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Convergence behaviour of deflated
GMRES(m) algorithms on AP3000
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Abstract

gmres(m) method, the restarted version of the gmres (general-
ized minimal residual) method, is one of the major iterative methods
for numerically solving large and sparse nonsymmetric problems of
the form Ax = b. However, the information of some eigenvectors
that compose the approximation disappears and then the good ap-
proximate solution cannot be obtained, because of this restart. Re-
cently, in order to improve such a weak point, some algorithms which

∗Keio University, 3-14-1 Hiyoshi Kohoku, Yokohama 223-8522, Japan

0See http://anziamj.austms.org.au/V42/CTAC99/Mori for this article and ancillary
services, c© Austral. Mathematical Soc. 2000. Published 27 Nov 2000.

http://anziamj.austms.org.au/V42/CTAC99/Mori


Contents C997

named morgan, deflation and deflated-gmres algorithm, have
been proposed [7, 10, 12]. Those algorithms add the information of
eigenvectors that can be obtained in the previous restart frequency.
In this paper, we study those algorithms and compare their perfor-
mances. From the numerical experiments on the distributed mem-
ory machine Fujitsu AP3000, we show that deflated-gmres(m,k)
method performs the good reduction of residual norms in these algo-
rithms.
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1 Introduction C998

1 Introduction

We now consider the numerical solution of large and sparse linear systems of
equations

Ax = b (1)

by using of iterative techniques. Numerical formulations of partial differential
equation problems give rise to systems of large sparse nonsymmetric linear
systems. For these systems robust and fast iterative algorithms must be used.
Now, there are quite a few Krylov subspace algorithms for solving the above
linear systems, e.g. gmres, BiCGStab(`) and qmr. Of these algorithms, one
kind of the most profitable technique is based on the orthogonal projection,
typified by gmres algorithm.

The gmres begins with an initial guess x0 and characterizes the kth
iterate as

xk = x0 + yk

where yk solves the least squares problem such as

min
y∈Kk(r0)

‖b − A(x0 + y)‖2 = min
y∈Kk(r0)

‖r0 − Ay‖ (2)

In equation (2), the initial residual vector r0 = b − Ax0 and for v ∈ Rn,
Kk(v) is the Krylov subspace

Kk(v) ≡ span{v, Av, A2v, . . . , Ak−1v}.
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At the centre of the usual implementations of gmres algorithm is Arnordi
process, which is given in Saad et al. [2], to construct an orthonormal basis
for the Krylov subspace. For starting the gmres step, the process is applied
with v1 = r0/‖r0‖2. At each step, the orthonormalization can be done using
the modified Gram-Schmidt process. Each {v1, v2, . . . , vn} is an orthonormal
basis of Kk(r0) that reduces the least squares problem (2) to an upper Hes-
senberg least squares problem. This is normally solved by qr decomposition
with Givens rotations. So full orthogonalization is needed, but more expen-
sive as the subspace are increased. Moreover, the storage requirements also
increase. For such reason, we can usually use restarting when the subspace
reaches a certain size of m. We call this algorithm the restarted gmres(m).
The disadvantage with restarting is that some information of eigenvector is
lost at the time of the restart. The subspace is cast off, and then restarted
gmres algorithms slow down the convergence of residual norm.

In Section 2, we will briefly recall some related properties of deflated
gmres(m) algorithms. Next, in Section 3, we illustrate on some results of
numerical experiments on AP3000. At last, we give some concluding remarks.

2 Deflated GMRES(m) Algorithms

In deflation algorithms, there are two distinct ways of developing some knowl-
edge about approximate eigenvectors of AM−1 to accelerate convergence.
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The first approach is just to add the desired eigenvectors directly to the
Krylov subspace. For eigenvalue problems, this is absolutely natural [1]. For
solving the linear system (1), this approach has been proposed by Morgan [7].
Morgan injects eigenvectors u1, u2, . . . , up into Krylov subspace Kk(r0), so the
solution x then belong to

x0 + span{r0, Ar0, . . . , A
k−p+1r0, u1, u2, . . . , up}

The proposed algorithm is called morgam(m, k), where m is the dimension
of the Krylov subspace and k is the maximal dimension of the invariant
subspace.

The second approach is to explicitly deflate the eigenvectors from the
matrix. For example, by solving the equation

(I − σuvT )AM−1x = (I − σuvT )b,

where M is a preconditioner. Also, v is a left eigenvector of AM−1 and u is
arbitrary vector but is often chosen to be equal to v. This sort of algorithm
has been proposed by Erhel et al. [10], and Burrage and Erhel [12]. Erhel et
al. [10] proposed deflated-gmres(m, k) algorithm. This algorithm is up-
datethe preconditioner M at each restart. One another algorithm is proposed
by Burrage and Erhel [12] which is called deflation(m, k) algorithm. This
algorithm is designed a new preconditioning deflation which continuously
updates the vectors in U , where the matrix U is a basis of approximated in-
variant subspace. The detailed derivation of this algorithm is given in their
paper [12].
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Table 1: AP3000 specification

Interprocessor networks
AP-Net 200MB/sec
Barrier synchronization

Cell processor UltraSPARC IU + FPU
Cache memory 512 KB
Local memory 256 MB

3 Numerical Experiments

In this section we describe numerical experiments which compare parallel per-
formance of the algorithms described in previous section on the test problem
and in multiple instruction multiple data (mimd) machine AP3000 [14]. As
a preparation for the experiments, we have a brief introduction of AP3000.
This machine is the workstation cluster, and each processor is made by Ul-
traSPARC chip which runs at 300MHz. The specification of AP3000 is given
in Table 1. We also use mpi as communicative library [8].

In all test runs, we utilize the components of initial guess x0 = 0 and
double precision arithmetic. For the sake of simplicity, we use the simple
stopping criterion (‖rm‖2/‖r0‖2) ≤ 0.1 × 10−12, where rm is the residual
vector at mth iteration.

The convergence behaviour of the deflated gmres(m) algorithms is now
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Figure 1: The relation between number of iterations and f for deflated-

gmres(50,4) method in example 1.

illustrated by simple example.

3.1 Example 1

We now consider the following linear system of equations Ax = b:

A =




1 0.1 02 0.1
. . .

. . .

. . . 0.1
0 16384




, b =




1
1
...
1
1




, (3)
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where A ∈ R16384×16384. This example is chosen from Morgan [4, 7]. The
coefficient matrix is a triangular matrix and its eigenvalues are therefore
real and are diagonal elements. You see that the distribution of eigenvalues
are distinct and well separated. This problem is somewhat artificial but
has been used. We solve the linear system (3) using standard gmres(m),
morgan(m, k), deflated-gmres(m, k) and deflation(m, k) algorithms.
For the deflated gmres algorithms stated above, these consist of adding
approximate eigenvectors obtained from previous Arnordi step to Krylov
subspace. The test uses two subspaces dimension of 50 and 70, the last 2
and 4 of which are approximate eigenvectors. For example, these are denoted
by deflated gmres(50, 2), · · ·, deflated gmres(70, 4).

At first, we will decide how many eigenvalues are deflated at each restart.
Therefore, we investigate the relation between iteration and the number of
eigenvectors f which added by each restart frequency. Figure 1 shows repre-
sentative plots of above relations. From this figure, we can get the result of
minimum iteration at f = 1. So we set f = 1.

The convergence results of numerical experiments for these algorithms
are given in Table 2. Runs for which convergence was not possible in 30 min-
utes are labelled by (. . .). In this table, it can be seen that the convergence
for morgam(m, k) and deflated-gmres(M, k) algorithms are always bet-
ter than for the standard restarted gmres(m) algorithm when measured in
terms of both time and iterations. On the other hand, the deflation(m, k)
algorithm could not converge at all for this problem.
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Table 2: The numerical result in Example 1 (time: computational time(sec),
iter: the number of iterations).

Algorithm time iter
gmres(50) 418 4100
gmres(70) 450 3220

morgan(48,2) 255 1848
morgan(46,4) 255 1746
morgan(68,2) 367 1748
morgan(66,4) 315 1396

deflated-gmres(50,2) 358 3250
deflated-gmres(50,4) 261 2250
deflated-gmres(70,2) 330 2240
deflated-gmres(70,4) 260 1680

deflation(50,2) . . . . . .
deflation(50,4) . . . . . .
deflation(70,2) . . . . . .
deflation(70,4) . . . . . .
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Figure 2: The convergence history of the residual norm in Example 1,
A: gmres(50), B: morgan(48,2), C: deflated-gmres(50,4), D: defla-

tion(50,4).
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Figure 2 shows the graph of time vs. residual and of iterations vs. resid-
ual norm, respectively. From this figure, morgan(m, k) and deflated-

gmres(m, k) algorithms have a fairly good convergence. Both algorithms
have similar convergence slopes toward the final phase of the iteration. It
can be seen that deflation is effective in speedup convergence early in the solu-
tion process. But, the convergence behaviour of deflation(m, k) algorithm
seems fairly flat and nearly stagnate for a large period of the convergence
history.

3.2 Example 2

We consider the following three-dimensional problem [3]

−uxx − uyy − uzz + Rux = g(x, y, z) on Ω,

u(x, y)|∂Ω = 0,

where Ω ≡ [0, 1]× [0, 1]× [0, 1], and R is a Reynolds number. The right hand
side is g(x, y, z) is chosen so that the solution is

u(x, y, z) = exp(xyz) sin(πx) sin(πy) sin(πz).

We discretize using central finite difference scheme on the uniform 80×80×80
grid, producing a linear system of order n = 51200.

At first, as same as the Example 1, we will decide to how many eigenvalues
are deflated at each restart. We investigate the relation between iterations
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Figure 3: The relation between number of iterations and f for deflated-

gmres(50,4) method and deflation(50,4) method in Example 2, A: R =
1.0, B: R = 10.0, C: R = 100.0, D: R = 1000.0.

and number of deflated eigenvalues f . In Figure 3, we show the relation
between iterations and f for deflated-gmres(50, 4) and deflation(50,4)
algorithms. In this figure, we can get the minimum number of iterations,
when we use f = 1 in most cases. So we set f = 1.

The convergence results of numerical experiments are given in Table 3
for various values of R. We also compare the standard gmres(m) with
incomplete lu (ilu) decomposition in our experiments. The ilu decomposi-
tion is frequently used for preconditioning technique, but its process includes
forward and backward substitution (see Bruaset [6]). This is particularly dif-
ficult to implement on mimd parallel computer. Bastian et al. [5] proposed



3 Numerical Experiments C1008

some convenient techniques (i.e. block divided method) for parallelizing the
ilu preconditioner for the linear system coming from finite difference dis-
cretization of elliptic pde problem (see Nodera [11]). However, since the
communication overhead is significantly large in some case, the ilu precon-
ditioner can not often perform well. So, we use the modified parallelization
technique of ilu decomposition which based on the original block divided
method. This new algorithm decreases the communication overhead and de-
termines the appropriate band-size. In our numerical tests, we implement
the ilu decomposition using the block divided technique. The detailed im-
plementation of ilu decomposition is given by Moriya et al. [13].

This table shows the convergence of deflated gmres algorithms. Mostly
deflated-gmres(m, k) algorithm is better convergence in terms of compu-
tational time. Especially, for low Reynolds numbers deflated-gmres(m, k)
algorithm converges rather fast compared to the other algorithms. However,
the standard gmres(m) with ilu decomposition fairly good convergence in
case of higher order Reynolds number such as R = 100 and 1000. For defla-

tion(m, k) algorithm, the eigenvalue calculation procedure takes more time
than the other deflation algorithms. It is the cause that its computational
time has not been reduced.

Figure 4 shows the reduction of in residual norm as deflated gmres(m, k)
and standard gmres(m) algorithm for R = 1. As we observed, all the curves,
except the standard gmres(50) curve, have similar convergence slopes at
the early phase of iteration. The first about 100 steps of all the algorithms
are identical. Differences appear at around this step 100, each algorithms
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Figure 4: The convergence history of the residual norm in Example 2
(R = 1.0), A: gmres(50), B: morgan(48,2), C: deflated-gmres(50,4),
D: deflation(50,4).
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Table 3: The numerical result in Example 2 (time: computational time
(second), iter: the number of iterations).

R
Algorithm 1.0 10.0 100.0 1000.0

time iter time iter time iter time iter
gmres(50) 1607 900 1233 700 1461 800 1183 650
gmres(70) 1705 700 2046 840 2041 840 1694 700

gmres(50)+ilu 1515 450 1373 400 877 250 693 200
gmres(70)+ilu 1658 350 1679 350 1367 280 1346 280
morgan(48,2) 1158 598 1360 698 1845 948 1696 848
morgan(46,4) 1314 646 1419 696 1944 946 1871 896
morgan(68,2) 1462 558 1856 698 2199 838 2253 838
morgan(66,4) 1701 626 1923 696 2697 976 2452 906

deflated-gmres(50,2) 963 500 1258 650 1568 800 1171 600
deflated-gmres(50,4) 1008 500 1195 600 1221 600 1025 500
deflated-gmres(70,2) 1270 490 1425 560 1970 770 1786 700
deflated-gmres(70,4) 1299 490 1493 560 1490 560 1503 560

deflation(50,2) 1730 600 2194 750 2557 850 2631 900
deflation(50,4) 1802 600 2103 700 2899 950 2258 750
deflation(70,2) 2099 560 2938 770 3163 840 2905 770
deflation(70,4) 2417 630 2687 700 3342 840 3568 910
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converge quite different ways. It is interesting to note that in this case
deflated-gmres(50,4) algorithm performs better convergence history than
the others.

3.3 Example 3

We consider a model of the 3-dimensional Navier-Stokes problem stated as
follows [9].

a1uxx + a2uyy + a3uzz + R(a4ux + a5uy + a6uz) + a7u = g(x, y, z) on Ω (4)

where

a1 = 2 + sin(2πx) cos(2πy) cos(2πz)

a2 = 2 + cos(2πx) sin(2πy) cos(2πz)

a3 = 2 + cos(2πx) cos(2πy) sin(2πz)

a4 = sin(4πx), a5 = sin(4πy), a6 = sin(4πz)

a7 = sin(2πx) sin(2πy) sin(2πz)

and the parameter R simulates a Reynolds number. We pose equation (4) on
Ω = [1, 0] × [1, 0] × [1, 0] with Dirichlet boundary conditioned and discretize
using central difference scheme on the uniform 64 × 64 × 64 grid, producing
a linear system of order of n = 262144. The right-hand side is determined so
that the exact solution is

u(x, y, z) = sin(2πx) cos(2πy) sin(2πz).



3 Numerical Experiments C1012

400

450

500

550

600

1 2 4

Ite
ra

tio
n

The value of  f

B

A

400

450

500

550

600

1 2 4

Ite
ra

tio
n

The value of  f

A

B

(a) deflated-gmres(50,4) (b) deflation(50,4)

Figure 5: The relation between number of iterations and f for deflated-

gmres(50,4) method and deflation(50,4) method in Example 3, A: R =
1.0, B: R = 10.0.

Figure 5 shows that the relation between number of iterations and f
for deflated-gmres(50,4) and deflation(50,4) algorithm in Example 3.
From this figure, we will set f = 1.

Table 4 shows the results of numerical experiments for various value
of R. Run for which convergence was not possible in 70 minutes are la-
belled by (. . .). In this table, it can be seen that the convergence of de-
flated gmres(m, k) algorithm is better convergence in terms of the computa-
tional time. Most significantly, the deflated-gmres(50, 4) and deflated-

gmres(70,4) algorithms gave somewhat better residual reduction in some
experiments. In case of R = 100 and R = 1000, the standard gmres(m) al-
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gorithm has failed to converge, but the most of both morgan(m, k) and
deflated-gmres(m, k) algorithms have fairly good converged. For the
Reynolds number R = 1000, all algorithms fail to converge.

Figure 6 plotted the convergence history for these runs at R = 100. In
this figure, we can see that cases where an initial decrease in the residual
norm is followed by stagnation. The first 100 steps of all the algorithms have
a similar convergence slopes toward the final phase of iterations. Differences
appear at around step 100. morgan(48,2) and deflated-gmres(50,4) al-
gorithms are still identical until final convergence step. At around step 100,
the standard gmres(50) and deflation(50, 4) algorithms are referred to as
stalling. This is sometime occurs for the case of indefinite matrix. This figure
also shows that the morgan(48,2) and deflated-gmres(50,4) algorithms
keep the residual size better behaved than the standard gmres(m) and de-

flation(m, k) algorithms over the course of run. Especially, morgan(48, 2)
is slightly better than deflated-gmres(50, 4) algorithm.

4 Concluding Remark

We have compared in detailed the convergence behaviour of three different
types of deflated gmres algorithms for solving a linear system of equation (1)
and have exposed some important features of deflated gmres algorithms.
Numerical experiments have shown that the deflated-gmres(m, k) algo-
rithm is competitive with and more efficient than the standard gmres(m)
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Table 4: The numerical result in Example 3 (time: computational time
(second), iter: the number of the iterations).

R
Algorithm 1.0 10.0 100.0 1000.0

time iter time iter time iter time iter
gmres(50) 523 550 528 550 . . . . . . . . . . . .
gmres(70) 620 490 622 490 . . . . . . . . . . . .

gmres(50)+ilu 717 400 700 400 . . . . . . . . . . . .
gmres(70)+ilu 643 280 642 280 . . . . . . . . . . . .
morgan(48,2) 467 448 471 448 633 598 . . . . . .
morgan(46,4) 541 496 542 496 705 646 . . . . . .
morgan(68,2) 587 418 582 418 716 488 . . . . . .
morgan(66,4) 599 416 707 486 . . . . . . . . . . . .

deflated-gmres(50,2) 568 550 577 550 . . . . . . . . . . . .
deflated-gmres(50,4) 428 400 489 450 820 750 . . . . . .
deflated-gmres(70,2) 662 490 669 490 1502 1120 . . . . . .
deflated-gmres(70,4) 583 420 585 420 488 350 . . . . . .

deflation(50,2) 764 500 677 450 . . . . . . . . . . . .
deflation(50,4) 709 450 707 450 . . . . . . . . . . . .
deflation(70,2) 848 420 992 490 3872 1820 . . . . . .
deflation(70,4) 844 420 1003 490 . . . . . . . . . . . .
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Figure 6: The convergence history of the residual norm in Example 3 (R =
100.0), A: gmres(50), B: morgan(48,2), C: deflated-gmres(50,4), D:
deflation(50,4).
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in most cases. Here we comment that it seems likely that deflated-

gmres(50,4) is better reduction of residual norm than the other algorithms.

There still remain several problems to be studied. For example, how to
choose m adaptively during the process of iterations, and how to choose the
total number of eigenvalues are deflated, and how many eigenvalues that are
deflated at each restart, when A is general nonsymmetric coefficient matrix.
For determining m automatically when to restart, an approach of the adap-
tive procedure of gmres and deflated gmres algorithms will be given in
Tsuno et al. [15] and Moriya et al. [16], respectively.

References

[1] J.H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University
Press, 1965.

[2] Y. Saad and M.K. Schultz. GMRES: A generalized minimal residual
algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat.
Comput., 7:856–869, 1986.

[3] W. Schönauer. Scientific Computing on Vector Computers. North
Holland, 1987.

[4] R. Morgan. Computing interior eigenvalues of large matrices. Linear
Algebra and its Appl., 154,156:289–309,1991.



References C1017

[5] P. Bastian and G. Horton. Parallelization of robust multigrid methods:
ILU factorization and frequency decomposition Method. SIAM J. Sci.
Stat. Comput., 12:1457–1470, 1991.

[6] A.M. Bruaset. A Survey of Preconditioned Iterative Methods. Pitman
Res. Note in Math., No. 32, Longman, U. K., 1995.

[7] R. Morgan. A restarted GMRES method augmented with eigenvectors.
SIAM J. Matrix Anal. App., 16:1154–1171, 1995.

[8] Message Passing Interface Forum, MPI: A message-passing standard,
May (1995). http://www.mcs.anl.gov/mpi/

[9] G.L.G. Sleijpen and H.A. Van der Vorst. An overview of approaches
for the stable computation of hybrid BiCG methods. Appl. Numer.
Math., 19:235–254, 1995.

[10] J. Erhel, K. Burrage, and B. Pohl. Restarted GMRES preconditioned
by deflation. Journal of Comput. and Appl. Math., 69:303–318, 1996.

[11] T. Nodera and N. Tsuno. The parallelization of the incomplete LU
factorization on AP1000. Springer Lect. Notes in Comp. Sci.,
1470:788–792, 1998.

[12] K. Burrage and J. Erhel. On the performance of various adaptive
preconditioned GMRES strategies. Numer. Linear Algebra with Appl.,
5:101–121, 1998.

http://www.mcs.anl.gov/mpi/


References C1018

[13] K. Moriya and T. Nodera. Parallelization of ILU decomposition for
elliptic boundary value problem of the PDE on AP3000. Springer,
Lect. Notes on Comp. Sci., 1615:344–353, 1999.

[14] Fujitsu Lab.: Parallel server AP3000:
http://www.fujitsu.co.jp/hypertext/Products/Info_process/hpc/ap3000-e.
C1000 C999 C1006 C1003 C1007 C1007 C997, C1000, C1003 C1001
C1011 C997, C1000, C1000 C1008 C997, C1000, C1000, C1000 C1008
C1001

[15] N. Tsuno and T. Nodera. The speedup of the GMRES(m) method
using the early restarting procedure, (in Japanese). Transaction of
Information Processing Society of Japan, 40:(4)1760–1773, 1999.
C1016

[16] K. Moriya and T. Nodera. The DEFLATED-GMRES(m, k) method
with switching the restart frequency dynamically. submitted to
Numer. Linear Algebra with Appl., 1999. C1016

http://www.fujitsu.co.jp/hypertext/Products/Info_process/hpc/ap3000-e

	Introduction
	Deflated GMRES($m$)
Algorithms
	Numerical Experiments
	Example 1
	Example 2
	Example 3

	Concluding Remark
	References

