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Abstract: As organic thin film transistors are playing important role in low cost, large area and flexible integrated circuits, 
there is urgent need of accurate modeling and simulation of these devices with emphasis of compact modeling suitable 
in integrated circuit simulation using Spice like simulators. This paper presents a 2D numerical simulation of pentacene 
based organic thin film transistors. Also a spice model extraction methodology of OTFTs base on Silvaco's UOTFT 
model is presented for circuit simulation. The numerically simulated results are in good agreement with OTFT spice 
modeling results. The Organic TFT model is extracted from the numerically simulated data and further it is used in circuit 
simulation of CMOS like hybrid inverter and five stage ring oscillator circuit realized from hybrid inverter. In the hybrid 
inverter circuit an amorphous silicon TFT is used in place of the NMOS devices and a Pentacene based TFT is used in 
place of the PMOS devices. Circuit simulation results proves the applicability of the model in circuit design of organic thin 
film based transistors.  
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INTRODUCTION 

In recent years organic electronics has drawn 
considerable attention of the researchers with organic 
thin film transistors (OTFTs) as key components for 
active matrix displays, radio frequency identification 
tags, and many other small scale integrated circuits. In 
fact organic electronics is becoming an important 
research topic both in academia and industry. There is 
a wide range of applications of these devices in large 
area displays, sensor arrays, and photovoltaics etc. as 
discussed in [1-38]. The major advantages of organic 
semiconductor materials for electronic devices are 
flexibility, low cost, and applicability of low temperature 
processing [1, 29]. This will give the opportunity of 
fabricating mechanically flexible devices on flexible 
substrates at low cost and low temperature. In organic 
devices, OLED technology is becoming mature. This 
accelerated progress has benefited from strong 
science and technology advances in all areas of OLED 
technology including materials, devices, and process 
engineering. Whereas flat panel flexible displays 
present a large market opportunity for OLEDs, this 
requires flexible driving electronics. OTFTs are best 
candidates for this application and for the advancement 
and commercialization of this flexible display 
technology [5]. Organic thin-film field-effect transistors 
(OTFT's) have found application in recent years in low- 
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cost, large-area electronics. OTFT's are flexible and 
can be fabricated at lower temperatures compared to 
other thin-film devices making them attractive for large-
area applications. Among many organic materials, 
pentacene-based OTFTs have been extensively tested 
and so far have exhibited highest mobility for hole 
transport [30-34]. Field-effect transistors (FETs) using 
organic materials have generally low-speed due to their 
low-mobility [35, 36], relatively high operation voltage 
[37] on the other hand there are many advantages to 
OTFTs, such as the flexibility of the plastic fabrication 
substrate and the potential cost savings to 
manufacturers that adopt a solution process and/or ink-
jet printing process. One of the most widely studied 
organic semiconductor materials used for OTFTs is 
pentacene and pentacene-based OTFTs have a typical 
field effect mobility of around 1 [cm2/(V sec)]. This is of 
comparable value to hydrogenated amorphous silicon. 
OTFTs on lightweight flexible substrates are expected 
to eventually replace hydrogenated amorphous silicon 
TFT applications on glass substrates. As need to 
understand basic device operation, to optimize device 
structures grows the importance of numerical device 
simulation and spice model development is rising as 
well. The organic devices Simulation Program with 
Integrated Circuit Emphasis (SPICE) is still not mature. 
Compared to the silicon industry where public models 
are well defined and commonly used to provide 
designers with a relative good description of any 
process, organic devices are still lacking for their 
complete device models that can fully describe their 
electrical characteristics. Many studies exist in the 
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literature to understand the physics of these devices in 
order to mathematically describe their behaviours as 
discussed in [38] and references there in. In this 
direction Silvaco has done an excellent effort and 
developed organic thin film transistor model fully 
dedicated to organic technology which incorporates 
organic device physics and implemented in its circuit 
simulator and device modeling software to explore the 
organic device and technology. In this article an effort 
has been done to investigate OTFT technology using 
these models with the help of 2D numerical simulation 
and spice modeling software UTMOST IV.  

This paper presents a finite element based 2D 
numerical simulation results of pentacene based top 
contact bottom gate organic field effect transistor using 
commercially available device simulation software 
ATLASTM [40] and demonstrates the use of numerical 
simulation data for spice model extraction using 
universal organic thin film transistor (UOTFT) model 
[41-42] developed by Silvaco Inc. and available in 
analog circuit simulator SmartSpice [43] and in 
UTMOST IV [44-45] spice modeling software from 
Silvaco Inc. Simulation of hybrid inverter consisting of 
amorphous silicon TFT in place of the NMOS devices 
and a Pentacene based TFT in place of the PMOS 
devices and 5 stage ring oscillator is also demonstrated 
using the extracted spice models of the transistors.  

NUMERICAL SIMULATION 

Numerical devices simulation of top contact bottom 
gate pentacene based OTFT has been performed 
using device simulation software ATLASTM from Silvaco 
International. The device structure used for simulation 
is shown in Figure.1. In the device under consideration 
50nm thick Pentacene is used as channel with 400nm 
thick SiO2 as gate oxide. The source and drain consists 
of Au and heavily doped silicon serves as gate.  

 

Figure 1: Pentacene based OTFT structure used in 
numerical simulation. 

In order to simulate I-V characteristics of OTFTs, it 
is important to consider how carrier transport in organic 
semiconductors is described. In case of OTFT, the 
space-charge limited current (SCLC) model is 
successful in explaining the conduction current of 
organic semiconductors. In the SCLC model, the 
carriers are self-trapped. In addition, one of the most 
determinant factors for carrier transport characteristics 
are the energy distributions of density of states (DOS) 
within the bandgap. The ATLAS is able to use SCLC 
model in simulation and the TFT module in ATLAS is 
able to define these density of state distributions within 
the band gap. ATLAS predicts the electrical 
characteristics of the device by solving systems of 
coupled differential equations and drift diffusion model 
of charge transport using finite element method. The 
Poisson's equation and continuity equation for 
electrons and hole that are a set of coupled, partial 
differential equations are solved numerically with the 
help of ATLAS software for obtaining terminal 
characteristics of the conventional devices. These 
equations are given below 
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where  is the dielectric constant,  is the potential, p is 
hole density, n is electron density, p refers to holes, n 
refers to electrons, q is the fundamental electronic 
charge, G is the charge generation rate, R is the 
charge recombination rate, and J is the current density 
which is given considering its drift and diffusion 
components by 
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where μ is mobility, E is the local electric field, and D is 
the diffusion coefficient. To account for the trapped 
charge, Poisson’s equations are modified by adding an 
additional term QT, representing trapped charge given 
in (6). The trapped charge may consist of both donor - 
like and acceptor-like states across the forbidden 
energy gap, where the acceptor like states act as 
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electron traps and donor-like states act as hole traps.  
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The density of defect states, g (E), is defined as a 
combination of four components. Two tail bands with 
an exponentially decreasing function are specified to 
contain large numbers of defect states at the 
conduction band (acceptor-like traps) and valence 
band (donor-like traps) edges, respectively. In addition, 
two deep-level bands for acceptor-and donor-like 
defects are defined that are modeled using a Gaussian 
distribution. The equations describing these terms are 
given as follows: 

g
TA
E( ) = NTAexp

E E
c

WTA
         (7) 

g
TD

E( ) = NTD exp
E
V

E

WTD
         (8) 

  

g
GD

E( ) = NGAexp
E

V
E

WGA

2

        (9) 

  

g
GD

E( ) = NGD exp
E EGD

WGD

2

      (10) 

Where E is the trap energy, EC is conduction band 
energy, EV is valence band energy, and the subscripts 
T, G , A and D stand for tail, Gaussian (deep level), 
acceptor and donor states respectively. The 
exponential distribution of DOS is described by 
conduction and valence band intercept densities (NTA 
and NTD), and by its characteristic decay energy (WTA 
and WTD). For Gaussian distributions, the DOS is 
described by its total density of states (NGA and NGD), 
its characteristic decay energy (WGA and WGD), and 
its peak energy/peak distribution (EGA and EGD). 

In organic materials at high electric fields the charge 
transport becomes field dependent. Field dependent 
mobility effects which is described by Poole-Frenkel 
mechanism is included in the numerical simulation. The 
Poole-Frenkel field dependent mobility model used in 
the simulations is described by equation (11) as in 
reference [12-13, 41] 
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where
 
μ

0
 is the zero-field mobility, F is the electric field 

intensity, is activation energy and  is the 
characteristic parameter for the field-dependence 
called Poole-Frenkel factor. The simulated transfer and 
output characteristics of pentacene OTFT is shown in 
Figures 2 and 3. 

 
    (a) 

 
    (b) 

Figure 2: Transfer characteristics of Pentacene based TFT 
(a) at +ve values of VDS and (b) -ve values of VDS. 
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Figure 3: Output characteristics of simulated pentacene 
OTFT. 

Spice Modeling and Application of Spice Model in 
Hybrid Inverter and Ring Oscillator Simulation. 

There is an increasing technological interest in low-
frequency application because of the demand for a low-
cost circuit. Since amorphous silicon or an organic thin-
film transistor (TFT) can be manufactured using low-
cost processes, they are adequate for low-cost circuits. 
However, their mobility is low and their applications are 
restricted to the low-frequency region. Organic TFTs 
have been studied for low-cost circuits on glass or 
flexible substrates [48-57]. Radio frequency 
identification (RFID) and displays are typical 
applications of such low-cost circuits. TFT circuits in all 
NMOS (or PMOS) like topology have a large static 
power dissipation due to the existence of a direct path 
from supply to ground. Such power dissipation would 

prevent these circuits from being used in battery 
operated portable systems. Thus, the obvious choice is 
to integrate the a-Si:H n-TFT with pentacene based p-
TFT in a complete CMOS structure. This was first 
shown by Bonse et al [58] and CMOS TFT Op-Amps in 
hybrid TFT technology have been demonstrated in 
reference [59]. Many TFT models have been reported 
in past [60-70]. The technology and operation of 
organic thin film transistors (OTFTs) have a range of 
peculiar features that require a dedicated compact TFT 
model. The most important OTFT specific features are: 
the operation in the carrier accumulation mode, 
exponential density of states, interface traps and space 
charge limited carrier transport, nonlinear parasitic 
resistances, source and drain contacts without junction 
isolation as well as the characteristic mobility 
dependence on carrier concentration, electric field and 
temperature. The universal organic TFT (UOTFT) 
model has been developed at Silvaco [45] by extending 
the unified charge control model (UCCM), previously 
used for a-Si and poly-Si TFTs [66-68], to OTFTs and 
introducing generic modeling expressions for channel 
conductivity OTFT [69, 70]. In that way, UOTFT model 
is suitable for application to a large variety of the OTFT 
device architectures, material specifications and 
fabrication technologies [45]. Therefore we have used 
UOTFT model for spice model extraction of pentacene 
based OTFT. All the modeling equations can be 
obtained in [41, 42, 45]. To realize the hybrid inverter 
circuit we performed a process and device simulation 
of NMOS a-Si:H TFT and pentacene based PTFT. We 
converted the TCAD data to UTMOST IV format (from 
.log file to .uds file), and performed model extraction in 

 

Figure 4: ID-VD characteristics of Pentacene based TFT at VGS=0V to -60V in steps of -10V from bottom to up. 
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Figure 5: Hybrid inverter schematic. 

 

Figure 6: Five-stage ring oscillator using hybrid inverter. 

 

UTMOST IV. For the pentacene based PTFT, a 
UOTFT model (level=37) was used and for the NMOS 
a-Si:H TFT an RPI a-Si TFT model (level=35) was 
used. The detailed explanation of the a-Si TFT and 
OTFT model extraction methodology can be found [60-
61]. Figure 4 illustrates the ID-VD characteristics of the 
OTFT after optimization in UTMOST IV which is in 
good agreement with output characteristics of 
pentacene TFT obtained by numerical simulation. 
UOTFT model is able to reproduce the same output 
characteristics of OTFT as obtained from numerical 
simulation with mismatch error of only 1.25%. For 
optimization Levenberg-Marquardt algorithm was used 
in UTMOST IV. 

The extracted spice models of the a-Si NTFT and 
Pentacene based PTFT are then used in the hybrid 
inverter and the five stage ring oscillator circuits for 
simulation using Gateway.  

The schematics for the hybrid inverter and ring 
oscillator circuits are shown in Figures 5 and 6, 
respectively. The dc simulation characteristics of hybrid 
inverter is shown in Figure 7. It is evident that hybrid 

inverter operates at high voltage (i.e. VDD is high at 
above 10V). The output waveform of the five stage ring 
oscillator using the hybrid inverter is shown in Figure 8. 
From the output characteristics of the ring oscillator it is 
evident that it operates at relatively high voltage and 
frequency of oscillation is low, around 0.5 MHz. It can 
be used for low cast and low frequency applications. 

CONCLUSIONS 

This paper presented the simulation of pentacene 
based OTFT by two different approaches, one by 
means of 2D Numerical simulation using commercially 
available device simulation software ATLASTM and in 
other approach we simulated the OTFT characteristics 
using UOTFT compact model available in UTMOST-IV 
software. Simulation results in both the cases are in 
good agreement. Using the extracted UOTFT model 
based on numerical simulation data, simulation of a 
hybrid inverter and 5 stage ring oscillator are 
successfully demonstrated which gives the confidence 
to use this model in EDA tools to speed up the design 
cycle of circuits based on OTFTs. 
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        (a) 

 
        (b) 

Figure 7: DC Characteristics of hybrid inverter (a) at VDD=10V (b) at VDD=20V. 

 

Figure 8: Output of five stage ring oscillator using hybrid inverter. 
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