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The beginning of human apolipoprotein L1 study (gene:
APOL1; protein: ApoL1) originated from the identification of
circulating ApoL1 as an interacting protein of ApoA1 and a
minor component of high-density lipoprotein subfraction 3

(HDL3) in 1997 [1]. In the past 18 years, ApoL1 has been in-
vestigated in the context of complex human diseases such as Af-
rican sleeping sickness, schizophrenia, host innate immunity,
cancer, hyperlipidemia, cardiovascular diseases, stroke and
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type 2 diabetes [2–10]. Amajor breakthrough, however, was the
documentation of two haplotypes of APOL1, harboring three
coding-sequence mutations as risk variants associated with
non-diabetic chronic kidney diseases (CKD) in African Amer-
icans [5, 6]. The first one, termed G1, is a two non-synonymous
SNP haplotype [rs73885319 (A > G; p.S342G) and rs60910145
(G > T; p.I384M)]. The second one, termed G2, is a two codon
deletion haplotype rs71785313 (6-bp in frame deletion; p.
ΔN388Y389) [4, 5]. These two coding-sequence variants have
been discovered mainly in kidney disease patients of African
ancestry and linked to the pathogenesis of primary focal and
segmental glomerulosclerosis, hypertension-attributed kidney
disease and HIV-associated nephropathy (HIVAN), under a re-
cessive inheritance pattern [3, 7, 10]. Moreover, these APOL1
variants and African American recipient ethnicity have been
shown to associate with kidney transplant rejection and allo-
graft failure [11–13]. Importantly, the expression of ApoL1
has been detected in renal proximal tubular epithelial cells, po-
docytes, medium-sized arteries, arteriolar endothelial cells and
pre-glomerular vascular structures [3, 14, 15]. Thus, there is no
doubt or controversy regarding the notion that the expression
of APOL1 risk alleles in kidney cells is associated with the de-
velopment and progression of non-diabetic CKD in African
Americans. In fact, we and others have shown that interferon-α,
-β and -γ and TNF-α can induce the expression of ApoL1 in
endothelial cells and overexpression of ApoL1 can lead to
autophagy- and/or necrosis-associated cell death in a variety
of cell types, including endothelial cells and podocytes [15–
19]. However, the role of ApoL1 in the outcome of cardiovascu-
lar diseases is amuchmore controversial topic [20]. Some studies
suggest that the APOL1 risk alleles have an adverse effect [8],
while others failed to detect an association between the risk al-
leles and these cardiovascular events [9], or showed improved
survival in patients with two risk alleles [10]. Moreover, the po-
tential role that extracellular/circulating ApoL1 might have on
systemic endothelial and/or kidney cells is currently unknown.
It is worth noting that besides being a component of HDL,
ApoL1 is also a component of very low density lipoproteins
(VLDL) and LDL [21]. This fact, however, has been frequently
overlooked and the role of ApoL1 in VLDL and LDL has not
been explored.

In this issue, Gutierrez et al. [22] utilized a case–control sam-
ple of African Americas who were part of the Sea Islands Gen-
etics Network (SIGNET) and assessed the relationship between
the APOL1 risk variants, G1 and G2, and the circulating levels
of different lipoproteins and sizes of HDL subclasses measured
by nuclear magnetic resonance (NMR) spectroscopy. Using
this well-established NMR technique, which is based on the as-
sessment of distinct methyl groups of lipid species in plasma
samples [23, 24], they found a modest increase of small-size
HDL particles (small HDL) in the circulation of patients carry-
ing the APOL1 G1/G2 risk alleles, independently of age, sex,
diabetes and percentage of African ancestry. There were no sig-
nificant differences in large or medium HDL, VLDL or LDL
concentrations observed by APOL1 genotype in this study. Al-
though the classification of large, medium and small of HDL is
different from that of HDL 1, 2 and 3 subfractions defined by
the density/density centrifugation [25–28], the small HDL

should be lipid-poor and high density similar to, if not the
same as, HDL3, of which ApoL1 is a component [1]. However,
in this study the levels of ApoL1 in plasma samples were not
measured and therefore cannot be correlated to the levels of
small HDL or other lipoprotein particles.

The results of Gutierrez et al.may be clinically relevant, since
they suggest that theAPOL1 genotype could play a direct role in
determining the circulating concentration of small HDL, which
have been associated with renal and cardiovascular diseases [7–
10, 27]. However, as discussed in their article, these findings
should be interpreted with caution. The authors propose that
the APOL1 risk variants could contribute to the increase preva-
lence of renal disease by facilitating the formation of circulating
HDL subpopulations with pro-atherogenic properties. None-
theless, the difference in the circulating levels of small HDL be-
tween subjects with zero and twoAPOL1 risk alleles wasmodest
(0.9 µmol/L), and although a previous study found that changes
of thismagnitude could be associated with albuminuria [27], no
differences were found in the prevalence of CKD, albuminuria
or othermarkers of cardiometabolic status across all theAPOL1
categories in the subjects of this study [22]. In addition, the dif-
ference in small HDL concentration between individuals with
one risk allele versus two risk alleles was minor (0.2 μmol/L)
and very unlikely to be clinically relevant. Moreover, if two
APOL1 risk alleles and higher circulating concentrations of
small HDL interact to precipitate CKD, one should ask why
two APOL1 risk alleles do not increase risk of diabetic nephro-
pathy in African Americans with elevated HDL3. If the role of
APOL1 rick alleles is to increase the concentration of small
HDL (or HDL3), then adding elevated HDL3 is redundant; if
the small HDL (or HDL3) are elevated already due to other fac-
tors, then APOL1 rick alleles cannot play an additional role by
increasing small HDL (or HDL3). On the other hand, it is well
known that once diabetic nephropathy is established, the pro-
gression of the renal disease is accelerated in patients carrying
two APOL1 risk alleles [7]. In summary, given the negligible
difference reported between the circulating levels of small
HDL in patients carrying one versus two risk alleles (0.2
μmol/L), these changes are very unlikely to explain the increase
risk of CKD conferred only by two risk alleles. As an alternative
explanation, Gutierrez et al. argue that the elevated levels of
small HDL could be due to changes in renal metabolic path-
ways. In this regard, a previous study showed that cubilin
(gene: CUBN; protein: cubilin), an endocytic receptor highly
expressed in renal proximal tubules, mediates the uptake of al-
bumin and filtered forms of ApoA1-HDL [29]. Moreover,
CUBN heterozygous deficient mice and transgenic mice over-
expressing human cubilin showed either decreased or elevated
levels of ApoA1, HDL cholesterol and HDL3 particles, respect-
ively [29]. Nonetheless, the subjects carrying two risk alleles
of APOL1 in the Gutierrez study showed only a minor increase
in the circulating concentration of small HDL, suggesting that
this isolated change is unlikely to be the result of renal
metabolism.

Taken together, the findings of Gutierrez et al. [22] addmore
fuel to the ongoing controversy regarding the association
of APOL1 G1/G2 risk status with cardiovascular outcome
among African Americans. However, if one speculates that
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the APOL1 risk alleles may directly modify the circulating
levels of small HDL and/or other factors and induce a
pro-atherogenic state that precipitates CKD and cardiovascular
complications, then one should begin to answer the following
several questions. (i) Why are the APOL1 risk variants not as-
sociated with an increased prevalence of diabetic nephropathy
in African Americans? (ii) Would the APOL1 risk alleles alter
the synthesis and function of other proteins in HDL3, VLDL
and VDL? (iii) How do the circulating ApoL1 mutant proteins
interact with the plasma membrane and initiate a signal trans-
duction pathway from outside to inside of the targeted cell? (iv)
Whatmechanismsmodulate the transport of circulating ApoL1
mutant proteins inside the cells and its interaction with intra-
cellular ApoL1 and/or other intracellular proteins, for example,
apolipoprotein L6 (ApoL6), an ApoL1-related protein, which
when overexpressed, induces atherosclerotic apoptosis [30]? Fi-
nally, as the expression of ApoL1 can be induced by inflamma-
tory cytokines and intracellular accumulation of ApoL1 can
initiate autophagy and cell death in endothelia cells, the cross-
talk between inflammation, autophagy and cell death mediated
by the overexpression of ApoL1 should be much more inten-
sively investigated before one can properly interpret the mean-
ing of these findings reported by Gutierrez et al. [22].
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