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Abstract: We investigate the spatially homogeneous Bianchi Type III cosmological models with magnetized anisotropic 
dark energy fluid in the scalar tensor theory of gravitation proposed by Brans-Dicke [1]. The solutions of the models are 

obtained by volumetric exponential expansion, power law expansion and power law relation between scalar field 
 

and 

scale factor ‘a’. The physical aspects of the dark energy models are discussed. 
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1. INTRODUCTION 

The standard cosmological model suggests that 

total energy density of the universe is dominated by 

two components namely dark matter and dark energy, 

which drives the accelerated expansion [2]. Most 

considered dark energy models present an accelerated 

expansion due to the presence of a quintessence or a 

phantom field. Its existence was confirmed by several 

high precisions observational experiments, [3-9] 

especially the Wilkinson Microwave Anisotropy Probe 

(WMAP) satellite experiment. The WMAP shows that 

dark energy occupies about 73 % of the energy of our 

universe and dark matter about 23%. The usual baryon 

matter, which can be described by our known particle 

theory, occupies only about 4% of the total energy of 

the universe. Therefore, dark energy models have 

significant importance as far as theoretical study of the 

universe is concerned. It is characterized by the 

equation of state (EoS) 
   
p = w , where 

 
p  is a pressure 

of fluid,
  

 is the energy density of fluid and w is a 

function of the cosmic time t only [10]. Recent 

cosmological observation [11] from SNe Ia data 

indicate that  (w) is not constant and it suggests that 

   
( 1.67 < w < 0.62) while the limit imposed on 

  
(w) by a 

combination of SN Ia data (with CMB anisotropy) and 

galaxy clustering statistics is   ( 1.33 < w < 0.79) . The 

simplest DE candidate is the vacuum energy   
(w = 1) , 

which is cosmological constant  ( ) . The other 

conventional alternatives, which can be described by 

minimally coupled scalar fields, are 

quintessence   (w > 1) , phantom energy    (w < 1) and 

quintom as evolved and have time dependent EoS 

parameter. 
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Several authors [12-15] studied dark energy models 

for Bianchi Type III cosmological model in the context 

of general relativity. Among the various modifications of 

general relativity (GR), the scalar-tensor theories of 

gravitation proposed by Brans-Dicke [1], Nordvedt [16], 

Lyra [17], Sen and Dunn [18] and Saez-Ballester [19]. It 

is a well known that, for better understanding of the 

early stages of evolution of the universe; the scalar–

tensor theories of gravitation play a vital role. Brans-

Dicke (BD) theory of gravity is a well known example of 

a scalar tensor theory in which the gravitational 

interaction involves a scalar field and the metric tensor. 

The Brans-Dicke [1] field equations are  

R
μ

1

2
Rg
μ 2 ,μ ,

1

2
g
μ ,k

,k 1
;μ

g
μ ,k

,k( ) =
8 T

μ
,   (1)  

   

=
;k
,k

=
8 T

(3 + 2 )
          (2) 

where is a dimensionless coupling constant. In this 

theory one extra parameter  is used which satisfies 

the equation (2). The function is known as BD scalar 

field while T is the trace of the matter energy –

momentum tensor. It should be note that the general 

relativity is recovered in the limiting case  . Thus, 

we can compare our results with experimental tests for 

significantly large value of . 

 A detailed discussion of BD cosmology is given by 

Singh et al. [20]. The study of Bianchi type models in 

the context of BD theory has attracted many authors in 

the recent years [21]. Lorenz-Petzold [22] studied exact 

Bianchi type –III solutions in the presence of 

electromagnetic field. Kumar et al. [23] investigated 

perfect fluid solution using Bianchi type I space –time in 

scalar –tensor theory. Adhav et al. stuidied LRS 

Bianchi Type II cosmological model with anisotropic 

dark energy [24]. Katore et al. [25, 26] have discussed 
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Bianchi Type V and Plane symmetric space-time filled 

with dark energy models in Brans-Dicke theory of 

gravitation. Bianchi Type III dark energy model in 

scalar tensor theory of gravitation explained by Naidu 

et al. [27]. Rao et al. [28] investigated LRS Bianchi 

Type I dark energy cosmological model in Brans-Dicke 

theory of gravitation. Adhav et al. [29] explored Bianchi 

type III cosmological model with negative constant 

deceleration parameter in Brans-Dicke theory of gravity 

in the presence of perfect fluid. Anisotropic dark energy 

Bianchi Type III cosmological models in Brans-Dicke 

theory of gravity is obtained by Shamir et al. [30]. 

Bianchi Type III cosmological models with anisotropic 

dark energy is investigated by Akarsu et al. [31].This 

motivates us to investigate Bianchi Type III 

cosmological model with magnetized anisotropic dark 

energy in Brans-Dicke theory of gravitation. 

In this paper, we focuss our attention to explore the 

solutions of magnetized anisotropic dark energy 

Bianchi type III cosmological model in the context of 

BD theory of gravity. We find the solutions using the 

assumption of exponential law, power law and power 

law relation between scalar field and scalar factor. The 

paper has the following format: In section 2, the metric 

and field equations are described. The solutions of field 

equations are presented in section 3 and section 4. 

Sections 5 conclude the findings. 

2. METRIC AND FIELD EQUATIONS 

Spatially homogeneous and anisotropic 

cosmological models play a vital role in the study of the 

early stages of evolution of the universe. We consider a 

spatially homogeneous Bianchi type III space-time in 

the form  

ds2 = dt2 A2dx2 B2e 2xdy2 C2dz2 ,        (3) 

where A, B, C are metric potentials and function of the 

cosmic time t only. We assume that the universe is 

filled with anisotropic fluid and that there is no electric 

field while the magnetic field is oriented along x-axis. 

King et al. [32] used the magnetized perfect fluid 

energy–momentum tensor to discuss the effects of 

magnetic field on the evolution of the universe. The 

simplest generalization of the EoS parameter of a 

perfect fluid may be to determine the EoS parameter 

separately on each spatial axis by preserving the 

diagonal form of the energy-momentum tensor in a 

consistent way with the considered metric. Hence the 

combined energy-momentum tensor for anisotropic 

fluid and magnetic field is taken in the following form  

    
T μ = diag[T

1
1,T

2
2,T

3
3,T

4
4 ] ,         (4) 

    
T μ = diag[ p

x
+

B
, p

y B
, p

z B
, +

B
]
,
       (5) 

where is the energy density of the fluid while 

  
p

x
, p

y
and 

 
p

z
 are the pressures on 

  
x, y  and  z axes 

respectively, 
 B

 stands for energy density of magnetic 

field and 
  
w

x
, w

y
, w

z
are the directional EoS parameters 

of the fluid.  w is the deviation free EoS parameter of 

the fluid. 

Now parametrizing, the deviation from isotropy by 

setting 
  
w

x
= w and then introducing skewness 

parameter  and i.e. the deviation from  w respected 

on both the 
 
y  and  z axes. Here 

 
and are not 

necessarily constants and can be functions of the 

cosmic time t.  

From equation (5), we have  

    
T μ = diag[ w +

B
, w +( ) B

, w +( ) B
, +

B
]
  
(6) 

If the deviation parameters are zero, then equation 

(6) represents the energy-momentum tensor for the 

isotropic fluid and magnetic field [32]. For zero 

magnetic fields, equation (6) is reduced to be the 

energy-momentum tensor of anisotropic dark energy 

fluid [30-31].
 
 

In the co-moving co-ordinate system, the Brans-

Dicke field equations (1) and (2) for the metric (3) with 

the help of equation (4) becomes 
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Here the sub indices ‘4’ in 
  
A, B,C and elsewhere 

denote derivatives with respect to cosmic time t. 
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The equation of motion  

   
T
; j

ij
= 0,           (12) 

is consequence of the field equations (1) and (2). 

Equation (12) gives us
 
 

    
4

+ 1 + w( )
A
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4
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+ 2
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4
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.           (13) 

Using equation (2), we get 

44
+

4
(
A
4

A
+
B
4

B
+
C
4

C
)=
8 (1 3w )

(3+ 2 )
.

           (14)  

From equation (11), without loss of generality, we 

obtain  

  A = B .          (15) 

We substitute the value of equation (15) in equation 
(8) and subtract the result from (7), we obtain the 
skewness parameter on y-axis as  

=

2
B .         (16) 

Thus, the system of equations (7)-(11), (13) and 

(14) reduce to  
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44
+

4
2
B
4

B
+
C
4

C
=
8 ( 3w + 2

B
)

(3+ 2 )
.      (21) 

Now we define some physical parameters before 

solving the field equations. The directional parameters 

in the direction of yx, and z axes for the Bianchi 

Type III metric are defined as follows 

   
H

x
= H

y
=

B
4

B
, 
   

H
z

=
C

4

C
.       (22) 

The mean Hubble parameter is given by 

   

H =
1

3

V
4

V
=

1

3
2

B
4

B
+

C
4

C
       (23) 

where V = a3 = B2C  is the volume of the universe. 

The anisotropy parameter of the expansion is defined 

as 

   

=
1

3

H
i

H

H
i=1

3
2

.        (24) 

where H
i
 (i=1, 2, 3) represent the directional Hubble 

parameters in the direction of 
  
x, y and  z axes 

respectively. The equation (24) further reduces to 

   
=

2

9H
2

H
y

H
z( )

2

        (25) 

Using equations (17), (18), we have 
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From equation (26), we obtain 

   

H
y

H
z

=
B

4

B

C
4

C
=

V
+

8
+ 2

B( )+
1

B2
dt , 

           (27) 

where  is the real constant of integration and the 

term with  is the term that arises due to the possible 

intrinsic anisotropy of the fluid. 

Using equations (25) and (27), we get 

   

=
2

9H
2 V

+
8

+ 2
B( )+

1

B
2

dt

2

.     (28) 

The integral term in equation (28) vanishes for  

   

=
1

8 B
2

16
B

,        (29) 

which also leads to the following energy-momentum 
tensor 



Magnetized Anisotropic Dark Energy Bianchi Type III Cosmological International Journal of Advanced Applied Physics Research, 2014, Vol. 1, No. 2    33 

T μ = diag

w +
B
, w

2
B

B
,

w+
8

1

B2

16
B

B
, +

B

  (30) 

The anisotropic parameter for the Bianchi type III 

metric reduces to the following form 

    

=
2

2

9
2
H

2
V

2
.        (31) 

One can check that this behavior of the  in 

equation (31), we obtained by using an anisotropic fluid 

(25) in Bianchi type III space-time is equivalent to the 

ones that can be obtained similarly for Bianchi type I 

and Bianchi type V space-time by using any isotropic 

fluid. Then one would see that as
   

1 , the result we 

obtain for in the model given below is equivalent to 

the ones obtained in Kumar et al. [33] for Bianchi type I 

and Singh et al. [34,35] for Bianchi type V space-time 

in case of isotropic fluid.  

 The vanishing of the integral term also reduces the 
difference between the expansion rates on y and z 
axes to the following form 

    

H
y

H
z

=

B
2
C

.        (32) 

The power law relation between scalar field  and 

scale factor ‘a’ has already been used by Johri and 

Desikan [36] in the context of Robertson Walker Brans-

Dicke models. Thus, the power law relation between 

 
and a i.e. 

   
a

n where n is any integer implies that
 

= ba
n .         (33) 

where b is the constant of proportionality. 

The energy conservation equation (12), leads to two 

equations for the anisotropic fluid and magnetic field 

[32, 37]. 

    
4
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B
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B
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Using equations (29) and (33), the field equations 
(17)-(19) becomes 
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We have three linearly independent equations (36-

38) and five unknown functions
  
(B,C, ,

B
, w) . Thus, we 

can introduce more conditions either by an assumption 

corresponding to some physical situation or an arbitrary 

mathematical supposition; however, these procedures 

have some drawbacks. Physical situation may lead to 

differential equations which will be difficult to integrate 

and mathematical supposition may lead to a non-

physical situation. To solve the above set of highly non-

linear equations, we have used two different volumetric 

expansion laws [31]. 

   
V = c

1
e
3mt ,         (39) 

   
V = c

2
t
3k          (40) 

where 
  
c
1
,c

2
, k  and  m are positive constants. In this 

way, all possible expansion histories, the exponential 

expansion (39) and the power law expansion (40) have 

been covered. The models with the exponential 

expansion and power law for    k >1exhibit accelerating 

volumetric expansion. On the other hand the model for 

   k = 1 exhibits volumetric expansion with constant 

velocity; the models for    k <1  exhibit decelerating 

volumetric expansion. Thus, phenomenologically, the 

anisotropic fluid we dealed here can be considered in 

the context of DE in the models with exponential 

expansion and power law expansion for k >1 . 

3. MODEL FOR EXPONENTIAL EXPANSION 

After solving the field equation (36)-(38) for the 

exponential volumetric expansion (39) by considering 

(15), (32) and (33), we obtain the metric potentials as 

follows  

   

A = B =
c
1

c
2

1

3

exp mt

3bm(n + 3)c
1

n+3

3

e
m(n+3)t

,(41) 
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C = c
1
c
2
2( )

1

3 exp mt +
2

3bm(n + 3)c
1

n+3

3

e
m(n+3)t

 (42) 

where 
2
c is integration constant. For these values of 

metric potentials the directional Hubble parameters on 
the x, y and z axes found to be  

H
x
= H

y
= m+

3bc
1

n+3

3

e m(n+3)t
,

    

H
z

= m
2

3bc
1

n+3

3

e
m(n+3)t        (43) 

which are all finite for all finite values of t. 

The mean Hubble parameter of this model is given 
by 

H = m .         (44) 

The deceleration parameter is  

   

q =
d

dt

1

H
1 = 1 .        (45) 

For any physically relevant model, the Hubble 

parameter H and deceleration parameter q are the 

most important observational quantities in cosmology. 

Recent observation by Riess et al. [38] show that the 

deceleration parameter of the universe is in the 

range 1 q 0 . We observe that the relation (45) 

gives 
 
q as a constant. The sign of 

 
q  indicates whether 

the model inflates or not. The negative sign of 
 
q  

correspond to accelerating model whereas the positive 

sign of 
 
q indicates deceleration. In the present case 

 
q is negative therefore the universe is accelerating. 

Using the directional parameters (43) and mean 
Hubble parameter (44) in (25), we obtain 

    

=
2 2

9m
2
b

2
c
1
2[(n+3)/3]

e
2m(n+3)t

       (46) 

 

we observe that at   t = 0 ,  0  i.e. fluid was 

anisotropic at early epoch and at    t , 0  i.e. at 

large time fluid isotropizes.  

The scalar field of the model is obtained from 
equation (33), as 

= bc
1
n/3
e
mnt .         (47) 

The energy density of magnetic field of the model 
from equations (41), (42) in (35) is found to be 

   

B
= (c

1
2
c
2
) 2/3 exp 4mt

2 e
m(n+3)t

3bm(n + 3)c
1
(n+3)/3

.     (48) 

 

Figure 1: The plot of energy density of magnetic field versus 

cosmic time with parameters 
    

= b = c
1

= c
2

= = 1  

and   n = 3 .  

From equation (48), it is observed that the energy 

density of magnetic field is always positive and a 

decreasing function of time. Figure 1 clearly shows this 

behavior in accelerating model. The interesting point is 

that energy density of magnetic field in our model is 

defined at    t = 0  and we do not have any singularity.  

The density of the model from equations (38), (41), 
(42), (48) is found to be 

 

   

8
=

8

bc
1
n/3

e
mnt

(c
1
2
c
2
) 2/3 exp 4mt

2 e
m(n+3)t

3bm(n + 3)c
1
(n+3)/3

+
6 n

2 6n

2
m

2 3 2
e

2m(n+3)t

9b
2
c
1
2[(n+3)/3]

c
1

c
2

2/3

exp 2mt +
2 e

m(n+3)t

3bm(n + 3)c
1
(n+3)/3

          .(49) 

The energy density of universe with cosmic time is 

clearly shown in Figure 2. We conclude that, it is 

evolving with decreasing function of time in 

accelerating phase of universe and in early stage, the 

energy density was zero, due to coupling of magnetic 

field and dark energy and it tends to negative.
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Figure 2: The plot of energy density versus cosmic time with 

parameters 
    

= b = c
1

= c
2

= = 1    = 0.5  and   n = 3 .  

The skewness parameter is obtained by using (33), 
(41), (49) in (29) as 

 

    

8
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c
1

c
2

2/3

exp 2mt +
2 e

m(n+3)t
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           (50) 

Using (36), (41), (42) and (49), we obtain 

    

8 w
=

8
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e
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2
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           (51) 

The variation of equation of state parameter with 

cosmic time is shown in Figure 3, as a representative 

case with appropriate choice of constants of integration 

and other physical parameters using reasonably well 

known situations. We see that in early stage, the EoS 

parameter was zero i.e.    w = 0  (dusty universe 

dominated) and at late time it is evolving with positive 

value (the universe is matter dominated). 

In the absence of magnetic field i.e.    0 , the 

energy density of magnetic field, the energy density of 

fluid, the skewness parameter and deviation free 

parameter of the model are similar to the result 

obtained by Shamir et al. [30].  

In General Relativity, (For n=0, , 
   

1 , 

b=1) when 0
 
(In absence of magnetic field) the 

energy density, Skewness Parameter and deviation 

free Parameter results resembles to that of Akarsu et 

al. [31]. 

 

Figure 3: The plot of EoS Parameter versus cosmic time with 

b= c
1
= c

2
= = = 1 ,   n = 3and   = 0.5 . 

4. MODEL FOR POWER LAW EXPANSION 

After solving the field equations (36)-(38) for the 

power law expansion (40) by considering (15), (32) and 

(33), we obtain the scale factors as follows 

  

A = B =
c

2

c
3

1

3

t
k exp

3b[1 k(n+ 3)]k
n+3

3

t
1 k (n+3)

,     (52) 

  

C = c
2
c

3

2( )
1

3 t
k exp

2

3b[1 k(n+ 3)]k
n+3

3

t
1 k (n+3)

    (53) 

where 
3
c is constant of integration. For these solutions 

the directional Hubble parameters on the x, y and z 

axes are 

H
x
= H

y
=
k

t
+
3bk (n+3)/3

t k (n+3) , H
z
=
k

t

2

3bk (n+3)/3
t
k (n+3) . 

           (54) 

The mean Hubble parameter of this model is given 

by  

  

H =
k

t
.         (55) 

It is clear that expansion rate of universe decrease 

with time. 

The deceleration parameter is obtained as 

   
q =

1 k

k
         (56) 
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We observe that the model is accelerating for the 

value of   k > 0 .  

From equations (54), (55) in (25), we get 

    

=
2 2

9bk
2
c
1
2[(n+3)/3]

t
2 6k .       (57) 

From equation (57), it is clear that at t = 0, 0 i.e. 

fluid was anisotropic at early stage of evolution and 

at
   
t , therefore fluid isotropizes at large 

time. 

The energy density of magnetic field of the model 
from equations (52) and (53) in (35) is found to be 

B
= c

2
2
c
3( )
2/3

t
4k exp

2 t1 k(n+3)

3b[1 k(n+ 3)]c
2
(n+3)/3

,
 

           
(58) 

 

Figure 4: The plot of energy density of magnetic field versus 

cosmic time with 
    
b = c

2
= c

3
= = = 1 and n= 3 . 

From Figure 4, at early epoch, the energy density of 

magnetic field was zero and it increases rapidly within 

a short period to its maximum value and thereafter 

decreases with cosmic time in both inflationary   (k = 1)  

and accelerating    
(k = 2) models [39].  

The density of the model from equations (38), (47), 

(52), (53) and (58) is obtained as 
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The skewness parameter is obtained by using (33), 
(52), (53), (58) and (59) in (29) as 
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Using (36), (47), (52), (53), (58) and (59), we obtain
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Figure 5: The plot of EoS parameter versus cosmic time 

with, = 0.5 , n= 3and
   
b = c

2
= c

3
= = = 1 . 

The variation of equation of state parameter (w) with 
cosmic time (t) is shown in Figure 5, as a 
representative case with appropriate choice of 
constants of integration and other physical parameters 
using reasonably well known situations. We see that in 
early stage, the EoS parameter was zero (dusty 
universe dominated) and at late time it is evolving with 
negative value (at the present time). The earlier real 
matter later on converted to the dark energy dominated 
phase of universe in accelerating models ([12], [40]). 
Therefore, it follows that our dark energy model in 
Brans-Dicke Theory is consistent with the recent 
observation of Type Ia Supernovae [38]. 

In the absence of magnetic field i.e.    0 , the 
energy density of fluid, the skewness parameter and 
deviation free parameter results are resembles with 
Shamir et al. [30].  
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In general Relativity (for n=0, , 
 

1 , b=1) 

when    0  (In absence of Magnetic field), the energy 
density, Skewness parameter and deviation free 
parameter results are similar to Akarsu et al. [31]. 

5. CONCLUDING REMARKS 

In this paper, we have presented Bianchi Type III 

cosmological models with magnetized anisotropic dark 

energy in scalar tensor theory of gravitation proposed 

by Brans-Dicke [1]. The exact solutions of the Brans-

Dicke field equations have been obtained by assuming 

two different volumetric expansion laws in a way to 

cover all possible expansions namely exponential 

expansion and power law expansion. 

The main features of the model are as 

(i) In exponential expansion law, it is observed that 

energy density of magnetic field is always positive and 

a decreasing function of time for accelerating model. In 

early stage the EoS parameter   (w)  was zero (dusty 

dominated universe) and at late time it is evolving with 

positive value (the universe is matter dominated). It is 

also found that the energy density of universe is 

decreasing function of time. At early stage energy 

density was zero and which tends to negative at large 

time due to coupling of magnetic field and dark energy. 

(ii) In power law expansion, it is observed that at 

early epoch the energy density of magnetic field was 

zero and it increases rapidly within a short period of 

time to its maximum value and there after decreases 

with time [39] for both inflationary and accelerating 

models. In early stage the EoS parameter   (w) was zero 

(dusty universe) and at late time it is evolving with 

negative value (at the present time). Thus, our DE 

model represents realistic model [12, 40]. 

(iii) Some important cosmological physical 

parameters for the solutions such as Hubble 

parameter, mean Hubble parameter, Anisotropy 

parameter, Energy density of fluid, deviation free 

parameters are examined and discussed in both 

models 

(iv) From the relation (45) it is clear that our 

universe is accelerating. It is resemble to the current 

observations of SNe Ia and CMBR [41]. This study will 

throw some light on the structure formation of the 

universe, which has astrophysical significance. 
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