagic effects by binding to 

specific receptor subtypes (Y1 and Y5) with 

comparable affinity, the difference probably is a longer 

link between receptors and PYY (1-36); this prolonged 

interaction may explain its higher orexigenic action than 

NPY [122, 125]. It is likely that PYY (1-36) expresses 

orexigenic effect by activation of different nutritional 

and motivational factors. Some studies [39,126] 

confirm that PYY (1-36) stimulates appetite; it also 

increases the hedonic value of food and influences 

dietary habits by changing the way to get food. Clinical 

trials have also shown some relationship between 

bulimic behavior and PYY (1-36) [127,128]. The 

involvement of the serotoninergic, adrenergic and 

opioidergic systems [129-131] in PYY (1-36)-induced 

hyperfagic behavior is widely recognized, but limited 

data are currently available about a possible 

involvement of the histaminergic system. However it 

has been demonstrated [132] that intraventricular 

infusion of the H3-receptor antagonist Tioperamide 

causes a dose-dependent decrease of hyperfagic 

effects induced by PYY (1-36). Since H3-receptors are 

also involved in the release of other neurotransmitters 

as NA, DA and 5-HT, it is possible that Tioperamide 

reduces the orexigenic effect of PYY (1-36) by 

modulating the release of other monoamines involved 

in appetite regulation. Pharmacological targeting of the 

PYY system could represent a promising strategy to 

treat obesity in the next future. 

PERIPHERAL ANOREXIGENIC NEUROHORMONES 

The main signal originating from the adipose tissue 

is Leptin, which promotes the activation of anorexigenic 

pathways in the CNS; furthermore, Leptin stimulates 

the adrenergic system, so as to increase the energy 

expenditure. Leptin is a 167-amino acids hormone, 

encoded by ob gene, which is secreted from the 

adipocytes in amounts proportional to their number and 

size [133, 134]. Leptin is able to cross the blood/brain 

barrier and reaches the CNS via a saturable transport 
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system located in the endothelial cells [135]. The 

pulsating production of Leptin occurs according to a 

circadian rhythm, with lower concentrations in the 

morning, progressively increasing up to achieve a night 

peak [136]. Membrane receptors for Leptin are located 

in the hypothalamic nuclei and exist in different 

isoforms; the most important are the short isoform (Ob-

R), which is involved in the transport mechanisms of 

Leptin in the CNS, and the long isoform (Ob-Rb), 

responsible for the metabolic effects of Leptin and 

widely distributed in the hypothalamus [137-139]. In 

humans, in both normal weight and obese subjects, 

serum levels of this hormone are related to adipose 

mass and body weight; Leptin secretion undergoes a 

drastic drop in the fasting state and it is greatly 

stimulated in case of excessive caloric intake or 

increased body fat; indeed in obese patients circulating 

levels of Leptin are quite high [140-142]. Leptin is a key 

hormone for the maintenance of energy homeostasis 

and body weight, by which the hypothalamus detects 

the nutritional status of the organism [143]. Central and 

peripheral administration of Leptin reduces food intake 

and body weight in both normal and genetically obese 

mice (ob/ob), which are characterized by lack of this 

hormone. It seems that Leptin is not able to inhibit the 

spontaneous food intake, but rather to reduce the 

amount of food eaten during a single meal [144]. 

Several studies in animal models have revealed the 

occurrence of Leptin resistance in genetically obese 

Zucker rats (fa/fa) and in both diabetic (db/db) and 

agouti (AY/a) mice, as well as in mice lacking MC4-

receptors and in those taking high-fat foods; in these 

rodents Leptin hypersecretion was observed [145-149]. 

In many obese patients have been observed a loss of 

Leptin-induced anorexigenic effects, probably due to 

alteration of transport mechanisms of this peptide 

across the blood/brain barrier [150], or resulting from 

structural aberrations of Ob-Rb receptor, or secondary 

to changes in the mechanism of post-receptorial signal 

transduction [9, 51]. 

Leptin interacts with many other peptide systems 

involved in the hypothalamic regulation of appetite. In 

this regard, a large number of experimental evidences 

suggests an interaction between Leptin and NPY: Ob-

Rb and NPY receptors are co-expressed in the ARC 

[152]; in both normal and genetically obese (ob/ob) 

mice, subjected to fasting conditions, NPY gene 

expression is inhibited by Leptin in the ARC [153,154]; 

Leptin reduces NPY levels in the hypothalamic nuclei 

[154] and inhibits NPY-induced food intake [153].  

It has been observed that Leptin significantly 

reduces GAL and MCH gene expression; after weight 

loss there is a reduction of circulating Leptin levels and 

both appetite-stimulating and energy expenditure-

reducing responses are activated, probably by 

increasing NPY, GAL and MCH gene expression [154]. 

The localization of Ob-Rb receptors in neurons which 

produce MCH and GAL suggests that these 

neuropeptides can modulate the anorexigenic effects of 

Leptin [155]. Leptin receptors were also identified in 

Orexin-producing neurons, whereby it is possible that 

Orexins can also mediate Leptin activity [58].  

On the contrary, during weight gain has been 

observed an increase in blood Leptin levels with over 

expression of POMC [156] and CRH [154] in the PVN, 

resulting in food intake reduction. The expression of 

Leptin receptors in POMC neurons suggests that 

Leptin stimulates -MSH production [157]. The direct 

correlation between CRH and Leptin is confirmed by 

the observation that CRH antagonists inhibit the 

anorexigenic effect of the hormone; instead, central 

injections of Leptin increase CRH-mRNA synthesis and 

CRH-R2 gene expression [158]. 

The monoaminergic system could also be involved 

in the mechanisms which modulate Leptin activity; 

indeed this hormone inhibits DA and NA release from 

hypotalamic synaptosomes in rats [159]; moreover, the 

lack of DA, observed in case of hyperphagia secondary 

to Leptin deficiency, suggests a potential modulating 

action of this catecholamine on Leptin effects [10]. A 

possible role of Leptin in the modulation of 5-HT activity 

has also been evaluated: peripheral or 

intracerebroventricular administration of adipose-tissue 

hormone appears to stimulate the serotoninergic 

turnover in mice [160] while, in the frontal cortex, the 

serotoninergic transporters decrease after 

intracerebroventricular administration of Leptin [161].  

Leptin could affect the feeding behavior by 

activating Histamine-containing neurons; indeed, 

administration of Histidine decarboxylase inhibitors to 

rats decreases Leptin-induced suppression of food 

intake, so as Leptin-induced hypophagia is diminished 

in H1 receptor-deficient mice [162]. 

Finally, Leptin reduces the hypothalamic levels of 

Anandamide while the concentrations of Anandamide 

and 2-AG are increased in db/db mice or in fa/fa 

Zucker rats which have Leptin resistance [163]; 

therefore hypothalamic Endocannabinoids could be 

under inhibitory control of Leptin. 
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Insulin, the first hormone historically involved in the 

appetite control, is required to determine Leptin 

secretion by adipocytes; moreover the central action of 

Insulin reduces food intake and stimulates catabolic 

pathways, by inhibiting AgRP/NPY neurons and 

stimulating POMC/CART neurons [164]. 

Pancreatic ß-cells, in addition to insulin, also 

secrete Amylin, a 37-amino acids polypeptide which is 

stored in granules and secreted with insulin after 

nutrients intake or in response to hyperglycemia [165-

167]. Amylin influences glucose homeostasis by 

inhibiting glucagon secretion and modulating gastric 

emptying and insulin secretion [168]. Plasma Amylin 

levels increase in obese patients and in subjects with 

insulin hypersecretion [169]; conversely, hormone 

levels are low in type 1 diabetes mellitus [166]. Amylin 

exerts anorexigenic effect [170] after peripheral [171] or 

central [165] administration and crosses the blood/brain 

barrier; in the CNS it shows high affinity with different 

binding sites [172, 173]. It is not clear how Amylin plays 

a role in food intake inhibition: intraperitoneal 

administration of Amylin induces anorexigenic effects 

by dopamine D2-receptors [174] and it has been shown 

that Amylin inhibits DA release from hypothalamic 

synaptosomes [175]; in addition, chronic administration 

of Amylin leads to decreased NPY levels and increased 

CCK concentrations in the CNS [176, 177]. 

Glucagon like Peptide-1 (GLP-1) is another 

important hormone which plays a key role in 

modulating food intake; it is a potent inducer of 

glucose-dependent insulin secretion and is mainly 

synthesized in the intestinal L cells [178]. As other 

gastrointestinal peptides, GLP-1 is also localized in the 

CNS; in particular, GLP-1 is expressed in caudal 

neurons of the NTS which project to several 

hypothalamic areas, including the ARC and PVN [179]. 

Intraventricular administration of GLP-1 inhibits food 

intake in fasting rats and this effect is abolished by the 

concomitant administration of Exenedin (9-39) amide, a 

potent GLP-1 antagonist [180, 181]. The anorexigenic 

activity of GLP-1 could be mediated by NPY 

transmission; indeed, NPY-induced food intake is 

inhibited by GLP-1 and stimulated by Exenedin (9-39) 

[180, 182]. Some studies have shown that Leptin 

receptors and GLP-1 mRNA are co-expressed in the 

brainstem neurons and this observation suggests that 

GLP-1 may mediate the anorexigenic effects of Leptin 

[183, 184]. 

Histamine partially mediates the appetite 

suppression of GLP-1, because the anorexigenic effect 

is reduced by pharmacological or genetic loss of H1-

receptor function [185]. GLP-1 synthesis is regulated 

not only by a combination of neuroendocrine 

stimulating factors, but also by direct contact of 

nutrients with enteroendocrine cells; after secretion, the 

hormone is rapidly degraded in bloodstream by the 

enzyme dipeptidyl peptidase IV (DPP-4) [186]. GLP-1 

also reduces the pancreatic secretion of -glucagon 

[186] and exerts extrapancreatic effects which are 

potentially relevant for therapeutic applications [187]; 

indeed, GLP-1 inhibits gastric emptying and gastric 

acid secretion [188, 189].The main limitation to the 

therapeutic use of GLP-1 is its short half-life that is less 

than two minutes; to overcome this drawback there are 

two approaches: 1) to make use of GLP-1 synthetic 

analogs, resistant to the action of DDP-4, so as to 

prolong their stimulating effect on GLP-1 receptors; 2) 

to utilize selective DPP-4 inhibitors, able to prevent the 

degradation of endogenous GLP-1 so as to increase its 

circulating levels [190]. In several studies two GLP-1 

receptor agonists, Exenatide and Liraglutide, have 

shown to inhibit appetite and reduce food intake 

without affecting energy expenditure, obtaining weight 

loss in prolonged treatments [191]. This result seems 

particularly evident using GLP-1 analogs in 

combination with metformin, suggesting a possible 

positive interaction of drugs [192]. Open-label 

extensions of double-blind clinical trials show that the 

weight reduction proceeds, without plateau, up to three 

years of treatment [193]. Then, it seems that GLP-1 

analogs, unlike other drugs which reduce body weight, 

do not induce tolerance to their weight effects, at least 

in medium term. Unlike GLP-1 analogs, DPP-4 

inhibitors do not determine weight loss nor modify body 

weight [192]. These findings indicate that GLP-1 

analogs might become an interesting therapeutic option 

in obese patients [191].  

The enzyme DPP-4, acting on gastrointestinal 

peptide YY (1-36), produces the fragment (3-36) by 

loss of N-terminal dipeptide Tyr-Pro. The fragment (3-

36) of the peptide YY, belonging to the pancreatic 

polypeptides family, has an high sequential homology 

with NPY and mediates its endogenous effects by a 

greater selectivity for Y2 inhibitory autoreceptors, 

widely expressed on NPY/AgRP neurons of the ARC 

[109,194,195]. Peptide YY and its fragment (3-36) have 

opposing effects in the regulation of feeding behavior; 

indeed, peptide YY (3-36) shows anorexigenic effects 

when it is released into the bloodstream in response to 

food intake. Plasma levels of Peptide YY (3-36), rather 

low before meals, grow up after food ingestion until 
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they reach a peak within 90 minutes and remain 

elevated for many hours. Since the peak plasma level 

is proportional to the caloric intake, this peptidic 

fragment is an important signal interconnecting gut and 

brain circuits which regulate food intake [195]. 

Peripheral infusions of this peptide induce a sensible 

appetite reduction in rats and humans; experimental 

studies on humans have shown that administration of 

peptide YY (3-36), in normal postprandial 

concentrations, significantly decreases appetite and 

reduces food intake at least 24 hours [194-196]. 

Therefore, chronic administration can lead to significant 

weight loss; thus peptide YY (3-36) could be a valuable 

therapeutic approach in the obesity treatment. Some 

studies have assessed whether obese individuals 

have, as to Leptin, a resistance to peptide YY (3-36): in 

contrast to Leptin, the results have not shown 

resistance to the anorexigenic effects of peptide YY (3-

36) in obese subjects; on the contrary, the levels of this 

peptidic fragment were minimal and this result has 

suggested that the deficiency of this peptide may 

contribute to the pathogenesis of obesity [196]. Finally, 

studies in rats suggest that peptide YY (3-36) and 

Ghrelin act in opposition in food intake regulation by 

indicating "positive" and "negative" energy states, 

respectively. The opposing action Ghrelin-Peptide YY 

(3-36) seems to be at the root of the therapeutic 

success resulting from gastric and intestinal by-pass; 

indeed, patients undergoing this type of bariatric 

surgery, before the meals have a reduction in 

circulating Ghrelin levels and a significant increase in 

plasma levels of Peptide YY (3-36) [197-198]. This 

effect leads to a continuous reduction in the compulsive 

behavior toward food, with subsequent weight loss 

already detectable a few days after the surgery [199]. 

Oxyntomodulin (OXM) is another hormone released 

from enteroendocrine L-cells after digestion, which 

induces satiety by acting via GLP-1 receptors in the 

ARC. Circulating levels of OXM are elevated in several 

conditions associated with anorexia; central injections 

of OXM reduce food intake and body weight in rodents 

suggesting that OXM sends signals about food 

ingestion to the hypothalamic appetite-regulating 

circuits. OXM administration in animals and humans 

causes weight loss by reducing food intake in 

combination with increasing energy expenditure. Thus, 

the development of long-acting analogs of OXM is an 

exciting new therapeutic avenue for addressing the 

global obesity epidemic [200-202]  

Recently, it has been demonstrated that 

Preproghrelin may undergo an additional proteolytic 

cleavage, generating a 23-amino acid peptide named 

Obestatin. Unlike Ghrelin, Obestatin has anorexigenic 

effects and reduces gastric emptying and jejunal 

contractions, counteracting weight gain; however, 

some studies have not reproduced these results 

[203,204]. It has been reported that Obestatin is unable 

to cross the blood–brain barrier and is rapidly degraded 

in bloodstream [205]. An alternative hypothesis is that 

Obestatin exerts its effects on eating through direct 

interactions with the gastrointestinal system, by 

suppressing the gastric emptying and reducing the 

contractile activity of muscle strips in jejunum. Thus, 

the inhibition of jejunal contraction could generate an 

afferent vagal signal to induce satiety in the brain. 

[206].  

Finally, the brain-gut peptide Cholecystokinin (CCK) 

might play a role in the control of food intake. CCK is 

secreted from I-cells of the small intestine and acts as 

an endogenous signal of postprandial satiety. 

Peripheral administration of CCK reduces food intake 

in humans and animal models [207-209]. Feeding 

inhibitory actions of the hormone are mediated by 

interaction with CCK receptors expressed in the 

brainstem and hypothalamus [210]. It has also been 

reported that Ghrelin attenuates the effect of CCK on 

appetite while Leptin synergistically enhances CCK 

activity [211]. 

CONCLUSION 

Food intake is regulated by a complex system of 

central and peripheral signals which interact in order to 

modulate the individual response to nutrients. The 

peripheral regulation includes signals generated in the 

adipose tissue and gastrointestinal tract while central 

control is implemented by neuroendocrine mediators in 

the hypothalamus, the integration center of several 

nutrient signals.  

The main circulating signal originating from the 

adipose tissue is Leptin, which promotes the activation 

of anorexigenic pathways in the CNS. Gastrointestinal 

tract and pancreas also contribute with several 

circulating peptides, as Ghrelin, GAL, PYY, Insulin, 

Amylin, GLP-1, Oxyntomodulin and CCK that variously 

influence food intake by acting on hypothalamic 

neurons directly, after crossing the blood–brain barrier. 

Other gastrointestinal signals reach the NTS, in the 

caudal brainstem, through the vagus nerve. From NTS 

afferent fibers project to the ARC, where these 

afferences are integrated with adiposity signals and 

hypothalamic inputs, making a complex network of 
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neuroendocrine circuits which finally elaborate the 

individual response to meal.  

The ARC contains two major populations of neurons 

controlling appetite with opposing effects on food 

intake: a subset of neurons co-expressing NPY and 

AgRP which increase food intake, and another 

subpopulation co-expressing POMC, -MSH and 

CART which inhibit food intake. Axons of these 

neurons project to “second-order” neurons located in 

hypothalamic areas, downstream the ARC, also 

involved in the control of food intake: the PVN is the 

site where anorexigenic peptides, as CRH, are 

secreted while the LHA is the area where orexant 

molecules, as MCH, are produced.  

The balance between the activities of these 

complex and integrated neuroendocrine circuits is 

critical to regulate food intake and control body weight. 

In the past years, some drugs modulating the 

activity of several central neuroendocrine mediators 

have proven effective in reducing weight excess, even 

if they were withdrawn because of their serious 

adverse effects. Recently, promising results in this way 

have been obtained with analogs of a peripheral 

mediator, GLP-1, showing significant efficacy in 

counteracting weight excess without side effects.  

The knowledge about NES is continuously evolving 

and, at the time, we probably can see just the tip of an 

iceberg. Better understanding of these systems could 

help to clarify uncertain pathogenetic aspects of the 

weight gain. Moreover, further knowledge development 

on these complex neuroendocrine circuits and their 

hypothalamic interactions in the regulation of food 

intake could open new frontiers for effective 

pharmacological therapeutic approaches to Obesity 

and other nutritional disorders. 
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