Cost-Effectiveness of Alternative Anticoagulation Strategies for Postoperative Management of Total Knee Arthroplasty Patients

George Washington University School of Medicine and Health Sciences, Washington, DC ² Orthopedic and Arthritis Center for outcomes Research (OrACORe), Brigham and Women's Hospital, Boston, MA ³ Policy and Innovation eValuation in Orthopedic Treatments (PIVOT) Center, Brigham and Women's Hospital, Boston, MA

Background

- Anticoagulation is essential for deep vein thrombosis (DVT) and pulmonary embolism (PE) prevention following total knee arthroplasty (TKA)
- Prolonging the duration of anticoagulation post-TKA can substantially reduce DVT and PE risks
- Clinicians must weigh the risks of DVT and PE against those of excessive anticoagulation, including hemorrhage and prosthetic joint infection (PJI)

Objective

• Evaluate the cost-effectiveness of prolonged (35-day) and standard (14-day) duration anticoagulation therapy following TKA

Methods

<u>Model Structure</u> (Figure 1)

- State-transition Monte-Carlo computer simulation model (TreeAge) Pro©) following subjects for one year post-TKA, tracking clinical and economic outcomes of TKA and anticoagulation therapy Subjects transition between the following major health states
- post-TKA: • DVT, PE, PJI, hemorrhage, no postoperative complications

Input Data (Table 1)

- Published literature, RedBook Online®, Medicare Fee Schedules
- Each anticoagulant associated with unique cost, efficacy, and bleeding risk
- Each complication associated with unique cost, quality of life, and mortality

Anticoagulation Strategies

- Anticoagulants considered:
- Fondaparinux, Rivaroxaban, Low molecular weight heparin (LMWH), Warfarin, Aspirin
- Duration of post-TKA anticoagulation:
- Standard duration (14-day) or Prolonged duration (35-day)

Outcomes:

- Proportion of first post-operative year spent in each health state
- Incremental cost-effectiveness ratio (ICER):

Savannah R. Smith^{1,2,3}, Jeffrey N. Katz^{2,3,4}, Elena Losina^{2,3,4,5}

Supported by Rheumatology Research Foundation Medical Student Preceptorship, NIAMS K24AR057827

Results

able	1.	Select	Input	Parameters

Anticoagulation Characteristics								
	Daily Cost	RR DVT	RR Bleeding					
ondaparinux	\$43 ¹	0.08	2.21					
Rivaroxaban	\$8	0.12	2.12					
LMWH	\$37 ¹	0.20	1.23					
Warfarin	\$6/\$3 ²	0.36	1.21					
Aspirin	\$1	0.69	1.0					

ΨI Лэрши *LMWH* – low molecular weight heparin

– Includes cost of injection administration (\$20)

2 – Week 1/Weeks 2+; includes cost of monitoring

Figure 1. Cost-Effectiveness Acceptability Curve

- ⁴ Harvard Medical School, Boston, MA
- ⁵ Department of Biostatistics, Boston University School of Public Health, Boston, MA

Table 2. Cost-effectivene	ess of ant	icoagulatio	on strategies a	after TKA		F
Regimen	Cost	QALY	ICER	DVT	Bleed	
Prolonged Rivaroxaban	\$3,279	0.7328	Cost Saving	18.0%	6.0%	
Prolonged Warfarin	\$3,291	0.7325	Cost Saving	21.9%	4.0%	
Standard Rivaroxaban	\$3,416	0.7322	Cost Saving	22.8%	5.4%	Ĺ
Standard Warfarin	\$3,551	0.7319	Reference	25.6%	3.9%	
Prolonged Asprin	\$3,689	0.7315	Dominated	25.7%	3.5%	+ / 201
Standard Aspirin	\$3,777	0.7312	Dominated	28.4%	3.4%	
No prophylaxis	\$3,869	0.7262	Dominated	32.1%	3.3%	
Standard LMWH	\$3,898	0.7321	Dominated	23.9%	3.9%	
Standard Fondaparinux	\$3,932	0.7323	\$977,100	22.3%	5.6%	
Prolonged LMWH	\$4,375	0.7326	Dominated	19.5%	4.1%	
Prolonged Fondaparinux	\$4,529	0.7328	\$1,085,600	17.3%	6.2%	

	0 \$ ²⁵
•	There are prophylao We assur
	bleeding. analyses
•	Prolonge
•	Prolonge
•	As prolor

250

Še 200

100

Life

diu

ality

Qu

\$125,000

\$150,000

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

ictic period. imed, in the base case, that aspirin did not increase the risk of

We addressed the uncertainty in this parameter in sensitivity

Conclusions

ed therapies increase QALYs compared to standard duration s, supporting the extension of anticoagulation post-TKA. ed prophylaxis with warfarin and rivaroxaban emerged as coststrategies.

nged rivaroxaban and warfarin are comparable from a costeffectiveness standpoint, patient preferences can help inform the choice of the appropriate postoperative anticoagulation strategy.