# Florida Red Tide Exposure: Systematic Review analyzing the respiratory effects experienced by the Gulf Coast population

# Katrina Zdanowicz; Dr. Cindy Liu Department of Environmental and Occupational Health, The George Washington University Milken Institute School of Public Health

# **PECO Statement/Research Question**

- **Population:** humans on Florida's west coast beaches
- **Exposure:** time spent on the beach during a red tide occurrence **Comparator:** population before their exposure to red tide on the
- beach
- **Outcome:** respiratory irritation

### Do those who live along Florida's west coast experience respiratory irritation associated with red tide?

# Background

- Florida red tide is a harmful algal bloom that annually occurs in the Gulf of Mexico
- Red tide is caused by a marine dinoflagellate called Karenia brevis (K. *brevis*), which emits brevetoxins that can cause mass fish kills
- Human health impacts = respiratory irritation from brevetoxin inhalation and neurotoxic poisoning from ingestion of tainted seafood



- Agricultural runoff into the Gulf of Mexico has exacerbated this naturally occurring event
- 4 billion people die from chronic respiratory conditions annually, 180,000 of them contributed to asthma
- Aerosolized brevetoxin exposure can lead to asthma attacks in susceptible subjects
- Even in those without asthma, brevetoxins are known to cause upper and lower respiratory irritation in their aerosol form





### **Example of Search Terms**

# **METHODS: NAVIGATION GUIDE**

**Data Sources** 

- PubMed
- Scopus
- Greenfile
- CINAHL
- Agricultural & Environmental Science Database

the study only analyzed respiratory effects in animal Exposure (harmful algal bloom [Mesh] OR red tide [tiab] OR harmful algal bloom\* subjects. [tiab] AND brevetoxin\* [tiab] OR Karenia brevis [tiab] OR K. brevis [tiab] OR FRT [tiab] OR dinoflagellida [mesh] OR dinoflagellida [tiab]) AND "Wildlife is kind of the proverbial canary in the (florida [mesh] Or florida [tiab]) coal mine...and right now, the canary just Outcome (Signs and Symptoms, Respiratory [mesh] OR respiratory [tiab] OR asthma died." –Heather Barron, Florida's Clinic for the Rehabilitation [mesh] OR asthma\* [tiab] OR lung [tiab] OR lung [mesh] OR aerosol\* of Wildlife [tiab] OR aerosols [mesh])

Results



| First Author and Date | Study population                                                                                                                                                                                              | Location                                                 | Sample size | Self-Reported Symptoms | Spirometry<br>measures |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------|------------------------|------------------------|
| Backer, 2003          | Beachgoers, ≥ 18 years old                                                                                                                                                                                    | Beaches in Sarasota and Jacksonville, FL                 | 129         | Increase               | No change              |
| Backer, 2005          | Healthy lifeguards, ≥ 18 years old                                                                                                                                                                            | Beaches in Sarasota or<br>Manatee counties in<br>Florida | 28          | Increase               | No change              |
| Fleming, 2009         | Open cohort of asthmatics (" ≥ 12 years of<br>age, history of smoking ≤ 10 years; able to<br>walk on the beach continuously for at least<br>30 min; and at least 6 months residence in<br>the Sarasota area") | Siesta Beach (Sarasota,<br>FL)                           | 87          | Increase               | No change              |
| Fleming, 2005         | persons who reported a physician's diagnosis of asthma, ≥ 12 years of age                                                                                                                                     | Siesta Beach (Sarasota,<br>FL)                           | 59          | Increase               | Decreased function     |
| Fleming, 2007         | persons ≥ 12 years of age with physician-<br>diagnosed asthma                                                                                                                                                 | Siesta Beach (Sarasota,<br>FL)                           | 97          | Increase               | Decreased function     |
| Kirkpatrick, 2011     | ≥ 12 years of age; history of smoking ≤10<br>years; able to walk on the beach<br>continuously > 30 minutes; and > 6-month<br>residence in the Sarasota area                                                   | Siesta Beach (Sarasota,<br>FL)                           | 52          | Increase               | No change              |

# THE GEORGE WASHINGTON UNIVERSITY





#### **Exclusion Criteria**

- the report did not contain original data
- the report did not quantify the brevetoxin exposure of human study populations
- the study did not speak to inhalation as the primary route of exposure for Florida red tide brevetoxin
- there was no comparator-control group
- the study did not evaluate the negative respiratory health effects experienced by the study population

### Quality of Evidence

Upgrading factors: Confounding minimizes effect

Downgrading factors:

- Risk of bias
- Imprecision

Overall Quality of Evidence: Low

| w Risk            |  |
|-------------------|--|
| ably Low<br>Risk  |  |
| ably High<br>Risk |  |
| gh Risk           |  |

#### Strength of Evidence

- Strength considerations:
  - quality
  - direction of and confidence in
  - effect estimate
  - additional compelling evidence

**Overall Strength of Evidence:** Inadequate

Limitations

Strengths

Public Health

## **Conclusions/Recommendations**

Based on our application of the Navigation Guide, we conclude that there is an **inadequate evidence of correlation** between red tide exposure and respiratory effects. There may be existing uncertainty, as studies did include an increase in self-reported symptoms and 2 populations who experienced decreased pulmonary function. However, the size and strength of the included studies do not independently support a significant correlation. We do not discourage further expert judgment and recommend additional research on the true short- and long-term effects of red tide on both asthmatic and non-asthmatic populations.

- All studies conducted in a short time frame
- Same cohort of researchers conducted all studies
- Lack of diversity in study design

- Ability to quantify respiratory effects through pulmonary function tests
- Correlation of greater risks of respiratory effects for those with asthma
- Consistency of studies

#### **Knowledge Gaps**

- Impacts of regular red tide exposure over time
- Chronic diseases potentially associated with red tide exposure

#### Recommendations

- Future long term prospective studies
- More thoughtful management of the increased nutrients that runoff into Florida waterways
  - reduce red tide presence to begin with

## References

\*indicates studies included in systematic review

Abraham WM, et al. 2004. Harmful Algae 2002.

- \*Backer LC, et al. 2003. Harmful Algae. doi:10.1016/s1568-9883(03)00005-2.
- \*Backer LC, et al. 2005. Environmental Health Perspectives. doi:10.1289/ehp.7502.
- Baden DG 2005. Environmental Health Perspectives. doi: 10.1289/ehp.7499.
- Chen W, 2018. Harmful Algae. doi:10.1016/j.hal.2017.11.004
- Cheng YS, et al. 2005. Environmental Health Perspectives. doi: 10.1289/ehp.7496. Ferkol T & Schraufnagel D 2014. Annals of the Am. Thoracic Society. doi:
- 10.1513/AnnalsATS.201311-405PS.
- \*Fleming LE, et al. 2005. Environmental Health Perspectives. doi: 10.1289/ehp.7500. \*Fleming LE, et al. 2007. Chest Journal. doi:10.1378/chest.06-1830
- \*Fleming LE, et al. (2009). Environmental Health Perspectives.
- doi:10.1289/ehp.0900673.
- IARC 2006. WHO. Available: http://monographs.iarc.fr/ENG/Preamble/index.php.
- Johnson, PI, et al. 2014. Environmental Health Perspectives. doi:10.1289/ehp.1307893.
- \*Kirkpatrick B, et al. 2011. Harmful Algae doi:10.1016/j.hal.2010.08.005.
- Lam J, et al. 2017. Environmental Health Perspectives. doi:10.1289/ehp1632.
- Murrell RN & Gibson JE 2010. Human & Experimental Toxicology.
- doi:10.1177/0960327110372644
- Sawaya GF, et al. 2007. Annals of Internal Med. doi: 10.7326/0003-4819-147-12-200712180-00007.
- Wei-Haas M 2018. National Geographic. Available:
- https://www.nationalgeographic.com/environment/2018/08/news-longest-redtide-wildlife-deaths-marine-life-toxins/

## **Contact Information**

Katrina Zdanowicz kzdanowicz@gwu.edu